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Abstract—The sense of touch is essential for a variety of daily
tasks. New advances in event-based tactile sensors and Spiking
Neural Networks (SNNs) spur the research in event-driven tactile
learning. However, SNN-enabled event-driven tactile learning is
still in its infancy due to the limited representative abilities of
existing spiking neurons and high spatio-temporal complexity in
the data. In this paper, to improve the representative capabilities
of existing spiking neurons, we propose a novel neuron model
called “location spiking neuron”, which enables us to extract
features of event-based data in a novel way. Moreover, based on
the classical Time Spike Response Model (TSRM), we develop a
specific location spiking neuron model — Location Spike Response
Model (LSRM) that serves as a new building block of SNNs[ﬂ
Furthermore, we propose a hybrid model which combines an
SNN with TSRM neurons and an SNN with LSRM neurons to
capture the complex spatio-temporal dependencies in the data.
Extensive experiments demonstrate the significant improvements
of our models over other works on event-driven tactile learning
and show the superior energy efficiency of our models and
location spiking neurons, which may unlock their potential on
neuromorphic hardwareﬂ

Index Terms—Spiking Neural Networks, spiking neuron mod-
els, location spiking neurons, event-driven tactile learning

I. INTRODUCTION

The tactile perception is a vital sensing modality that en-
ables humans to gain perceptual judgment on the surrounding
environment and conduct stable movement [1]. With the recent
advances in material science and Artificial Neural Networks
(ANNps), research on tactile perception begins to soar, includ-
ing tactile object recognition [2]]-[4], slip detection [5]], and
texture recognition [6], [7]. Unfortunately, although ANNs
demonstrate promising performance on the tactile learning
tasks, they are usually power-hungry compared to human
brains that require far less energy to perform the tactile
perception robustly [8], [9].

Inspired by biological systems, research on event-driven
perception starts to gain momentum, and several asynchronous
event-based sensors have been proposed, including event cam-
eras [10] and event-based tactile sensors [11]. In contrast to

IThe TSRM is the classical SRM in the literature. We add the character
“T” to highlight its difference with the LSRM.
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standard synchronous sensors, such event-based sensors can
achieve higher energy efficiency, better scalability, and lower
latency. However, due to the high sparsity and complexity of
event-driven data, learning with these sensors remains in its
infancy [[12]. Recently, several works [1]], [[11], [13] utilized
Spiking Neural Networks (SNNs) [12], [14], [15] to tackle
event-driven tactile learning. Unlike ANNS generally requiring
expensive transformations from asynchronous discrete events
to synchronous real-valued frames, SNNs can process event-
based sensor data directly. Moreover, unlike ANNs employing
artificial neurons [16]]-[18] and conducting real-valued com-
putation, SNNs adopt spiking neurons [19]-[21] and utilize
binary 0-1 spikes to process information. This difference re-
duces the mathematical dot-product operations in ANNSs to less
computationally summation operations in SNNs. Due to the
advantages of SNNs, these works are always energy-efficient
and suitable for power-constrained devices. However, due to
the limited representative abilities of current spiking neuron
models and high spatio-temporal complexity in the event-
based tactile data, these works still cannot sufficiently capture
spatio-temporal dependencies and thus hinder the performance
of event-driven tactile learning.

In this paper, to address the problems mentioned above, we
make several contributions that advance event-driven tactile
learning.

First, to enable richer representative abilities of existing
spiking neurons, we propose a novel neuron model called
“location spiking neuron”. Unlike existing spiking neuron
models that update their membrane potentials based on time
steps [22], location spiking neurons update their membrane
potentials based on locations. Moreover, based on the Time
Spike Response Model (TSRM) [[19], we develop the “Lo-
cation Spike Response Model”, henceforth referred to as
“LSRM”. The TSRM is the classical SRM in the literature.
We add the character “T (Time)” to highlight its difference
with the LSRM. These location spiking neurons enable us to
extract feature representations of event-based data in a novel
way. Previously, SNNs adopted temporal recurrent neuronal
dynamics to extract features from the event-based data. With
location spiking neurons, we can build SNNs that employ
spatial recurrent neuronal dynamics to extract features from
the event-based data. We believe location spiking neuron
models can have a broad impact on the SNN community



and spur the research on learning from event sensors like
NeuTouch [11] or Dynamic Vision Sensors [10].

Next, we investigate the effectiveness of location spiking
neurons and develop a hybrid model to capture the complex
spatio-temporal dependencies in the event-driven data. The
hybrid model combines an SNN with TSRM neurons and an
SNN with LSRM neurons. Moreover, we introduce a location
spike-count loss and a weighted spike-count loss to train the
SNN with LSRM neurons and the hybrid model, respectively.

Last but not least, we apply our proposed models to event-
driven tactile learning, including event-driven tactile object
recognition and event-driven slip detection, and test them
on three challenging datasets. Specifically, two sub-tasks are
included in the task of event-driven tactile object recognition.
The first sub-task requires models to determine the type of
objects being handled. The second sub-task requires models to
determine the type of containers being handled and the amount
of liquid held within, which is more challenging than the first
sub-task. In the task of event-driven slip detection, models
need to accurately detect the rotational slip (“stable” or “ro-
tate””) within 0.15s. Extensive experimental results demonstrate
the significant improvements of our models over other state-
of-the-art methods on event-driven tactile learning and show
the superior energy efficiency of our models, which may bring
new opportunities and unlock their potential on neuromorphic
hardware.

To the best of our knowledge, this is the first work to
propose location spiking neurons, introduce the LSRM, and
build SNNs with location spiking neurons for event-driven
tactile learning. The rest of the paper is organized as follows.
In Section [[Il we give an overview of related work on SNNs
and event-driven tactile sensing and learning. In Section
we start by introducing notations for TSRM neurons and
extending them to the specific location spiking neurons —
LSRM neurons. We then propose models with LSRM neurons
for event-driven tactile learning. Last, we provide implemen-
tation details and algorithms related to the proposed models.
In Section we demonstrate the effectiveness and energy
efficiency of our proposed models on different benchmark
datasets. Finally, we discuss the broad impact of this work
and conclude in Section [V]

II. RELATED WORK

In the following, we give a brief overview of related work
on SNNs and event-driven tactile sensing and learning.

A. Spiking Neural Networks (SNNs)

With the prevalence of Artificial Neural Networks (ANNs),
computers today have demonstrated extraordinary abilities in
many cognition tasks. However, ANNs only imitate brain
structures in several ways, including vast connectivity and
structural and functional organizational hierarchy [22]. The
brain has more information processing mechanisms like the
neuronal and synaptic functionality [23]], [24]]. Moreover,
ANNSs are much more energy-consuming than human brains.
To integrate more brain-like characteristics and make artificial

intelligence models more energy-efficient, researchers propose
Spiking Neural Networks (SNNs), which can be executed on
power-efficient neuromorphic processors like TrueNorth [25]
and Loihi [26]. Similar to ANNs, SNNs can adopt general net-
work topologies like convolutional layers and fully-connected
layers, but use different neuron models [21]. Commonly-
used neuron models for SNNs are the Leaky Integrate-and-
Fire (LIF) model [20] and the Time Spike Response Model
(TSRM) [[19]]. Due to the non-differentiability of these spiking
neuron models, it still remains challenging to train SNNs.
Nevertheless, several solutions have been proposed, such as
converting trained ANNs to SNNs [27], [28] and approx-
imating the derivative of the spike function [29]], [30]. In
this work, we propose location spiking neurons to enhance
the representative abilities of existing spiking neurons. These
location spiking neurons maintain the spiking characteristic
but employ the spatial recurrent neuronal dynamics, which
enable us to build energy-efficient SNNs and extract features
of event-based data in a novel way. Moreover, based on the
optimization methods for SNNs with existing spiking neurons,
we can derive the approximate backpropagation methods for
SNNs with location spiking neurons.

B. Event-Driven Tactile Sensing and Learning

With the prevalence of material science and robotics, several
tactile sensors have been developed, including non-event-
based tactile sensors like the iCub RoboSkin [31] and the
SynTouch BioTac [32]] and event-driven tactile sensors like
the NeuTouch [I1] and the NUSkin [33]. In this paper,
we focus on event-driven tactile learning with SNNs. Since
the development of event-driven tactile sensors is still in its
infancy [13]], little prior work exists on learning event-based
tactile data with SNNs. The work [1]] employed a neural coding
scheme to convert raw tactile data from non-event-based tactile
sensors into event-based spike trains. It then utilized an SNN
to process the spike trains and classify textures. A recent
work [11] released the first publicly-available event-driven
visual-tactile dataset collected by NeuTouch and proposed an
SNN based on SLAYER [14] to solve the event-driven tactile
learning. Moreover, to naturally capture the spatial topological
relations and structural knowledge in the event-based tactile
data, a very recent work [13] adopted the spiking graph
neural network [15]] to process the event-based tactile data and
conduct the tactile object recognition. In this paper, different
from previous works building SNNs with spiking neurons
that employ the temporal recurrent neuronal dynamics, we
construct SNNs with location spiking neurons to capture
the complex spatio-temporal dependencies in the event-based
tactile data and boost the event-driven tactile learning.

III. METHODS

In this section, we first demonstrate the spatial recurrent
neuronal dynamics of location spiking neurons by introducing
notations for the existing spiking neuron model — TSRM and
extending it to the location spiking neuron model — LSRM.
We then introduce models with location spiking neurons for
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Fig. 1. The temporal recurrent neuronal dynamics of TSRM neuron 7. (a)
the refractory dynamics of TSRM neuron 7. Immediately after firing an output
spike at time tgf ), the value of w; (¢) is lowered or reset by adding a negative
contribution 7;(-). The kernel n;(-) vanishes for ¢ < tz(.f ) and decays to
zero for ¢ — oo. (b) the incoming spike dynamics of TSRM neuron 7. A
presynaptic spike at time ¢ 1) increases the value of ; (t) fort > t;f ) by an
amount of w;;x; (tg-f))ﬁij (t —t;f)). The kernel €, (-) vanishes for ¢ < t;f).
A transmission delay may be included in the definition of €;;(-).

event-driven tactile learning. Last, we provide implementation
details and algorithms related to the proposed models.

A. Location Spiking Neurons

Spiking neuron models are mathematical descriptions of
specific cells in the nervous system. They are the basic
building blocks of SNNs. Two commonly-used spiking neuron
models are the LIF model and the TSRM. Since the TSRM
is more general than the LIF model [34], we introduce the
TSRM and transform it to a location spiking neuron model —
the LSRM. A similar transformation process can be applied
to the LIF model to derive its corresponding location spiking
neuron model.

In the TSRM, the temporal recurrent neuronal dynamics of
neuron 7 are described by its membrane potential ;(t). When
u;(t) exceeds a predefined threshold ¢ at the firing time tl(f ),
the neuron ¢ will generate a spike. The set of all firing times
of neuron ¢ is denoted by

Fi= {951 < f < n} = {tus(t) = 9}, (1)

where tl(.") is the most recent spike time tz(-f ) < t. The value of
u;(t) is governed by two different spike response processes:

wt)= 3 mGs)+ Y. > wiyz P )ey(s;). @

tPer, Jeli D eF,
Dosj=t—1
neurons of neuron 7, and x; (tgf )) = 1 is the presynaptic spike.
n;(+) is the refractory kernel, which describes the response of
neuron i to its own spikes at time ¢. ¢;;(-) is the incoming
spike response kernel, which models the neuron ¢’s response
to the presynaptic spikes from neuron j at time ¢. w;; accounts
for the connection strength between neuron ¢ and neuron j and
scale the incoming spike response. Figure [I(a) visualizes the
refractory dynamics and Figure [I[b) visualizes the incoming
spike dynamics. Without loss of generality, such temporal
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Fig. 2. The spatial recurrent neuronal dynamics of LSRM neuron <. (a) the
refractory dynamics of LSRM neuron %. Immediately after firing an output

spike at location lgf), the value of u;(l) is lowered or reset by adding a
negative contribution 7/ (-). The kernel 0 (-) vanishes for [ < lgf ) and decays
to zero for [ — oo. (b) the incoming spike dynamics of LSRM neuron . A
presynaptic spike at location 1) increases the value of u;(l) for I > l;f )
by an amount of wj, (l;f))e;j(l - lg.f)). The kernel €} (-) vanishes for
1 < 1), A location delay may be included in the definition of €}, (+). “<”
and “>” indicate the location order.

recurrent neuronal dynamics also apply to other spiking neuron
models, such as LIF neurons. From the above descriptions, we
find that existing spiking neuron models explicitly convolve
the temporal information in the data but fail to explicitly
convolve the spatial information in the data, which, to some
extent, limits their representative abilities.

To enrich the representative abilities of existing spiking
neuron models, we propose location spiking neurons, which
adopt the spatial recurrent neuronal dynamics and update their
membrane potentials based on 1ocati0n These neurons are
able to explicitly convolve the spatial information in the data
and enable us to extract features of event-based data in a novel
way. Specifically, we adopt the TSRM and transform it to the
LSRM. In the LSRM, the spatial recurrent neuronal dynamics
of neuron ¢ are described by its location membrane potential
u;(1). When w; (1) exceeds a predefined threshold ¢ at the firing
location ll(f ), the neuron ¢ will generate a spike. The set of all
firing locations of neuron ¢ is denoted by

G = {151 < f <n} = {l|u;(1) = 9}, 3)

where lgn) is the nearest firing location lgf ) < 1. “<” indicates
the location order, which is manually set and will be discussed
in Section The value of u;(l) is governed by two
different spike response processes:

wl) = D mils)+ D Y wiahl e (), @
1eg; J€r 1P eg,;

where s}, =1 — ll(f), si=1- l§f), I'; is the set of presynaptic

neurons of neuron ¢, and x; (lj(f )) = 1 is the presynaptic spike.

7;(-) is the refractory kernel, which describes the response of

neuron i to its own spikes at location [. €/;(-) is the incoming

spike response kernel, which models the neuron ¢’s response

3locations could refer to pixel locations for images or taxel locations for
tactile sensors.
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Fig. 3. The network structure of the hybrid model. The SNN with TSRM neurons (SNN_TSRM) processes the input spikes X;,, and adopts the temporal
recurrent neuronal dynamics (shown with red dashed arrows) of TSRM neurons to extract features from the data. The SNN with LSRM neurons (SNN_LSRM)
processes the transposed input spikes X/ ~and employs the spatial recurrent neuronal dynamics (shown with purple dashed arrows) of LSRM neurons to
extract features from the data. Finally, the spiking representations from two networks are concatenated to yield the final predicted label. (32) and (20) represent
the sizes of fully-connected layers, where we assume the number of classes (K) to be equal to 20.

to the presynaptic spikes from neuron j at location [. w;;
accounts for the connection strength between neuron ¢ and
neuron j and scale the incoming spike response. Figure 2)a)
visualizes the refractory dynamics of LSRM neurons and
Figure |Zkb) visualizes the incoming spike dynamics of LSRM
neurons. The threshold ¥} of LSRM neurons can be different
from that of TSRM neurons, while we set the same for
simplicity.

B. Event-Driven Tactile Learning with Location Spiking Neu-
rons

Such location spiking neurons enable us to extract feature
representations of event-based data in a novel way. To take ad-
vantage of location spiking neurons and boost the event-based
tactile learning performance, we propose models with location
spiking neurons, which capture complex spatio-temporal de-
pendencies in the event-based tactile data. In this paper, we
focus on processing the data collected by NeuTouch [11f], a
biologically-inspired event-driven fingertip tactile sensor with
39 taxels arranged spatially in a radial fashion (Fig. [3).

1) Hybrid Model: Figure [3] presents the network structure
of the hybrid model. From the figure, we can see that the
hybrid model has two components, including the SNN with
TSRM neurons (SNN_TSRM) and the SNN with LSRM
neurons (SNN_LSRM). Specifically, SNN_TSRM employs
the temporal recurrent neuronal dynamics to extract spik-
ing feature representations from the event-based tactile data
Xin € RVXT where N is the total number of taxels and
T is the total time length of event sequences. SNN_LSRM
utilizes the spatial recurrent neuronal dynamics to extract spik-
ing feature representations from the event-based tactile data
X! € RTXN where X/, is transposed from X,,. The spiking

Fig. 4. Three bio-inspired location orders. Left to right: arch-like location
order, whorl-like location order, loop-like location order.

representations from two networks are then concatenated to
yield the final task-specific output.

2) SNN_TSRM vs. SNN_LSRM: The network structure of
SNN_TSRM is shown in the top part of Fig. 3] It employs
two spiking fully-connected layers with TSRM neurons (SFc)
to process X, and generate the spiking representations O, €
REXT where K is the output dimension determined by the
task. The membrane potential w;(t), the output spiking state
0;(t), and the set of all firing times F; of TSRM neuron ¢ in
SFc are decided by:

ST o)+ S wijoit)e(s;),

#Der, e

capture spatial dependencies
1 if w(t) > 9
0 otherwise,

otherwise,

(&)

FiUt
F



where w;; are the trainable parameters, 7(-) and e(-) are
predefined by hyperparameters, I'; is the set of presynaptic
neurons spanning over the spatial domain, which is utilized to
capture the spatial dependencies in the event-based data.

The network structure of SNN_LSRM is shown in the
bottom part of Fig. [3] It employs two spiking fully-connected
layers with LSRM neurons (SFc-location) to process X/, and
generate the spiking representations Oy € RE*N  where K
is the output dimension decided by the task. The membrane
potential wu;(l), the output spiking state 0;(l), and the set of
all firing locations G; of LSRM neuron ¢ in SFc-location are
decided by:

wil)= 3" )+ > Y who 1Y) (s)),

1PDeg, €T Peg,
model temporal dependencies
1if (1) > 9 (6)
0; (l) — Z( )
0 otherwise,
e G; otherwise,

where ng are the trainable parameters, 7'(-) and €'(-) are
predefined by hyperparameters, I'; is the set of presynaptic
neurons spanning over the temporal domain, which is utilized
to model the temporal dependencies in the event-based data.
Such location spiking neurons tap the representative potential
and enable us to capture features in this way.

3) Concatenate: We concatenate the spiking representa-
tions of O; and Oy along the last dimension and obtain the
final output spike train O € RE*(T+N) The predicted label
is associated with the neuron k € K with the largest number
of spikes in the duration of T+ V.

4) Location Orders: To enable location spiking neurons’
spatial recurrent neuronal dynamics, we propose three location
orders for event-based tactile learning (Fig. {) based on three
major fingerprint patterns of humans — arch, whorl, and loop.
Three examples are shown here. Each number in the brackets
represents the taxel index shown in Fig.

o An example for the arch-like location order: [11, 25, 35,
4, 18, 30, 7, 2, 20, 37, 29, 12, 9, 33, 23, 16, 1, 6, 15, 21,
27, 34, 39, 24, 17, 10, 31, 38, 28, 14, 3, 22, 32, 8, 19,
36, 5, 13, 26]

o An example for the whorl-like location order: [21, 15,
16, 23, 27, 24, 17, 6, 9, 12, 20, 29, 33, 34, 31, 28, 22,
14, 10, 1, 2, 7, 18, 30, 37, 39, 38, 32, 19, 8, 3, 4, 11, 25,
35, 36, 26, 13, 5]

o An example for the loop-like location order: [1, 2, 3, 4,
5,6,7,8,9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
36, 37, 38, 39]

C. Implementation Details and Algorithms

Similar to the spike-count loss of prior works [11]], [[14]], we
propose a location spike-count loss to optimize the SNN with

LSRM neurons:

| K (N N 2
Elocation == 5 Z (Z Ok(l) - Zék(l)> 5 (7)

k=0 \I1=0
which captures the difference between the observed out-
put spike count Zfio or(l) and the desired spike count
leio 0 (1) across the K neurons. Moreover, to optimize the
hybrid model, we develop a weighted spike-count loss:

1 K T N T+N 2
k=0 \t=0 1=0 c=0

which first balances the contributions from two SNNs and then
captures the difference between the observed balanced output
spike count Ztho op(t) + A Zi\;o ok (1) and the desired spike
count ZZIO or(c) across the K output neurons. For both
Liocation and L, the desired spike counts have to be specified
for the correct and incorrect classes and are task-dependent
hyperparameters. We set these hyperparameters like [11]] for
simplicity. To overcome the non-differentiability of spikes and
apply the backpropagation algorithm, we use the approximate
gradient proposed in SLAYER [14]]. The timestep-wise infer-
ence algorithm of the hybrid model is shown in Alg.[I] And the
corresponding timestep-wise training algorithm can be derived
by incorporating the weighted spike-count loss.

Algorithm 1 Timestep-wise inference algorithm

Input: event-based tactile inputs X;,, € RNVNXT N taxels, and
the total time length 7.
Qutput: timestep-wise predictions of O, O, and O.
1: for t + 1to T do
2: obtain X € RVx?
3:  obtain X’ = concatenate(X’,0) € RT*N_ where
X' € RN, and 0 € R(T-OxN
4 Ol(t) :OERKXt, Og(t) :OGRKXN
50 O(t) =0 € REX(HN)
6: O1(t) = SNN_TSRM(X)
7. O(t) = SNN_LSRM(X")
8: O(t) = concatenate(O1(t), O2(t))
9: end for

IV. EXPERIMENTS

In this section, we first introduce the datasets and models for
event-driven tactile learning. Next, to show the effectiveness
of our proposed models, we extensively evaluate their per-
formance on three event-driven tactile datasets and compare
them with state-of-the-art models. Finally, we demonstrate
the superior energy efficiency of our proposed models over
ANNs and show the high-efficiency benefit of location spiking
neurons. We utilize the slayerPytorch framework E] to imple-
ment the proposed models and employ RMSProp with the [
regularization to optimize them. The source code is available
at https://github.com/pkang2017/TactileLocNeurons.

“https://github.com/bamsumit/slayerPytorch
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Fig. 5. Training and testing profiles for Tactile-SNN (orange) and Ours-Hybrid (blue): (a) the training loss, (b) the training accuracy, (c) the testing accuracy.

TABLE I
DATASET STATISTICS

TABLE III
ACCURACIES FOR ABLATION STUDIES

Datasets TD (s)  SSR (s) T N K  #Samples Method Type Objects Containers Slip Detection
Objects 6.5 0.02 325 78 36 900 Tactile-SNN [11]] SNN  0.75 0.57 0.82
Containers 6.5 0.02 325 78 20 800 Ours-Location Tactile-SNN  SNN  0.89 0.88 0.82
Slip Detection 0.15 0.001 150 78 2 100 Ours-Hybrid A =1 SNN 091 0.86 1.0
Ours-Hybrid A = 0.5 SNN  0.92 0.89 0.98
Ours-Hybrid-loop SNN 091 0.86 1.0
TABLE II Ours-Hybrid-arch SNN 091 0.86 0.99
ACCURACIES ON THE EVENT-DRIVEN TACTILE LEARNING DATASETS Ours-Hybrid-whorl SNN 0.92 0.86 0.98

Method Type  Objects  Containers  Slip Detection
Tactile-SNN [11]] SNN 0.75 0.57* 0.82*
TactileSGNet [13]  SNN 0.79 0.58 0.97
GRU-MLP [11] ANN 0.72 0.46* 0.87*
CNN-3D [11] ANN 0.90 0.67* 0.44*
Ours-Hybrid SNN 0.91 0.86 1.0

*These values come from the paper [11]. And the best performance
is in bold.

A. Datasets

In this paper, we use the datasets collected by
NeuTouch [11]]. Specifically, three datasets are collected, in-
cluding “Objects” and “Containers” for event-driven tactile
object recognition and “Slip Detection” for event-driven slip
detection. Unlike “Objects” only requiring models to deter-
mine the type of objects being handled, “Containers” asks
models about the type of containers being handled and the
amount of liquid (0%, 25%, 50%, 75%, 100%) held within.
Thus, “Containers” is more challenging for event-driven tactile
object recognition. Moreover, the task of event-driven slip
detection is also challenging since it requires models to detect
the rotational slip within a short time, like 0.15s for “Slip
Detection”. We summarize the dataset statistics in Table [
where TD is for time durations, SSR is for spike sampling
rates, T=TD / SSR is the total time length, IV is the total
number of taxels (each tactile sensor has 39 taxels and two
tactile sensors are used), and K is the number of classes. We
split the data into a training set (80%) and a test set (20%) with
an equal class distribution in the experiments. We repeat each
experiment for five rounds and report the average accuracy.

B. Models

We compare our models with the state-of-the-art SNN
methods for event-driven tactile learning, including Tactile-

SNN [I1] and TactileSGNet [13]. Tactile-SNN employs
TSRM neurons as the building blocks, and the network
structure of Tactile-SNN is Input-SFcO-SFcl. While Tac-
tileSGNet utilizes LIF neurons as the building blocks and
proposes the spiking graph neural network (SGNet). The
network structure of TactileSGNet is Input-SGNet-SFc1-SFc2-
SFc3. We also compare our models against conventional deep
learning, specifically Gated Recurrent Units (GRUs) [35] with
Multi-layer Perceptrons (MLPs) and 3D convolutional neural
networks [36]. The network structure of GRU-MLP is Input-
GRU-MLP, where MLP is only utilized at the final time step.
And the network structure of CNN-3D is Input-3D_CNNI-
3D_CNN2-Fcl.

C. Performance and Analysis

1) Basic Performance: Table |lI| presents the test accuracies
on the three datasets. We observe that our hybrid model
significantly outperforms the state-of-the-art SNNs. Moreover,
figure [5] shows the training and testing profiles for Tactile-
SNN and our hybrid model. From this figure, we can see that
our model converges faster and attains the lower loss and the
higher accuracy compared to Tactile-SNN. The reason why
our model is superior to other SNNs could be two-fold: (1)
different from state-of-the-art SNNs that only extract features
with existing spiking neurons, our model employs an SNN
with location spiking neurons to extract features in a novel
way; (2) our model fuses SNN_TSRM and SNN_LSRM to
better capture complex spatio-temporal dependencies in the
data. We also compare our model with ANNs, which provide
fair comparison baselines for fully ANN architectures since
they employ similar lightsome network architectures as ours.
From Table |lIL we find out that our model outperforms ANNs
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Fig. 6. The confusion matrix of Tactile-SNN on “Containers”.

on the three tasks, which might be because our model is more
compatible with various kinds of event-based data and better
maintains the sparsity to prevent overfitting.

2) Ablation Studies: To examine the effectiveness of
each component in the hybrid model, we seperately train
SNN_TSRM (which is exactly Tactile-SNN) and SNN_LSRM
(which is referred to as Location Tactile-SNN). From Ta-
ble we surprisingly find out that Location Tactile-SNN
significantly surpasses Tactile-SNN on the datasets for event-
driven tactile object recognition and provides comparable
performance on the event-driven slip detection. The reason for
this could be two-fold: (1) the time durations of event-driven
tactile object recognition datasets are longer than that of “Slip
Detection”, and Location Tactile-SNN is good at capturing the
mid-and-long term dependencies in these object recognition
datasets; (2) like Tactile-SNN, Location Tactile-SNN can still
capture the spatial dependencies in the event-driven tactile data
(“Slip Detection”) due to the spatial recurrent neuronal dynam-
ics of location spiking neurons. Furthermore, we examine the
sensitivities of A in Eq.(8) and location orders. From Table I}
we notice the results of related models are close, proving that
the A tuning and location orders do not significantly impact
the task performance.

3) Confusion Matrices: We calculate the confusion matri-
ces of Tactile-SNN (Fig. [6) and our hybrid model (Fig. [7)
on “Containers” since it is a more challenging event-driven
tactile object recognition dataset. From the two figures, we
can see that our hybrid model can perfectly distinguish the
different containers. Each red box in the figures represents a
type of container, and each blue box in the figures represents
the container misclassification. Moreover, compared to Tactile-
SNN, we observe that our model can recognize the container
fullness with a higher accuracy since the misclassification
number in each red box is fewer for our model.

4) Timestep-wise Inference: We evaluate the timestep-wise
inference performance of the hybrid model and validate the
contributions of the two components in it. Moreover, we
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Fig. 7. The confusion matrix of Ours-Hybrid on “Containers”.

propose a time-weighted hybrid model to better balance the
two components’ contributions and achieve the better overall
performance. Figure [§[a), [§[b), and [§(c) show the timestep-
wise inference accuracies (%) of SNN_TSRM, SNN_LSRM,
the hybrid model, and the time-weighted hybrid model on the
three datasets. Specifically, the output of the time-weighted
hybrid model at time ¢ is

Oy (t) = concatenate((1 — w) * O1(¢),w x O2(1)),
_ 1 )
R E A

where the hyperparameter ) controls the balance between
SNN_TSRM’s contribution and SNN_LSRM’s contribution
and T is the total time length. From the figures, we can see
that SNN_TSRM has good “early” accuracies on the three
tasks since it well captures the spatial dependencies with
the help of Eq. (5). However, its accuracies do not improve
too much at the later stage since it does not sufficiently
capture the temporal dependencies. In contrast, SNN_LSRM
has fair “early” accuracies, while its accuracies jump a lot at
the later stage since it models the temporal dependencies in
Eq. (6). The hybrid model adopts the advantages of these two
components and extracts spatio-temporal features from various
views, which enables it to have a better overall performance.
Furthermore, after employing the time-weighted output and
shifting more weights to SNN_TSRM at the early stage, the
time-weighted hybrid model can have a good “early” accuracy
as well as an excellent “final” accuracy.

D. Energy Efficiency

Following the estimation method in [[15]], [37ﬂ we estimate
the computational costs of the hybrid model and ANNs on the
three datasets. As shown in Fig. [§[(d), the hybrid model has
no multiplication operations and achieves far fewer addition
operations than ANN models on the three datasets. Moreover,
based on Table the compression ratio of total operations

SWe consider the computational costs in feature matrix transformation.
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and percentage comparison between SNN_TSRM and SNN_LSRM on the benchmark datasets.

TABLE IV
OPERATION COST (x10%) AND COMPRESSION RATIO ON BENCHMARK
DATASETS
Method Objects Containers Slip Detection
GRU-MLP 11.87 11.87 5.48
CNN-3D 8.34 8.14 35
Ours-Hybrid 0.60 0.83 0.045
Ratio 9.80~14.30%x 13.90~19.78 x 77.78~121.78 %

(ANNs Opts. / Ours Opts.) is between 9.80x and 121.78x.
These results are consistent with the fact that the sparse
spike communication and event-driven computation underlie
the efficiency advantage of SNNs and demonstrate the po-
tentials of our model on neuromorphic hardware. We further
compare the costs of SNN_TSRM and SNN_LSRM on the
benchmark datasets. From Fig. E[e), we can see that the cost
of SNN_LSRM is almost equal to that of SNN_TSRM on
each dataset, which shows that the location spiking neurons
have the similar energy efficiency compared to existing spiking
neurons. Such high-efficiency benefits make location spiking
neurons a perfect fit for neuromorphic hardware.

V. DI1SCUSSION AND CONCLUSION

This paper proposes a novel neuron model — “location
spiking neuron” and introduces the spatial recurrent neuronal

dynamics of LSRM neurons. We believe the idea of such
location spiking neurons can be applied to other existing
spiking neuron models like LIF neurons and strengthen their
feature representation abilities. Moreover, we think the loca-
tion spiking neurons can build more complicated models to
further boost the event-driven tactile learning performance.
For example, we can develop a spiking graph neural network
with location spiking neurons and combine it with to
better serve event-driven tactile learning tasks. Furthermore,
besides event-driven tactile learning, we can apply the models
with location spiking neurons to other event-driven learning
fields, like event-based vision or event-driven audio sensing.
By analyzing the applications in these fields, we can further
understand the strengths and weaknesses of this new neuron.

In this work, we propose location spiking neurons and
demonstrate the dynamics of LSRM neurons. By exploiting the
LSRM neurons, we develop several models for event-driven
tactile learning to sufficiently capture the complex spatio-
temporal dependencies. The experimental results on three
datasets demonstrate the extraordinary performance and high
energy efficiency of our models and location spiking neurons.
This further unlocks their potential on neuromorphic hardware.
Overall, this work sheds new light on SNN representation
learning and event-driven learning, which may facilitate the
understanding of advanced cognitive intelligence.
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