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Abstract—Eigenvalue problems are critical to several fields of
science and engineering. We expand on the method of using
unsupervised neural networks for discovering eigenfunctions and
eigenvalues for differential eigenvalue problems. The obtained
solutions are given in an analytical and differentiable form that
identically satisfies the desired boundary conditions. The network
optimization is data-free and depends solely on the predictions
of the neural network. We introduce two physics-informed loss
functions. The first, called ortho-loss, motivates the network to
discover pair-wise orthogonal eigenfunctions. The second loss
term, called norm-loss, requests the discovery of normalized
eigenfunctions and is used to avoid trivial solutions. We find
that embedding even or odd symmetries to the neural network
architecture further improves the convergence for relevant prob-
lems. Lastly, a patience condition can be used to automatically
recognize eigenfunction solutions. This proposed unsupervised
learning method is used to solve the finite well, multiple finite
wells, and hydrogen atom eigenvalue quantum problems.

Index Terms—neural networks, eigenvalue, eigenfunction, dif-
ferential equation

I. INTRODUCTION

Differential equations are prevalent in every field of science
and engineering, ranging from physics to economics. Thus,
extensive research has been done on developing numerical
methods for solving differential equations. With the unprece-
dented availability of computational power, neural networks
hold promise in redefining how computational problems are
solved or improving existing numerical methods. Among
other applications in scientific computing, neural networks are
capable of efficiently solving differential equations [[1]—[4].

These neural network solvers pose several advantages over
numerical integrators: the obtained solutions are analytical and
differentiable [3]], numerical errors are not accumulated [4]],
networks are more robust against the ‘curse of dimensionality’
[5]1, [6], a family of solutions corresponding to different initial
or boundary conditions can be constructed [7], the neural
solutions can be transferred for fast discovery of new solutions
[8]], [9], inverse problems can be solved systematically [10],

[11], and available data can be incorporated into the loss
function to improve the network’s performance [|12].

Eigenvalue differential equations with certain boundary
conditions appear in a wide range of problems of applied
mathematics and physics, including quantum mechanics and
electromagnetism. Lagaris et al. [1] have shown that neural
networks are able to solve eigenvalue problems and proposed
a partially iterative method that solves a differential equation
with a fixed eigenvalue at each iteration. More recently, Li et
al. [13] showed that neural networks can solve the stationary
Schrodinger equation for systems of coupled quantum oscilla-
tors. This is a variational approach where the eigenvalue is in-
directly calculated from the predicted eigenfunction. Our work
expands on the unsupervised neural network eigenvalue solver
presented by Jin et al. [14], which simultaneously and directly
learns the eigenvalues and the associated eigenfunctions using
a scanning mechanism. Here, we introduce physics-informed
improvements to the regularization loss terms: orthogonal loss
(ortho-loss) and normalization loss (norm-loss). We further
design special neural network architectures with embedded
symmetries that ensure the prediction of perfectly even or
odd eigenfunctions. Furthermore, a modified parameterization
is introduced to handle problems with non-zero boundary
conditions. The proposed technique is an extension to physics-
informed neural network differential equation solvers and,
consequently, inherits all the benefits that neural network
solvers have over numerical integrators. Moreover, our method
has an additional advantage over integrators in that it discovers
solutions that identically satisfy the boundary conditions.
We assess the performance of the proposed architecture by
solving a number of standard eigenvalue problems of quantum
mechanics: the single finite square well, multiple finite square
wells, and the hydrogen atom.

II. BACKGROUND

This study extends the method presented in [14], where
a fully connected neural network architecture was proposed,



with a single output corresponding to the predicted eigenfunc-
tion, and with a constant input node designed to learn constant
eigenvalues through backpropagation. To identically satisfy the
boundary conditions, a parametric function was used. In order
for the network to find non-trivial solutions to the differential
eigenvalue equation, the two regularization loss functions
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were used to penalize trivial eigenfunctions and zero eigen-
values, respectively. Moreover, a scanning mechanism allows
the network to search the eigenvalue space for eigenfunctions

of different eigenvalues, enabled by the loss term defined as

Larve = €7, 2)

(1

where ¢ was a value that changed during training through
scheduled increases, and was used to control the scanning.

The research by Li et al. [[13] on neural network-based
multi-state solvers is also relevant to this study. However,
we present some novelties and differences in methodology.
Specifically, we assign a trainable network parameter to
discover the eigenvalue instead of indirectly calculating it
through the expectation of the Hamiltonian of the system.
Our approach avoids the repeated calculation of an integral
(i.e., for the expectation value) which is evaluated every
training epoch. The second novelty of our approach is the
embedding of physical symmetries in the network architecture.
The symmetry of the wavefunctions can be determined by
the symmetry of the given potential function. We design a
specialized architecture with embedded even or odd symmetry
that significantly improves the overall network optimization.
Finally, we suggest a parameterization that identically satisfies
non-zero boundary conditions, which is necessary to solve the
radial equation of the hydrogen atom.

Orthogonality loss is also used in [[13]], where it is lever-
aged to simultaneously produce multiple eigenvalue solution
outputs that are pair-wise orthogonal. This differs from our
method, since our neural network outputs one solution at a
time, and the orthogonality loss term is used to prevent us
from finding the same solution multiple times.

III. METHODOLOGY

We consider an eigenvalue problem that exhibits the form:

Lf(x) = Af(2), 3)

where x is the spatial variable, £ is a differential operator that
depends on x and its derivatives, f(x) is the eigenfunction,
and X is the associated eigenvalue. For the finite square well
problems, we assume homogeneous Dirichlet boundary condi-
tions at the left and right boundaries x;, and x g, respectively,
such that f(xr) = f(zr) = fo, where f, is a given constant
boundary value. On the other hand, for the hydrogen atom
problem, a single Dirichlet boundary condition f(zg) = f is
enforced.

We expand on the network architecture proposed by [14]
and shown in Fig. |1} This feed-forward neural network is capa-
ble of solving Eq. (3) when both f(z) and X are unknown. The

network takes two inputs, the variable x and a constant input
of ones. The constant input feeds into a single linear neuron
(affine transformation) that is updated through optimization,
allowing the network to find a constant A. Afterwards, x
and A\ are inputs to a fully-connected feed-forward neural
network that returns an output function N (x, \). The predicted
eigenfunctions f(x,)\) are defined using a parametric trick,
similar to [4]], according to the equation:

f(x,)\)sz-i-g(x)N(x,)\) 4)

By choosing an appropriate g(z), the predicted eigenfunction
identically satisfies certain boundary conditions.
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Fig. 1: Physics-informed neural architecture for solving eigen-
value problems.

Our aim is to discover pairs of f(x,\) and A that approxi-
mately satisfy Eq. (3). This is achieved by minimizing, during
the network optimization, a loss function L defined by Eq. (3)
as:

L = LDE + Lreg
1 2
L= M; (Lf (@A) = Af (@A) + Lieg,— (5)

where averaging with respect to x; takes place in Lpg for
M training sample points, namely x = (21, -+ ,zp). Any
derivative with respect to x; contained in L is calculated
by using the auto-differentiation technique [15|]. The Ly
term in Eq. (5) contains regularization loss terms. In this
work, we introduce and apply a regularization function that
consists of three terms of the form: Ly = VnormLnorm +
VorthLorth + Varive Larive.  Empirically, for the problems dis-
cussed below, we found the optimal regularization coefficients
Vnorm = Vorth = 1. The normalization loss Lo €ncourages
normalized eigenfunctions, avoiding the discovery of trivial
eigenfunctions and eigenvalues, since it enforces non-zero
solution as well as constraining the eigenfunction’s squared
integral to be finite. The L, motivates the network to scan for
orthogonal eigenfunctions and can replace or assist the non-
physical scanning (Lgyive) method used in [[14]]. Lgyive accounts
to the scanning method which is used to guide the model’s
eigenvalue weight and is given by Eq. 2] However, for the
experiments presented in this study, we use Loy, as a physics-
informed regularization term that can replace the non-physical
scanning method with Lgive, and thus vpem 1s set to O.



A. Normalization Loss

Our contribution includes a novel approach to solving the
trivial solution problem. While [14] employed non-trivial
eigenfunction and non-trivial eigenvalue loss terms Ly and
Ly, as described in Eq. 2] these loss terms cannot numerically
converge to 0 without scaling the solutions to infinity, and
thus they introduce numerical error. While they were effective
for preventing the network from converging to trivial f(x)
and ), they hold no physical meaning. We present a physics-
aware regularization loss function that not only prevents trivial
solutions, but also motivates the eigenfunction’s inner product
with itself to approach a specific constant number, which is the
normalization constraint physically required of eigenfunctions
in quantum mechanics. Thus, Lo 1S given by

M 2
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where dot denotes the inner product. The loss function in
Eq. (6) drives the network to find solutions with non-zero
integrals, where f(x,\) represents the network solution, M
is the number of samples, and zr — z, is the training range.
Specifically, this motivates the network solution to have a
squared integral equal to one. Unlike Ly and Ly, Lpom can
strictly reach zero and can also satisfy the normality constraint
for eigenfunction solutions of Schrodinger’s equation.

B. Orthogonality Loss

An orthogonality loss regularization function is included as
part of L, to motivate the network to find different eigen-
solutions to Schrodinger equation. This presents a physics-
informed approach whereby we can motivate a network to
solve for orthogonal solutions for problems where it is known
that solutions are orthogonal, a fundamental property of linear
differential eigenvalue problems. Schrodinger’s equation is
one such example, but this mechanism can be extended to
any Hermitian operator. This serves as a replacement or an
improvement over solely relying on the scanning mechanism
Lgrive presented in [14]]. While a scanning search through
the eigenvalue space using Lggive can be useful for providing
control over the model’s search for eigenfunction solutions,
solving equations that are known to be Hermitian (such as
the Schrodinger equation) allows the use of an orthogonal
loss term, since eigenfunctions of Hermitian operators are
orthogonal. In this paper, we show that the neural network is
able to find orthogonal eigenfunction solutions solely based on
the orthogonality loss. This loss term is given by the following
equation.

Loin = weigen ' 1/1, (7

where )cigen denotes the sum of all eigenfunctions that have
already been discovered by the network during training, and
1 is the current network prediction. This regularization term
embeds the network with a physics-informed predisposition
towards finding orthogonal solutions to a Hermitian operator,

serving as a more physics-aware loss term than the brute-force
scanning approach.

Following the network’s convergence to a new solution,
the new eigenfunction is added to %eigen and thus, it is the
linear combination of all the discovered solutions. Hence, a
single orthogonality loss term is computed for each learning
gradient, as opposed to separate orthogonality computations
for each learned eigenfunction. This reduces computational
cost since only one dot product is computed for each training
iteration, as opposed to multiple dot products with each found
eigenfunction.

C. Embedding Even and Odd Symmetry

For certain differential equations where prior information
about the potential dictates even or odd symmetric eigen-
functions, the neural network architecture can be embedded
with a physics-informed modification that enforces the correct
symmetry in the eigenfunction output. As demonstrated by
Mattheakis et al. in [[16] and extended by [17]], symmetry can
be embedded by feeding a negated input stream in parallel
to the original input, then combining streams before the final
dense layer. Adding streams leads to even symmetric outputs,
while subtracting gives rise to odd symmetric predictions.

We found that embedding symmetry into our model sig-
nificantly accelerates the convergence to a solution. This is
relevant for the multiple finite square wells problem, as we
demonstrate below.

D. Parametric Function

Selecting an appropriate parametric function g(z) is neces-
sary for enforcing boundary conditions. The following para-
metric equation enforces a f(zr) = f(xg) = 0 boundary
conditions:

g(x) = (1 - 67(171L>) (1 - 67(171’}?‘)) . (8)

As demonstrated in [14]], this parametric function is suitable
for problems where the eigenfunctions are fixed to or converge
to zero, as in the case of the infinite square well and the
harmonic oscillator problems. In the following experiments,
we employ the parametric function of Eq. for finite square
well problems, as they similarly require eigenfunctions to taper
to zero at domain limits.

The differential eigenvalue equation for the hydrogen atom,
however, has a single zero boundary condition at  — oo, as
the fundamental solution is not fixed to O at the origin. For
such problems where a single Dirichlet boundary condition is
required, we use the following parametric function:

gla) = (1= e 7m0, ©

E. Towards Solution Recognition

To automatically extract the correct eigenfunctions, we
define convergence to an eigenfunction solution using two
criteria: the differential equation loss Lpg and patience.

Lpg describes the loss term for the differential eigenvalue
equation in question. For our experiments, without loss of



generality, we used Schrodinger’s equation. Nevertheless, the
method is valid for any differential equation eigenvalue prob-
lem. Considering that perfect eigenvalue solutions will have
an Lpg loss equal to zero, we claim that a solution is found
when Lpg falls below a chosen threshold, which is a hyper-
parameter in the training process.

The patience condition describes the model’s training
progress. When solving for a solution, the model initially
improves very quickly, resulting in a fast decrease of Lpg.
However, over the course of converging to a solution, the rate
of decrease in Lpg decreases as well. Thus, we use the rate of
decrease in Lpg as another condition for solution recognition.
If the rolling average during the training iterations of the
successive differences in Lpg over a specified window hyper-
parameter falls below a chosen threshold hyper-parameter, we
consider the patience condition to be met.

When both the Lpg condition (Lpg falling below a thresh-
old) and the patience condition are satisfied, we consider an
eigenvalue solution to have been found. On the other hand,
if only the patience condition is satisfied, then we interpret
this to mean that the model has converged to a false solution.
Consequently, we switch the symmetry (from even to odd
symmetry or vice versa) of the model to motivate the network
to search for other solutions. This approach of switching the
symmetry of the model upon converging to a false solution
was inspired by our finding that the network’s function output
after converging to false solutions resembled true solutions,
but of the opposite symmetry. Upon adopting this switching
approach, we found that the model was able to resume finding
true solutions. The above method is described by Algorithm

il

Algorithm 1 The Physics-Informed Neural Eigenvalue Solver
Algorithm

1: Instantiate model with even symmetry

2: while training do

3: Generate training samples z;

Compute Lpg, Lyom

Compute Loy, using all stored eigenfunctions

Backpropagate and step

if patience condition and Lpg < threshold then
Store copy of model

else if patience condition then

10: Switch model symmetry

11: end if

12: end while
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IV. EXPERIMENTS

We evaluate the effectiveness of the proposed method
by solving eigenvalue problems defined by Schrodinger’s
equation. Schrodinger’s equation is the fundamental equation
in quantum mechanics that describes the state wavefunction
(x) and the associated energy E of a quantum system. In

this study, we are interested in solving the one-dimensional
stationary Schrodinger’s equation defined as:

n? 92
~5 5.2 T V()| (@) = Ev(z), (10)
where / and m stand for the reduced Planck constant and
the mass respectively, which without loss of generality, can
be set to A = m = 1. Equation defines an eigenvalue
problem where ¥ (x) and F denote the eigenfunction f(x, \)
and eigenvalue A\ pair. The differential equation loss for this
one-dimensional stationary Schrodinger’s equation is given by
Equation (TI), and henceforth we call this the Schrodinger

equation loss.
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A boundary condition eigenvalue problem is defined by
considering a certain potential function V(z) and bound-
ary conditions for ¢ (z). We assess the performance of the
proposed network architecture by solving Eq. for the
potential functions of the single finite well, multiple coupled
finite wells, and the radial equation for the hydrogen atom, all
of which have known analytical solutions.

For the training, a batch of z; points in the interval [z, 2 ]
is selected as input. In every training iteration (epoch) the
input points are perturbed by a Gaussian noise to prevent the
network from learning the solutions only at fixed points. Adam
optimizer is used with a learning rate of 81072, We use two
hidden layers of 50 neurons per layer with trigonometric sin(-)
activation function. The use of sin(-) instead of more common
activation functions, such as Sigmoid(-) and tanh(-), signifi-
cantly accelerates the network’s convergence to a solution [4].
We implemented the proposed neural network in pytorch [[15]]
and published the code on githu

LDE =

A. Single Finite Well

The finite well potential function is defined as:

V(z) = {OV

where £ is the length and Vj is the depth of the quantum well.
The analytical solution to the finite well problem is tradition-
ally found by solving the stationary Schrodinger’s equation
in each region, then ’stitching’ the solutions of each region
together while enforcing a continuous eigenfunction that is
also continuously differentiable. For bound eigenfunctions, the
general form of the solution for regions where the eigenvalue
E is greater than the potential reads:

0<x</t

, 12
otherwise (12)

2mE

k=
h

) = Asin(kx) + B cos(kx), (13)

Thttps://github.com/henry 1 jin/quantumNN



For regions where the eigenvalue E is smaller than the
potential energy, the solution’s general form is

2m(Vo — E)

3 .

The solutions then for Eq. is the following piece-wise

eigenfunction, where constants cj, co, and §, are determined

by the requirement that the eigenfunction is continuous, con-
tinuously differentiable, and normalized.

= Ce " 4+ De**, a= (14)

cre*® z <0,
Y(r) =< cosin(kz +9) 0<az <Y, (15)
cre " x>/

The (x) eigenfunctions must decay to infinity outside the
walls, implying the boundary conditions ¥ (—o0) = ¥(c0) =
0. In numerical methods, infinity is approximated with large
values relative to the potentials. We adopt the approximate
boundary conditions of ¥ (zy) = ¥(zg) = 0 with the choice
xy, = xg = 64, for £ = 1 and V{j = 20. The proposed model
with the orthogonal loss term is capable of solving for all
bound eigenstates. In the following we use the neural network
to approximate the first four eigenfunctions and the associated
energies.
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Fig. 2: The plot on the upper left displays the model’s
eigenvalue weight (i.e. energy) during the training process.
Horizontal dashed black lines demarcate the true eigenvalues,
which our network accurately finds (plateaus of red lines). The
lower left plot shows the corresponding Schrodinger equation
loss Lpg over epochs during training. At 15000 epochs,
orthogonal loss with the first eigenfunction is introduced. Each
following spike in Lpg indicates the point where the model
reaches the patience condition, and the last eigenfunction is
added to the orthogonal loss term. Column of plots on the right
are the resulting eigenfunctions that the model finds when the
predicted energy converges to a plateau.

We start the network optimization by using a neural net-
work with even symmetry embedded. Figure [2| summarizes
the results for the discovery of the first four eigenstates of

the quantum finite well. The lower left panel outlines the
Lpg during the training. The red curve in the upper left
graph demonstrates the predicted energies where the plateaus
indicate the discovery of an eigenstate; the dashed black lines
show the ground truth energies. On the right side, the four
predicted eigenfunctions are represented by blue lines; the
bottom graph corresponds to the ground state. In particular,
the neural network finds for the ground state solution with
energy I = 0.3586. After the first solution is found, we
introduce the orthogonal loss term into the training, motivating
the network to find a new eigenfunction. Consequently, the
eigenvalue weight departs from its first value and rises to find
the next even-symmetry solution with eigenvalue ¥ = 3.2132
(the third graph on the right side in Fig. [2| counting from the
bottom). Once the patience condition is reached, the network
automatically adds the latest solution to the orthogonal loss,
motivating the network to once again depart its solution in
search of the next orthogonal solution. The model converges
to an eigenvalue of around £ = 1.8, however it does not
meet both conditions for solution acceptance. In particular,
it does not meet the Lpg condition. We take this to mean
that, while the model has converged, it has converged to a
false solution. So the symmetry of the model is switched
to odd symmetry. The next two solutions found are odd-
symmetric and correspond to the eigenvalues of Ef = 1.4322
and E' = 5.6873 shown respectively by the second and fourth
images in the right panel of Fig. 2]

B. Multiple Finite Square Wells

The single finite well potential can be repeatedly spaced
to create a potential function that consists of multiple square
wells as follows:

V(z) = {OV

where n is an element of a subset of nonzero integers.

Like the single finite well, solutions to the multiple square
wells are piece-wise constructed by solving for each discrete
region and stitching” solutions. The general forms of the
solutions in each region, namely, inside and outside a well, are
once again given by Eq. (I3) and Eq. (T4), respectively. The
boundary conditions at infinity are also approximated by large
values of z relative to the potential, that is, ¢(xz — +o00) = 0.

Our deep learning technique applied to the multiple wells
solves for an arbitrary number of the solutions. Figure [3|shows
our neural network finding the four lowest-energy (i.e. lowest-
eigenvalue) states of the double finite square well. Similar to
the single finite well problem, the model here uses the physics-
informed approach of solving for orthogonal eigenfunctions
with the orthogonal loss term, given the knowledge that solu-
tions to Hermitian differential operators must be orthogonal.

nl <z < (2n+ 1)

. ) (16)
otherwise

C. Symmetry vs No Symmetry

Embedding symmetry into the network for problems where
the solutions are known to be either even or odd symmetric
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Fig. 3: Top left plot shows the network’s eigenvalue over
epochs during training, with true eigenvalues shown by the
dotted horizontal lines. Bottom left plot shows the model’s
corresponding Schrodinger equation loss at each training point.
Column of plots on the right are the resulting eigenfunctions
that the model finds.

proved to greatly improve the solution accuracy. Figure 4] com-
pares the eigenvalues (energy) predicted by the two models,
one with embedded symmetry (blue line) and one without
(red line). While the symmetry-embedded model is able to
smoothly transition from one correct eigenvalue to the next
one, the model without embedded symmetry converges to an
incorrect eigenvalue.
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Fig. 4: Predicted eigenvalue energies of quantum multiple
wells during the training of a network with embedded sym-
metry (blue) and a network without any embedded symmetry
(red). Dotted black horizontal lines are analytical, ground truth

solution eigenvalues.

D. Hydrogen Atom

In quantum mechanics, the hydrogen atom is described by
the three-dimensional Schrodinger equation with a Coulomb
potential energy. While the hydrogen atom is a three-
dimensional problem, the equation can be decomposed into
radial and angular components via separation of variables.
The angular equation yields the spherical harmonics solutions,

while the radial component R(r) equation to be solved is given

by:

d*’R  2dR 2u Ze? (l+1)

e et (g - 1
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where r is the radial variable, & is the reduced Planck’s
constant, y is the reduced mass, Z is the number of protons,
€ denotes the vacuum permeability, and the variable | denotes
the angular momentum of the system and takes positive integer
values. We employ the proposed neural network to solve Eq.
for1=0,1,2,3.

We note that Eq. becomes singular at » = 0. Con-
sequently, training sample points close to 7 = 0 lead to
numerical instability. To avoid this problem, we allocate the
region r = [0, 1le — 1] to be a no-train zone. Thus, any training
sample points that are generated are greater than r = le — 1.
Without this constraint, the numerical instability caused by
sample points close to O disrupts the network’s ability to
converge to solutions.

The analytical eigenvalue energies of the hydrogen atom are

iven b
g y x
32e2h?m2n?’
where n denotes the order of the solutions. Namely, for n =
1, we get the ground energy. We notice that the eigenvalue
energies are not dependent on the system’s angular momentum
[, but only on the system’s order of excitement n.

The full three-dimensional solution to the Schrodinger equa-
tion for the hydrogen atom creates probability densities. The
densities have not only radial dependence, but also angular
dependence. For our work, we focused solely on the radial
component of the Schrodinger2 e4quation. Furthermore, without
loss of generality, we set E;l:g‘zhi;yﬂ =1

We demonstrate that our method solves for the first few
eigenfunctions for four different angular momentum values
1 =0,1,2,3. Figure 5] shows our model’s solutions, arranged
in a grid with angular momentum [ running along the vertical
grid plots, and the energy level n running along the horizontal
axis.

Our method is able to solve for the lowest eigenvalue-
eigenfunction pairs with good accuracy. We analysed the
accuracy of our method’s solutions in comparison to the true
solutions which are analytically known. Table [I| shows these
results.

E, = (18)

V. CONCLUSION

In recent years, there has been a growing interest in the
application of neural networks to study differential equations.
In this study, we introduced a neural network that is capable
of discovering eigenvalues and eigenfunctions for boundary
conditioned differential eigenvalue problems. The obtained
solutions identically satisfy the given boundary conditions via
a parametric function. We imposed even and odd symmetry in
the network structure for problems that require such solutions,
such as the single and multiple finite wells. We also introduced
an orthogonality loss, which allows the network to learn new



Fig. 5: Upper triangular plots show the model’s predicted
eigenfunctions for angular momentum values ! = [0, 3] in-
clusive, and for energy levels n = [1,4] also inclusive. The
rightmost plot shows the true eigenvalues in dashed black, with
our method’s found solutions in colors. The red line is the
Coulomb potential function that describes the radial hydrogen
atom problem.

Performance Results (%)
Schrodinger Problem Eigenvalue Err. Mean  Squared
Err.
Single (n =1, s) 0.00 8.9¢e-4
Single (n =1, a) 0.25 3.7e-4
Single (n = 2, s) 0.25 9.1e-4
Single (n = 2, a) 0.46 4.8e-4
Double (n =1, s) 0.25 6.3e-4
Double (n =1, a) 0.32 4.8e-4
Double (n = 2, s) 0.56 8.7e-4
Double (n = 2, a) 0.61 T.1e-4
H(l=0,n=1) 1.46 4.0e-3
H(l=0,n=2) 0.08 5.8e-3
H(l=0,n=3) 0.70 8.2e-3
H(l=0,n=4) 1.10 1.0e-2
Hdl=1,n=2) 4.08 3.8e-5
H{l=1,n=3) 2.38 1.8e-4
Hdl=1,n=4) 2.52 2.2e-4
Hl=2,n=3) 0.18 6.9¢e-6
H(l=2,n=4) 0.48 6.2¢e-4
H{l=3,n=4 1.44 6.5¢-3

TABLE I: This table presents comparisons with our model’s
solutions to the true analytical solutions. We find that our
model finds the true eigenvalues to approximately 1 % error
consistently. Mean squared error denotes the mean squared
error of the function divided by the maximum of the absolute
value of the true eigenfunction.

eigenfunctions that are orthogonal to all previously learned
eigenfunctions. Furthermore, a normalization loss was used to
enforce that the learned solutions are not trivial solutions, and
that the quantum physical interpretation of eigenfunctions as
probability distributions can be supported. The optimization
solely depends on the network’s predictions, consisting of an
unsupervised learning method. We demonstrated the capability
of the proposed architecture and training methodologies by

solving the finite well, multiple finite wells, and hydrogen
atom quantum problems.

VI. FUTURE RESEARCH

For future work, we will generalise our method in two ways.
One generalisation is towards more dimensions. For instance,
the full solutions to the hydrogen atom Schrodinger equation
are three-dimensional. We believe such generalisations will
also more clearly reveal the advantages of solving such equa-
tions with neural networks. It is also possible to extend into the
temporal dimension and solve the time dependent Schrodinger
equation. The other avenue for future research is to apply our
method to more general eigenvalue differential equations. This
paper focuses on the Schrodinger’s equation, which belongs
to the Sturm-Liouville family. This study lays the groundwork
for using neural networks to solve any eigenvalue differential
equation.

VII. BROADER IMPACT

This work is valuable for computational physicists and ap-
plied mathematicians, as well as in any field where differential
eigenvalue problems may arise. We have demonstrated our
method’s success for the one-dimensional Schrodinger equa-
tion, but the technique can be generalised to Sturm-Liouville
problems, as well as higher dimensional equations (e.g. 3D
Schrodinger and Helmholtz equations). We strongly believe
that this study will serve as the groundwork for future work
in the area of solving differential equations using deep learning
methods. We neither foresee and nor desire our research results
to be used for any kind of discrimination.
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