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Abstract—Unsupervised anomaly detection (AD) is a challeng-
ing task in realistic applications. Recently, there is an increasing
trend to detect anomalies with deep neural networks (DNN).
However, most popular deep AD detectors cannot protect the
network from learning contaminated information brought by
anomalous data, resulting in unsatisfactory detection perfor-
mance and overfitting issues. In this work, we identify one reason
that hinders most existing DNN-based anomaly detection methods
from performing is the wide adoption of the Empirical Risk
Minimization (ERM). ERM assumes that the performance of an
algorithm on an unknown distribution can be approximated by
averaging losses on the known training set. This averaging scheme
thus ignores the distinctions between normal and anomalous
instances. To break through the limitations of ERM, we pro-
pose a novel Diminishing Empirical Risk Minimization (DERM)
framework. Specifically, DERM adaptively adjusts the impact
of individual losses through a well-devised aggregation strategy.
Theoretically, our proposed DERM can directly modify the
gradient contribution of each individual loss in the optimization
process to suppress the influence of outliers, leading to a robust
anomaly detector. Empirically, DERM outperformed the state-
of-the-art on the unsupervised AD benchmark consisting of 18
datasets.

Index Terms—Unsupervised Anomaly Detection, Empirical
Risk Minimization, Autoencoder

I. INTRODUCTION

Anomaly detection (AD) is an important research topic in
data mining and machine learning [5], [7], [37]. It aims to
identify data points that do not conform to expected behaviors.
Since anomalies usually provide critical information, AD
has been widely-used in various applications, such as health
care [33], [35], network intrusion detection [21], [39], fraud
detection [30] and other areas [8], [26]. In many realistic
scenarios, there is no ground truth available to distinguish
anomalous instances from the normal ones. The only assump-
tion is that the proportion of normal instances is much higher
than that of anomalies in a given dataset. According to this
assumption, researchers usually resort to unsupervised ap-
proaches to cope with the situation, i.e. unsupervised anomaly
detection (AD).

A multitude of methods have been proposed to tackle
the unsupervised AD problem [32], [34], [46], [48], [49].
Recently, there is an increasing trend to use Deep Neural
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Networks (DNN) to solve the problem of unsupervised AD, as
DNN-based methods show improved performance compared
with traditional machine learning models, especially when
the scale of data increases. For example, deep autoencoder
has become the core of most deep unsupervised AD ap-
proaches [5], [7], as it can powerfully extract and preserve
intrinsic information from data. Specifically, an autoencoder
learns the latent representation from the original data by
minimizing the reconstruction loss. The anomalies are then
detected based on the assumption that normal instances are
more likely to be compressed and reconstructed than the
anomalous ones.

Despite the progress, there remains a major issue for deep
AD detectors: most existing deep autoencoder AD meth-
ods cannot prevent the network from aggressively fitting
the anomalies, which leads to the overfitting issue and the
unsatisfactory performance in turn. One of the obvious reasons
is that DNN are often over-parameterized and designed with
non-linear activation function between layers, which makes
DNN an universal approximator [12] fitting well with not only
normal data but also the anomalies [45]. Recent works [24]
have attempted to mitigate this issue by an elaborate design
for model capacity.

In this work, we analyze that another reason which makes
DNN non-ideal for the scenario of unsupervised AD is the
concept of empirical risk minimization (ERM), which is
widely adopted by DNN. ERM assumes that the performance
of a learning algorithm on an unknown data distribution can be
approximated by averaging the losses on the known training
set, as follows:

R̄(θ) :=
1

N

∑
i∈[N ]

f(xi; θ) , (1)

where f(·; θ) is a loss function parameterized by θ and xi is the
i-th training instance from a dataset of size N . Take the deep
autoencoder anomaly detector as an example. An anomalous
instance xA tends to have a larger reconstruction loss f(xA; θ).
Under the ERM scheme, since the equivalent weights (i.e., 1

N )
treat all data equally during loss aggregation, an anomalous
instance contributes even more to the overall loss R̄(θ) than
a normal instance. Consequently, the model parameters θ are
optimized based on a total loss R̄(θ) that is severely influenced
by the losses incurred by anomalies, making the deep model
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wrongly focus on and fit with the unwanted anomalies. In
other words, ERM ignores the distinctions between the normal
and the anomalous instances. While some methods [24], [36]
have proposed to address this problem by either discarding
or assigning low weights to potential anomalies during the
training process, they are hard to well generalize on test data
because these methods rely on inflexible ad-hoc or manual
selection of potential anomalous instances.

To tackle the problem brought by ERM, we propose a novel
Diminishing Empirical Risk Minimization (DERM) frame-
work to adaptively adjust the impact of each individual loss.
For t ∈ R+, DERM takes the following form:

R̃DERM(t; θ) := e

1
N

∑
i∈[N]

log(tf(xi;θ))

. (2)

The effectiveness of our design in Eq. 2 comes from the intrin-
sic property of the logarithm function. Specifically, logarithm
function is a slowly increasing function (i.e., its derivative
is decreasing). When f(xi; θ) has a larger value (usually for
anomalies), the logarithm output log(tf(xi; θ)) will suppress
f(xi; θ) more quickly. And the parameter t controls how
intensively the suppression will take effect. In this way, Eq. 2
weakens the impact of potential anomalies (leading to larger
loss values) in a dynamic and controllable manner. Moreover,
by comparing the gradients of ERM (Eq. 1) and DERM
(Eq. 2) w.r.t θ, we theoretically find that DERM can directly
modify the gradient contribution of each individual loss term.
In particular, if the loss f(xi; θ) is larger than the average
(i.e., R̃DERM(t; θ)), the gradient will be diminished. With
this property, the potential anomalies will contribute less to
the optimization process, leading to a more robust anomaly
detection model.

In the experiments, we first verify the effectiveness of the
proposed DERM on anomaly suppression and gradient dimin-
ishing using both the synthetic and real-world datasets. And
then we conduct comprehensive ablation study and comparison
with the state-of-the-art approaches. Our contributions can be
summarized as follows:

• We propose a novel Diminishing Empirical Risk Mini-
mization (DERM) framework for unsupervised anomaly
detection. In DERM, the adverse effect of the potential
anomalies are suppressed in a dynamic and controllable
manner.

• We conduct theoretical analysis on DERM and reveal that
DERM can directly modify the gradient contribution of
each individual loss. Specifically, each gradient contribu-
tion is proportional to the ratio of the average loss to a
single loss.

• We perform extensive experiments on both synthetic
and real-world datasets to verify the efficacy of DERM.
Experimental results demonstrate improved performance
of DERM on the unsupervised AD benchmark consisting
of 18 datasets.

II. RELATED WORKS

A. Unsupervised Anomaly Detection (AD).

Anomaly detection is a significant study field in machine
learning and data mining [5], [7], [29], [37]. Unsupervised
anomaly detection does not require any data with labelling.
The only assumption is that the number of normal data
points is larger than the number of anomalies. A number of
methods have been proposed for unsupervised AD [5], [7],
[29]. Traditional methods tend to choose Principal Component
Analysis (PCA) [41], Isolation Forest [25] and Support Vector
Machine (SVM) [9] to detect anomalies in an unsupervised
manner.

Recently, a large amount of representation learning ap-
proaches equipped with deep neural network have aroused
great interest in this space. The core idea is to learn an useful
representation by minimizing the reconstruction loss. These
reconstruction-based methods learn a low-dimensional vector
in the latent space and then project it back to the original
feature space. The reconstruction error between the input and
the reconstructed output is treated as the anomaly score. Early
work [42] in this branch is proposed on anomaly detection with
the representation learning capability of autoencoder, which
utilized the large reconstruction error to detect anomalies.
Subsequent work combined diverse techniques or prior knowl-
edge with autoencoder to enhance the detection efficacy. RDA
[48] combined the robust PCA with an autoencoder to group
the data into a mixture of normal and anomaly components.
DAGMM [49] trained a Gaussian Mixture Model to learn the
latent representation from autoencoder to determine anomalies
jointly by reconstruction error and density estimation. In
addition, one-class classification and its deep neural network
variants are also widely used for anomaly detection [9], [32].
The decision boundary surrounding normal instances is also
learned for anomaly detection.

However, these methods often rely on the DNN to extract
information, and most existing deep AD approaches fail to
prevent the DNN from aggressively learning the anomalies.
Recent studies attempted to address this issue via different
strategies. RCA [24] proposed to discard a proportion of
suspicious anomaly data through a collaborative autoencoder.
RSR [19] utilized a robust subspace recovery layer to extract
a subspace from the given data and move the outliers further
away from the subspace. Different from such algorithms,
we resolve this issue from the learning principle perspective
and propose the Diminishing Empirical Risk Minimization
(DERM) framework. DERM adaptively adjusts the individual
loss contribution of each instance to diminish the outliers.

B. Autoencoders for Anomaly Detection

Autoencoders have been widely-adopted in unsupervised
anomaly detection [3], [11], [40], [43], [49]. The general
idea is to train an autoencoder on the entire dataset (both
normal and anomalous) and utilize the reconstruction error
as the detection criterion. As there are fewer anomalous data
for training, the reconstruction errors of anomalies are higher



than that of normal ones, which can be utilized to separate
the anomalies from normal data. There are subsequent work
that seek help from traditional machine learning algorithms
to enhance the capability of vanilla autoencoder. For ex-
ample, robust autoencoder [6] incorporates RPCA [4] in an
autoencoder, where parameters of autoencoder and a sparse
residual matrix are alternatively optimized. Normalized deep
autoencoder [2] considers the situation of multiple modes
for normal instances and also applies L2 normalization for
latent variables of the autoencoder. What’s more, MemAE [11]
proposes a memory-augmented autoencoder to improve the
performance of unsupervised anomaly detection. Nevertheless,
most existing approaches overlook the deficiency of the default
ERM principle in AD applications. In this work, we put for-
ward a novel DERM framework to circumvent the drawback
of ERM.

C. Sample Re-weighting and Aggregation Schemes.
Approaches have been proposed to re-weight the influence

of samples by modifying the ERM objective. In [15], [20],
examples were re-weighted as per their loss values to intervene
the optimization dynamics, which pays more attention to dif-
ficult examples. Relaxed clipping [44] performed the example
re-weighting via loss clipping. There are other works trying to
modify the loss aggregation scheme. One of the alternatives
to traditional average loss in ERM is to consider a min-max
objective, which tries to minimize the max loss. The min-max
objective has been applied in application such as enhancing
robustness under perturbations [38].

Sample re-weighting has also been applied on anomaly
detection. Most of existing deep anomaly detection approaches
fail to protect the neural network from interfering by anomalies
during parameter learning. Some work address this issue via
assigning different weights to corresponding data point. For
instance, self-paced learning model [18] and Mentornet [13]
assign higher weights to instances which are easier to be
classified. Recently, TERM [22] proposed the tilted empirical
risk minimization, which tuned the impact of individual losses
by applying different gradient weights on them. However,
existing methods are less effective when applied to unsuper-
vised AD. By contrast, DERM is specially designed for the
unsupervised AD task by adaptively re-weighting examples
with a new learning principle. Moreover, DERM can directly
modify the gradient contribution of each example from a
theoretical perspective.

III. METHODOLOGY

A. Diminishing Empirical Risk Minimization (DERM)

a) Problem Setting.: Suppose we are given a dataset
X = {x1, x2, . . . , xn}, where xi ∈ X ⊆ Rd has d features.
Our objective is to classify each xi as either an anomalous
instance or a normal one in an unsupervised manner.

b) DERM Framework.: DERM learns a set of k autoen-
coders {(Ej , Dj)|j = 1, 2 . . . k} with different initializations.
Here, we set k = 2 for brevity (the discussion be easily gen-
eralized to the situation when k > 2). As shown in Figure 1,

in each iteration, a mini-batch of data is randomly sampled
and fed into the autoencoders. Then, the reconstruction loss
for each data instance xi is calculated as:

f(xi; θ) =
∑

j=1,2,...,k

||xi −Dj(Ej(xi))||22 . (3)

To obtain the final loss, as discussed before, previous work
utilize the ERM (Eq. 1) to aggregate all the instance losses
with equal weights. However, it ignores the distinctions be-
tween the normal and anomalous instances, thus overfitting the
anomalies. To address this issue, we devise the DERM (Eq. 2)
to automatically and dynamically adjust the loss weights for
each instance. With the DERM, the normal instances are
well learned and result in small losses, while the anomalous
instances are less-trained and cause large losses due to their
inconsistent behaviour and the lack of data. Then, a back-
propagation step is conducted to update the parameters of
the whole model by gradient-based optimization. During the
testing phase, the reconstruction loss f(xi; θ) is adopted as
an anomaly score of the testing instance. The details of the
DERM framework (k=2) is shown in Algorithm 1.

c) Theoretical Analysis.: To dig deep into the motiva-
tion and mechanism, we present the theoretical analysis for
the proposed DERM framework. Using traditional ERM is
equivalent to obtaining the mean loss of the training samples,
which can be biased towards (or negatively affected by) outlier
data. By the following Theorem, we show that DERM can
suppress the anomalies by reducing the gradient contribution
of the potential anomalous candidates.

Theorem 1: For a continuously differentiable (i.e., smooth)
loss function f(x; θ), the gradient of DERM (Eq. 2) is:

∇θR̃DERM(t; θ) =
∑
i∈[N ]

wi(t; θ)∇θf(xi; θ)

where wi(t; θ) =
1

N

R̃DERM(t; θ)

f(xi; θ)
.

Proof 1:

∇θR̃DERM(t; θ)

= ∇θ

{
e

1
N

∑
i∈[N]

log tf(xi;θ)
}

=

(
e

1
N

∑
i∈[N]

log tf(xi;θ)
)

· 1

N

∑
i∈[N ]

∇θ log tf(xi; θ)

=

(
e

1
N

∑
i∈[N]

log tf(xi;θ)
)

· 1

N

∑
i∈[N ]

∇θf(xi; θ)

f(xi; θ)

=
∑
i∈[N ]

1

N
· e

1
N

∑
i∈[N]

log tf(xi;θ)

f(xi; θ)
∇θf(xi; θ)

=
∑
i∈[N ]

1

N
· R̃DERM(t; θ)

f(xi; θ)
∇θf(xi; θ)
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Fig. 1. Illustration of the DERM framework in the training phase. A batch of training data is sampled as the input for k (k = 2 in this figure) collaborative
autoencoders. The reconstruction loss for each instance is computed. Then, the total loss for an instance from the two autoencoders is summed to obtain a batch
of loss. DERM aggregation scheme is applied on the loss and back propagation is performed to update parameters in neural networks of both autoencoders.

We can observe from Theorem 1 that the gradient of DERM
is a weighted sum of the individual gradient terms w.r.t
the instances. Specifically, for each instance xi, the original
gradient ∇θf(xi; θ) is re-weighted proportional to the ratio
between the DERM loss R̃DERM(t; θ) and the instance loss
f(xi; θ). Considering the gradient ratio structure in Theorem 1,
the DERM term in the numerator is fixed in a mini-batch,
while the denominator f(xi; θ) is a strong indicator for the
anomalous/normal probability. In particular, a normal instance
usually has a small loss f(xi; θ), leading to a large re-
weighting ratio on the original gradient. On the contrary, an
anomalous instance tends to have a large loss, thus resulting
in a small ratio on the original gradient. With this mechanism,
the influence of the anomalous instances is weakened while
the impact of the normal instances are reinforced, which
alleviates the overfitting and universal approximation towards
the anomalies.

Compared with the existing methods that only change the
weights of the instance losses, our method directly re-weights
the gradient terms to intervene the optimization process,
which works on the parameter space in a more straightfor-
ward manner. Moreover, taking both the batch statistics (i.e.,
R̃DERM(t; θ)) and the individual loss f(xi; θ) into consid-
eration, DERM can automatically and dynamically modify
the gradient weights. This avoids designating manual or ad-
hoc weights according to the dataset, thus facilitating the
generalization of our method to a diverse range of datasets
without many extra adjustments.

B. Comparison with Existing Methods

Studies have been carried out to devise alternatives to
the vanilla ERM in various scenarios, such as classification
with imbalanced data [23], [28] and learning in the presence
of corrupted data [14], [16]. Recently, tilted empirical risk
minimization (TERM) [22] framework is proposed to address
the sensitivity and poor generalization issues in ERM. TERM

Algorithm 1: DERM for unsupervised AD
Input: training set Xtrain, test set Xtest, temperature

t, learning rate η, max epoch M .
Output: anomaly scores for Xtest.

1 Initialize encoders E1, E2 and decoders D1, D2 with
θ = {θE1

, θE2
, θD1

, θD2
}.

2 Training phase:
3 for epoch ∈ {1, 2, . . .M} do
4 Sample a mini-batch {x1, . . . , xN} from Xtrain.
5 Calculate f(xi; θ) =

||xi −D1(E1(xi))||22 + ||xi −D2(E2(xi))||22 for
each xi in the sampled mini-batch.

6 Aggregate all losses {f(xi; θ)}N with R̃DERM(t; θ)
according to Eq. 2.

7 Update θ ← θ − η∇θR̃DERM(t; θ).

8 Testing phase:
9 for each xi in Xtest do

10 Calculate anomaly score s(i) = f(xi; θ) for xi.

11 return anomaly scores s.

takes the following form:

R̃TERM(t; θ) :=
1

t
log

 1

N

∑
i∈[N ]

etf(xi;θ)

 . (4)

TERM is shown to be effective in robust regression and
classification tasks. However, it turns out to be less effective on
unsupervised anomaly detection due to its intrinsic property.
TERM suffers from the sensitivity to the absolute value of loss,
resulting in unsatisfactory outcomes. We analyze the problem
as follows, as a comparison to our DERM in Theorem 1. The
gradient of TERM [22] is,

∇θR̃TERM(t; θ) =
∑
i∈[N ]

wi(t; θ)∇θf(xi; θ) (5)



with wi(t; θ) =
et(f(xi;θ)−R̃TERM(t;θ))

N
. (6)

When applying TERM to the unsupervised anomaly detec-
tion, we find a major drawback with respect to Eq. 5 (note
that when applying TERM to anomaly detection, it requires
t < 0 [22].). For a min-batch of data X = {x1, x2, ..., xN},
according to DNN’s universal approximation property, the re-
construction loss {f(xi; θ)} has a high possibility to distribute
close to 0. Consequently, the item |f(xi; θ)−R̃TERM| for a data
point xi is also highly likely to approach 0 since R̃TERM is a
variant of average w.r.t X . This leads to an unsatisfactory triv-
ial solution that the gradient weight wi(t; θ) of each instance
in Eq. 5 is close to 1

N . To amend the issue, TERM heavily
relies on the parameter t to scale |f(xi; θ) − R̃TERM| into
a suitable range. Unfortunately, X often changes drastically
for different instances even in the same dataset. In realistic
applications, it takes efforts to determine the ideal value of
t and sometimes the ideal t does not exists. If we want to
apply the same algorithm to multiple datasets, the sensitivity
of t requires frequently re-training the model and hinders
the knowledge transferring across datasets, which restricts its
application scenario.

The proposed DERM avoids the aforementioned issue in
TERM. Specifically, in DERM, wi(t; θ) is linear to R̃DERM(t;θ)

f(xi;θ)
.

By contrast, in TERM, wi(t; θ) corresponds to e to the power
of (f(xi; θ) − R̃TERM). This formulation difference leads to
following advantage of our proposed method: the weight
wi(t; θ) of an instance xi is not sensitive to the distribution and
numerical value of training data since it takes the ratio format
instead of the subtraction between R̃DERM and f(xi; θ). This
avoids trivial solution discussed above and assigns discrimina-
tive weights to normal and anomalous instances, respectively.
Moreover, the form of wi(t; θ) has an additional signal magni-
fication effect. Except for the anomalous instances, the normal
instances can be dynamically weighted to reflect their various
impacts. This way, DERM makes use of the pattern of normal
data to emphasize more on high-quality normal data.

To better understand how DERM overcomes the limitations
of TERM, we conduct experiments on both synthetic and
real-world dataset. For synthetic dataset, we generate recon-
struction loss for 200 normal instances from N (0.03, 0.002)
and 10 anomalies from N (0.06, 0.005) that constitute a set
{f(xi; θ)}i∈[210] to simulate the losses for both normal and
anomalous data. For real-world dataset, we adopt the shuttle
dataset from OODS library [31]. The gradient weights of all
instances are shown in Figure 2, from which we can draw
several remarks as follows: (1) the gradient weights of TERM
approach 1

N , since the exponential powers in Eq. 5 are close to
0, (2) normal and anomalous instances are better distinguished
and separated by the proposed DERM method, (3) except
for the normal/anomalous instance separation, DERM also
induces dynamic weights on the normal instances. These re-
marks are consistent with the above analysis and demonstrates
our DERM method as a better anomaly detector.

Fig. 2. Gradient comparison between DERM and TERM [22] on real and
synthetic datasets. The height of grey bar represents the gradient weights of
the normal instances. The height of red bar represents that of anomalous
instances. The gradient weight is obtained by ωi/

1
N

for clear visualization.
Blue dash line separates the normal and anomalous data. In (4), a base-10
logarithm scale is applied on the y-axis for a better visualization.

C. Collaborative Autoencoders (cAE)

Employing only one autoencoder, the model has the risk
of quickly converging to an unsatisfactory solution due to
the low reconstruction loss to compute the gradient [45]. The
premature convergence of loss function fails to explore the
loss surface sufficiently [24]. Meanwhile, ensemble of model
outputs has shown a high efficacy in previous studies [1], [10],
[25], [47]. To alleviate above issue, inspired by ensemble, we
propose the Collaborative Autoencoders (cAE) with different
weight initializations for each autoencoder.

Typically, ensemble is a collaboration of a set of models
that are trained individually. To enable the end-to-end model
training in DERM, we utilize a diagram of optimizing multiple
autoencoders in parallel to mimic the traditional ensemble
procedure. That is, all autoencoders are optimized by gra-
dient based methods simultaneously and then collaboratively
contribute to the subsequent testing phase. After training,
each individual autoencoder would have distinct parameters
as they are initialized with random values. Subsequently, an
one forward pass is performed over the data to obtain multiple
reconstruction losses for each test data point. The final loss
is a summation of all reconstruction losses, which reduces
the chance of model becoming overfitting to certain data
points. This collaboration of multiple AEs design endows
more robustness and reduce the testing variance, which fur-
ther enhances the entire performance for detecting anomalies.
Collaborative or ensemble structure has also been adopted in a
recent work [24], which performs two forward passes of each
autoencoder, resulting in an increased computation cost. It also
adopts dropouts to simulate ensemble process, which can bring
unstability and undermine the performance. In contrast, our
proposed cAE structure requires only one forward pass of each
autoencoder. There is no dropout in proposed structure, thus
avoiding potential negative effect on model capability.



TABLE I
AUC VALUES (MEAN±STD) ON 18 DATASETS ACROSS DIVERSE DOMAINS.

RCA VAE SO GAAL RSR DAGMM D-SVDD OCSVM IF DERM(Ours)
vowels 0.917±.016 0.503±.045 0.555±.219 0.930±.019 0.340±.103 0.190±.062 0.767±.044 0.765±.031 0.972±.011
pima 0.711±.016 0.648±.015 0.629±.054 0.660±.050 0.531±.025 0.363±.051 0.633±.016 0.673±.012 0.704±.017
optdigits 0.890±.041 0.909±.016 0.495±.185 0.885±.180 0.290±.042 0.550±.059 0.555±.039 0.726±.049 0.893±.036
sensor 0.950±.030 0.913±.003 0.698±.238 0.980±.013 0.924±.085 0.614±.100 0.941±.002 0.949±.009 0.996±.001
letter 0.802±.036 0.521±.042 0.414±.094 0.665±.045 0.433±.034 0.465±.073 0.531±.060 0.638±.021 0.829±.022
cardio 0.905±.012 0.944±.006 0.449±.105 0.937±.009 0.862±.031 0.505±.047 0.932±.008 0.930±.008 0.886±.021
arrhythmia 0.806±.044 0.811±.034 0.558±.077 0.893±.006 0.603±.095 0.635±.065 0.811±.061 0.807±.007 0.898±.002
breastw 0.978±.003 0.950±.006 0.985±.011 0.956±.007 0.976±.000 0.406±.047 0.955±.015 0.987±.002 0.951±.003
musk 1.000±.000 0.944±.002 0.840±.218 0.964±.002 0.903±.130 0.829±.072 1.000±.000 0.998±.004 1.000±.000
mnist 0.858±.012 0.778±.009 0.767±.058 0.754±.065 0.652±.077 0.538±.069 0.820±.012 0.796±.014 0.803±.018
satimage-2 0.977±.008 0.966±.008 0.772±.158 1.000±.000 0.853±.113 0.739±.137 0.999±.002 0.993±.001 0.997±.001
satellite 0.712±.011 0.538±.016 0.634±.049 0.649±.048 0.667±.189 0.631±.023 0.653±.014 0.702±.021 0.661±.041
mammo 0.844±.014 0.864±.014 0.232±.005 0.769±.028 0.834±.000 0.272±.048 0.830±.027 0.862±.010 0.801±.041
thyroid 0.956±.008 0.839±.011 0.984±.032 0.940±.023 0.582±.095 0.704±.076 0.893±.026 0.979±.003 0.951±.020
annthyroid 0.688±.016 0.589±.021 0.640±.033 0.646±.024 0.506±.020 0.591±.030 0.597±.023 0.827±.011 0.692±.027
ionosphere 0.846±.015 0.763±.015 0.838±.043 0.946±.019 0.467±.082 0.735±.074 0.838±.056 0.853±.006 0.977±.016
pendigits 0.856±.011 0.931±.006 0.272±.062 0.884±.057 0.872±.068 0.613±.052 0.957±.007 0.950±.015 0.866±.023
shuttle 0.935±.013 0.987±.001 0.715±.310 0.989±.003 0.890±.109 0.531±.260 0.984±.003 0.997±.001 0.981±.001
Average 0.868 0.800 0.638 0.859 0.676 0.539 0.808 0.855 0.881

IV. EXPERIMENTAL RESULTS

To evaluate the proposed DERM framework, we perform
experiments on real-world outlier detection datasets from
diverse domains with both continuous and categorical features.
We follow the setting in [24] to carry out experiments on
18 datasets from the OODS library [31], on which previous
algorithms also perform experiments. Specifically, we split
data such that 80% is used for training, and the remaining
20% for testing.

For a single autoencoder, both the encoder and decoder
are implemented by multi-layer feedforward neural networks
with two hidden layers. The model is optimized with Adam
optimizer with a default learning rate of 0.001. The setting
for training is consistent with all DNN-based benchmarks. Our
method is not sensitive to the parameter t (as will be discussed
in Section 4.2 and shown in Fig. 4), we thus empirically set it
to 0.01 for all datasets. The commonly-used Area under ROC
curve (AUC) score is adopted as the evaluation metric for all
methods.

A. Benchmarks and settings

We compare DERM with the following benchmarks:
• RCA [24], which is a recent state-of-the-art robust frame-

work using collaborative autoencoders to jointly identify
normal observations from the data while learning its
feature representation.

• Variational AutoEncoder (VAE) [17], which is a proba-
bilistic model aiming to learn a Bayesian latent variable
model by maximizing the log-likelihood of the training
data.

• SO-GAAL [27], which is a novel Single-Objective Gen-
erative Adversarial Active Learning method. It directly
generates informative potential outliers based on the mini-
max game between a generator and a discriminator.

• RSR [19], which is a neural network model with a novel
robust subspace recovery layer. This layer extracts the

underlying subspace from a latent representation of the
given data and removes outliers that lie away from this
subspace.

• DAGMM [49], which trains a Gaussian Mixture Model
to learn the latent representation from the autoencoder to
determine anomalies jointly by the reconstruction error
and the density estimation.

• Deep-SVDD [32], which learns a neural network trans-
formation from input space to output space. The transfor-
mation attempts to map most of the data representations
into a hyper-sphere with radius of minimum volume.

• OCSVM [9], which is based on the one-class SVM and
fits a tight hyper-sphere in the non-linearly transformed
feature space to include most of the data based on the
positive examples.

• Isolation Forest (IF) [25], which builds an ensemble of
trees for a given dataset. Anomalies are then identified
as instances that have short average path lengths on the
trees.

Among them, OCSVM and IF are traditional AD detectors,
others are recently proposed DNN-based approaches. For all
the compared methods, we adopt the optimal settings from
their official implementations with minimal modifications so
that they can adapt to the datasets from OODS library. To
ensure the fair comparison, the same neural network archi-
tecture is applied for all DNN-based algorithms. Experiments
are repeated for 20 times with random initializations and the
average±std are reported.

B. Comparison with the State-of-the-Art

We show the comparison results on 18 datasets in Table I.
DERM achieves the best average AUC and has the most
number of best-performing datasets (i.e., 7 datasets). This
demonstrates the effectiveness of DERM framework for un-
supervised anomaly detection. The DNN-based methods such
as DAGMM, Deep-SVDD and SO-GAAL fail to perform well
when dealing with contaminated data. As analyzed, the reason



TABLE II
ABLATION STUDY OF OUR PROPOSED METHOD (DERM + CAE). CAE

REPRESENTS COLLABORATIVE AES WITH MSE LOSS AND MSE
ANOMALY SCORE. IN ALL CAE, NUMBER OF AES k IS SET TO 2.

Autoencoder TERM+cAE cAE DERM+cAE
vowels 0.919±.034 0.950±.022 0.949±.025 0.972±.011
pima 0.704±.017 0.659±.030 0.672±.029 0.625±.048
optdigits 0.854±.065 0.927±.023 0.889±.028 0.893±.036
sensor 0.960±.015 0.975±.026 0.970±.020 0.996±.001
letter 0.829±.022 0.822±.016 0.796±.040 0.819±.054
cardio 0.886±.021 0.867±.025 0.868±.031 0.878±.036
arrhythmia 0.886±.003 0.890±.010 0.885±.002 0.898±.002
breastw 0.933±.016 0.942±.007 0.939±.006 0.951±.003
musk 0.977±.085 1.000±.001 0.989±.022 1.000±.000
mnist 0.780±.016 0.850±.017 0.781±.027 0.803±.018
satimage-2 0.923±.027 0.942±.027 0.960±.022 0.997±.001
satellite 0.657±.021 0.664±.015 0.654±.015 0.661±.041
mammo 0.833±.033 0.828±.030 0.832±.028 0.801±.041
thyroid 0.907±.038 0.921±.031 0.936±.025 0.951±.020
annthyroid 0.656±.023 0.671±.019 0.667±.017 0.692±.027
ionosphere 0.969±.008 0.984±.002 0.968±.007 0.977±.016
pendigits 0.799±.047 0.803±.040 0.826±.043 0.866±.023
shuttle 0.838±.144 0.812±.080 0.813±.059 0.981±.001
Average 0.845 0.860 0.855 0.881

is that most DNN-based methods aggressively fit the anomalies
and learn inaccurate features from them, which are supposed
to be learned from normal data. The ERM scheme widely-used
in these methods exacerbates this issue. RCA is also inferior
to the proposed method because RCA arbitrarily discards the
suspicious instances, which impairs the detection capacity.

C. Ablation Study and Parameter Analysis

In order to validate the effectiveness of the DERM principle,
we conduct ablation study on DERM in comparison with AE
and TERM, as shown in Table II. All datasets are divided
into training and testing data with a ratio of 0.8:0.2. The
baseline is an autoencoder with mean square error loss and
mean square error anomaly score, which is usually the default
choice for autoencoder. The result clearly shows the advanced
performance of DERM over TERM and vanilla Autoencoder,
validating the effectiveness of the DERM principle and the
cAE design.

To better understand the effectiveness of the training dynam-
ics for the proposed DERM principle, we compute and plot
the change of average weight of gradients for all normal and
anomalous instances in vowels and pendigits datasets w.r.t.
training iterations, as shown in Fig. 3. It clearly demonstrates
that the weights of anomalies are almost consistently sup-
pressed along the training process, which ensures the stability
of optimization.

Fig. 4 shows the sensitivity analysis for mean AUCs among
18 datasets used in Fig. I by varying t from 0.001 to 10
for DERM and -1 to -0.01 for TERM respectively. It can be
observed that DERM is generally insensitive to the variation
of parameters t compared to TERM. It further validates the
low testing variance and high robustness of DERM.

V. CONCLUSION

We propose a Diminishing Empirical Risk Minimization
(DERM) framework for unsupervised anomaly detection to

Fig. 3. Change of average weight of gradients for normal (blue) and
anomalous (red) instances in vowels and pendigits dataset w.r.t. training
iterations in DERM framework.

Fig. 4. Mean AUCs among 18 datasets with various t via DERM and TERM
respectively. Note that when applying TERM to anomaly detection, it requires
t < 0. Hence, different ranges of t are chosen for DERM and TERM for the
sensitivity analysis. DERM shows robustness with even a larger variation of
t.

mitigate the limitation of existing DNN-based methods in-
curred by the traditional ERM learning principle. DERM is
well-devised to adaptively control the weights of gradient for
corresponding instances via an innovative loss aggregation
scheme. Theoretical analysis demonstrates the effectiveness of
DERM in suppressing outliers that contaminate the training
data. Experimental results show that our DERM framework
achieves wide applicability, high flexibility and improved per-
formance on a variety of real-world benchmarks consisting of
18 datasets from diverse domains. In this work, experiments on
DERM mainly depend on the assumption that anomalies have
larger reconstruction loss. Future studies could investigate the
effectiveness of aggregation frameworks on anomaly detectors
that adopt different format of loss.



REFERENCES

[1] Aggarwal, C.C., Sathe, S.: Outlier ensembles: An introduction. Springer
(2017)

[2] Aytekin, C., Ni, X., Cricri, F., Aksu, E.: Clustering and unsupervised
anomaly detection with l 2 normalized deep auto-encoder represen-
tations. In: 2018 International Joint Conference on Neural Networks
(IJCNN). pp. 1–6. IEEE (2018)

[3] Borghesi, A., Bartolini, A., Lombardi, M., Milano, M., Benini, L.:
Anomaly detection using autoencoders in high performance computing
systems. In: Proceedings of the AAAI Conference on Artificial Intelli-
gence. vol. 33, pp. 9428–9433 (2019)

[4] Candès, E.J., Li, X., Ma, Y., Wright, J.: Robust principal component
analysis? Journal of the ACM (JACM) 58(3), 1–37 (2011)

[5] Chalapathy, R., Chawla, S.: Deep learning for anomaly detection: A
survey. arXiv preprint arXiv:1901.03407 (2019)

[6] Chalapathy, R., Menon, A.K., Chawla, S.: Robust, deep and inductive
anomaly detection. In: Joint European Conference on Machine Learning
and Knowledge Discovery in Databases. pp. 36–51. Springer (2017)

[7] Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: A survey.
ACM computing surveys (CSUR) 41(3), 1–58 (2009)

[8] Chen, L., Cao, J., Chen, H., Liang, W., Tao, H., Zhu, G.: Attentive
multi-task learning for group itinerary recommendation. Knowledge and
Information Systems 63(7), 1687–1716 (2021)

[9] Chen, Y., Zhou, X.S., Huang, T.S.: One-class svm for learning in
image retrieval. In: Proceedings 2001 International Conference on Image
Processing. IEEE (2001)

[10] Emmott, A., Das, S., Dietterich, T., Fern, A., Wong, W.K.: A
meta-analysis of the anomaly detection problem. arXiv preprint
arXiv:1503.01158 (2015)

[11] Gong, D., Liu, L., Le, V., Saha, B., Mansour, M.R., Venkatesh, S.,
Hengel, A.v.d.: Memorizing normality to detect anomaly: Memory-
augmented deep autoencoder for unsupervised anomaly detection. In:
CVPR (2019)

[12] Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward net-
works are universal approximators. Neural networks 2(5), 359–366
(1989)

[13] Jiang, L., Zhou, Z., Leung, T., Li, L., Fei-Fei, L.M.: Learning data-
driven curriculum for very deep neural networks on corrupted labels.
arxiv 2017. arXiv preprint arXiv:1712.05055

[14] Jiang, L., Zhou, Z., Leung, T., Li, L.J., Fei-Fei, L.: Mentornet: Learning
data-driven curriculum for very deep neural networks on corrupted
labels. In: International Conference on Machine Learning. pp. 2304–
2313. PMLR (2018)

[15] Katharopoulos, A., Fleuret, F.: Biased importance sampling for deep
neural network training. arXiv preprint arXiv:1706.00043 (2017)

[16] Khetan, A., Lipton, Z.C., Anandkumar, A.: Learning from noisy singly-
labeled data. arXiv preprint arXiv:1712.04577 (2017)

[17] Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv
preprint arXiv:1312.6114 (2013)

[18] Kumar, M.P., Packer, B., Koller, D.: Self-paced learning for latent
variable models. In: NIPS. vol. 1, p. 2 (2010)

[19] Lai, C.H., Zou, D., Lerman, G.: Robust subspace recovery layer for un-
supervised anomaly detection. arXiv preprint arXiv:1904.00152 (2019)

[20] Leqi, L., Prasad, A., Ravikumar, P.: On human-aligned risk minimization
(2019)

[21] Leung, K., Leckie, C.: Unsupervised anomaly detection in network
intrusion detection using clusters. In: Proceedings of the Twenty-eighth
Australasian conference on Computer Science-Volume 38. pp. 333–342
(2005)

[22] Li, T., Beirami, A., Sanjabi, M., Smith, V.: Tilted empirical risk
minimization. arXiv preprint arXiv:2007.01162 (2020)

[23] Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense
object detection. In: Proceedings of the IEEE international conference
on computer vision. pp. 2980–2988 (2017)

[24] Liu, B., Wang, D., Lin, K., Tan, P.N., Zhou, J.: Rca: A deep collab-
orative autoencoder approach for anomaly detection. In: Proceedings
of the Thirtieth International Joint Conference on Artificial Intelligence
(IJCAI-21) (2021)

[25] Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation forest. In: 2008 eighth ieee
international conference on data mining. pp. 413–422. IEEE (2008)

[26] Liu, S., Xue, S., Wu, J., Zhou, C., Yang, J., Li, Z., Cao, J.: Online
active learning for drifting data streams. IEEE Transactions on Neural
Networks and Learning Systems (2021)

[27] Liu, Y., Li, Z., Zhou, C., Jiang, Y., Sun, J., Wang, M., He, X.: Generative
adversarial active learning for unsupervised outlier detection. IEEE
Transactions on Knowledge and Data Engineering 32(8), 1517–1528
(2019)

[28] Malisiewicz, T., Gupta, A., Efros, A.A.: Ensemble of exemplar-svms
for object detection and beyond. In: 2011 International conference on
computer vision. pp. 89–96. IEEE (2011)

[29] Pang, G., Shen, C., Cao, L., Hengel, A.V.D.: Deep learning for anomaly
detection: A review. ACM Computing Surveys (CSUR) 54(2), 1–38
(2021)

[30] Pourhabibi, T., Ong, K.L., Kam, B.H., Boo, Y.L.: Fraud detection: A sys-
tematic literature review of graph-based anomaly detection approaches.
Decision Support Systems 133 (2020)

[31] Rayana, S.: Odds library (2016), http://odds.cs.stonybrook.edu
[32] Ruff, L., Vandermeulen, R., Goernitz, N., Deecke, L., Siddiqui, S.A.,

Binder, A., Müller, E., Kloft, M.: Deep one-class classification. In:
International conference on machine learning. pp. 4393–4402. PMLR
(2018)
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