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Abstract—This work joins aspects of reservoir optimization,
information-theoretic optimal encoding, and at its center fractal
analysis. We build on the observation that, due to the recursive
nature of recurrent neural networks, input sequences appear
as fractal patterns in their hidden state representation. These
patterns have a fractal dimension that is lower than the number
of units in the reservoir. We show potential usage of this
fractal dimension with regard to optimization of recurrent neural
network initialization. We connect the idea of “ideal” reservoirs
to lossless optimal encoding using arithmetic encoders. Our
investigation suggests that the fractal dimension of the mapping
from input to hidden state shall be close to the number of units
in the network. This connection between fractal dimension and
network connectivity is an interesting new direction for recurrent
neural network initialization and reservoir computing.

Index Terms—Reservoir Computing, Echo-state Networks, Re-
current Neural Networks, Fractals, Arithmetic Encoding.

I. INTRODUCTION

NE of the key problems for Recurrent Neural Net-
work (RNN) initialization, and in particular for
Reservoir Computing (RC) methods like Echo State Networks
(ESNs)[], [2], [3] is that it is still unclear what kind of
connectivity results in the best performance. For recurrent
neural networks, some heuristics have shown much better
performance than others: Dependent on the task, ESNs with
orthogonal recurrent connectivity matrices that scale with the
size of the network have shown better performance than other
strategies [4], [3]], [6]. An initialization method that can create
a good recurrent weight matrix for a given task would be a
compromise between an arbitrarily chosen connectivity matrix,
and a connectivity matrix found by more expensive optimiza-
tion, e.g., by backpropagation through time. Insights that lead
to better connectivity matrices are useful for “standard” RNNss,
where they are further trained, as well as for RC approaches,
where they are used without further training.
With this in mind, the purpose of our work is to investigate
how the input statistics is mapped to the ESNs reservoir.
It appears self-evident that the performance of the network
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relates to an (ideally) optimal usage of the memory capacity
of the recurrent layer neurons. Of the two related questions
about the memory capacity (1) “How much memory does
a specific task require”, and (2) “How much memory does
a network of a given size provide”, we are addressing the
latter. It should be clear that some tasks require more memory
capacity than others, and that, beyond a certain point, simply
increasing memory will not contribute to a better performance.
We are interested in making the best possible use of a given
network, but the question of how large that network should
be, for a given task, is outside the scope of this paper.

In order to approach this optimal capacity of networks
with a given size, we follow the concepts of lossless memory
compression. Our results reveal that the recursive nature of the
update function in RNNs, and in ESNs in particular, give rise
to the occurrence of fractals with regard to certain features of
the reservoir in a natural way. Suggesting the fractal dimension
as a measure for reservoir quality, we discuss new directions
for how to improve initialization and performance of ESNs.

To provide better insights into properties of optimal coding
recurrent neural networks, we restrict our investigation to use
a discrete set of two input values that drive a network, which
incidentally also allows a very natural application of (Shannon)
information theory.

II. MATHEMATICAL BACKGROUND AND DEFINITIONS

In this section, we briefly revisit the ESNs formalism, and
some of the background for fractal dimensions and lossless
compression.

A. Echo State Networks
An ESN is described by the following equation:

Tiq1 = o(aWzy + Bwinuy), (D

where ¢ is a (non-linear) transfer function for which Lipschitz
continuity is required, u; is an external input to the network,
i.e., the stimulus. The m recurrent neurons are represented by
x¢, an m dimensional vector. We set appropriate norms on
both matrices ||W|2 = ||win||]2 = 1. The scalar values of «
and S can be used for tuning the network and their quantitative
analysis.



To prevent divergence, ESNs should satisfy the so-called
echo state property (ESP) [7]], [8]. Heuristics show that, for
some tasks, performance of ESNs are best near the limit of
what is permissible according to the ESP. Likewise, several
theoretical works point in this direction [9], [6], [10].

Input values u; form an input stream (for example from
sensory input, where the ESN forms or is embedded into a
larger system). These values usually follow certain restrictions
and form a statistics, which can be described in a likelihood
relation,

plug) = pluglue—1,up—2...).

One possible way to describe such statistics is to consider
the set U, where each possible time series u(_q,q is in U
which may be combined with the relative probability of its
occurrence p(U(—oo ), in order to make the description of the
statistics mathematically accurate.

Information propagation in RNNs can be viewed as a
recursive process. We can describe an internal state of the
network as x; = f(xo,u[o). Due to the ESP, it is also that
the state z; = f(U(—ooy), i.€., the current internal state is
independent of the initial state, if the network has received
sufficiently long input sequences. Viewed differently, the state
vector x; is set into a state space X. Dimensionality of this
space is equal to the number of hidden layer neurons. With a
bounded transition function like o = tanh, output values of
recurrent neurons are restricted to [—1,1], and thus X forms
a hypercube.

We restrict the input u to the RNN so that w, € {—1,1}.
In this case, the numerical results can be used to visualize
interesting characteristics. In the following, we focus on the
fact that the representations of the entire set U — within
one experimental setting (i.e., with certain statistics) onto the
internal state-set X — reveals fractals as overall phenomenon.
In general, ESNs will usually have 100 or more units. For
visualization, we confined the number of neurons to two neu-
rons. The representation of U onto the internal state neurons
reveals the fractal nature of the resulting point clouds for the
naked eye (cf. Fig. [2).

B. Fractal dimension and lossless compression

Mathematician Benoit Mandelbrot in 1975 firstly used the
term fractal (‘“broken”, or “fractured”) to apply the theoretical
concept of fractal dimensions (FDs) to geometric patterns in
nature. Generally speaking, fractals are wrinkled objects that,
to some extent, escape more conventional measures such as
length and area, and are better distinguished by their FD. The
geometry of fractals comes up in many mathematical models
for different objects in nature — such as mountains, coastal
lines and clouds [11]], [12]]. One way to think about FD is based
on the concept of self-similarity, i.e., the relationship between
the number of identically shaped smaller objects the original
object can be divided into, and their masses. For perfect self-
similarity, this relationships can be described as

where N, is the least number of distinct copies of the original
object A at scale r. The union of N, distinct copies must
cover A completely. In general, fractals are not necessarily
(perfectly) self-similar, but the FD is a useful attribute of
fractals in nature and some fields of natural sciences, in
addition to their properties described by Euclidean geometry.

Different methods have been proposed to calculate and esti-
mate the FD. Work in [13] classifies the methods of evaluating
FDs into three main groups: (1) box-counting methods, (2)
variance methods, and (3) spectral methods. In particular box-
counting methods became very popular for their simplicity and
auto-computability [12], and are applied in various fields. A
number of different box-counting methods has been brought
forward [[14]], [150, [16], [17].

III. RNNS AND THEIR FRACTAL DIMENSION

As we investigate the mapping of the complete input
statistics onto the reservoir manifold, one can see that rep-
resentations of input histories emerge as fractal sets for many
parameter settings of the connectivity matrix. Essentially, these
fractals are an indicator of the ‘coarseness’ of the occupied
states in the underlying reservoir. Here, one can understand
coarseness as a scale-invariant feature. In combination with the
total number of states that the reservoir can assume, one can
calculate the memory capacity of the reservoir for a given input
statistics. The resulting fractal dimension are key components
to the better information-theoretic understanding of reservoir
computing and RNN initialization. We discuss connections
between optimal encoding in ESNs and arithmetic encoders,
Shannon information in reservoirs, and implications for other
types of networks.

Though popular due to their efficient training, ESNs also
have some basic limitations [18]. A first limitation are poten-
tially ill-conditioned solutions, resulting in models that might
diverge from the real system that is supposed to be represented.
This, and other limitations have also been observed in other
works, e.g., [19], [20], [21]], [22], and improvements have been
suggested in [23], [24], [25]. A better use of the available
memory would alleviate some of these limitations.

One basic insight at the start of our research was that
an optimal representation of states in a reservoir has an
analogue in the representation pattern of arithmetic encoders
[26]. Arithmetic encoders have capabilities comparable to
Huffman codes: they encode a sequence of symbols in to a
real valued number, that can then be transmitted with a given
accuracy. We use them as a guideline that can lead us to an
optimal representation of the input for a given statistics on
the hyperspace of the recurrent layer neurons’ activities. It
has been outlined in [27] that arithmetic encoders can trivially
be transformed into a recurrent filter, where the output of the
modified arithmetic encoder fulfills the ESP, i.e., in this case
the arithmetic encoder can be interpreted as a reservoir of
exactly one unit in the sense of an ESN.

The fractal dimension of a network, as calculated by, e.g.,
box-counting, is smaller or equal to the number of neurons in
the recurrent layer. Before we illustrate the effect of measuring
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Figure 1: State space representation of an ESN’s recurrent layer with 2 neurons. The closed black curves depict the transformed

state space limits.

FD, we demonstrate the reasons why the FD can be a relevant
measure for ESNs:

The graphs in Figs. [I] and [2] show random state space
representations of a recurrent layer with two neurons. The
tanh transfer function restricts the possible values of states
to the interval between —1 and 1. For two neurons this
defines a square within which all permissible states are located.
One can analyze how this square of permissible values is
transferred into and transformed for the next iteration. We get
two different transformed curves, for the two possible inputs
of 1 and —1, at each iteration, cf. Fig. @ We also depict
representations of different samples of U, where the color of
the points depends on whether the last value that the respective
time series has received, was, 1 or —1. Fig. @ shows the same
results of the same network after five iterations.

Although the transformed input spaces overlap in the de-
picted example we do not see areas where the point clouds of
different colors inundate each other.

The fractal patterns of Fig. [I] are a direct result of the re-
cursive definition of RNNs. Other known examples of recipes
for fractal sets, for example the well known Barnsley fern
[28], which is constructed by a recursive rule. In (deep)
feedforward networks, FractalNet [29] creates the architecture
of the network based on ideas of self-similarity, but with a
different motivation of influencing path lengths for subsequent
training, without further investigation of the resulting coding.

Returning to RNNs and reservoirs, it appears obvious that
with a broader coverage of U within a recurrent layer, infor-
mation processing capabilities will improve. It might be also
worthwhile to consider the maximal information content that
is available within the network:

Imax =1m - myp,

where m is the number of neurons and m, is the logarithm
of the accuracy where each of the neurons are represented. In
other words, I,,.« is the total number of bits available within
the reservoir layer, or in X, equivalently.

For example, in the case when values are represented by one
double-precision IEEE 754 standard floating-point number,
i.e., the 64 bits reserved for each number are distributed in the
following manner: 1 bit is for the sign, 11 bits for the exponent,

and 52 bits for the significant bits (mantissa). In this example,
my, = 53: the number of bits of the mantissa plus the sign bit.
For sake of simplicity, we assume here and for the following
considerations that the smallest difference (“‘accuracy’) with
which each state can be represented is 27", Thus, we neglect
the fact when using floating point representations a number
that is very near to zero is significantly more accurately
represented than numbers with a larger absolute values E

With this as a starting point, we can now imagine the
reservoir as a m-dimensional hypercube where each side is
again subdivided in 2™ segments, forming a total 2/max sub-
hyper-cubes. The ideal usage of the reservoir is achieved if
all of those sub-hyper-cubes are occupied with a non-empty
subset of U and are not mapped to the same hypercube for as
long as possible lasting input histories and the probability for
the occurrence of each of the subsets is equal for all hyper-
cubes.

Usually, and different from the ideal case, less than the max-
imal number of those hyper-sub-cubes are actually occupied.
With an estimation of FD, the number of occupied boxes is

2ds s

A plausible estimate of the mutual information between the
input histories and the internal states thus is

I(U;X) < dj x my,

where dy is the fractal dimension.

This suggests we can improve the performance of ESNs by
maximizing the FD, by varying the parameters « and 3 of the
recurrent connectivity. Practically, we need to lift the fractal
dimension of the data representation close to the number of
neurons such that possible values of the recurrent layer in the
ESN represent at least one input history. This achieves that the
data of the recurrent layer represents a compressed image of
an input sequence, for as much as it is possible for the history
of u,. Consequently, the representation of the recurrent layer
would become something like a Huffman coded representation

IThe concept may be extended to other forms of reservoirs in the sense of
RC, in physical systems one may consider the accuracy of reliable readout
down to thermal fluctuations, in case of super-cooling systems down to
quantum effects, etc.
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state space limits.

of the input history, as much as it is possible according to the
entropy resulting from the statistics of U.

The basic idea of box counting methods to estimate FD of
an object is to count the number of boxes N(e;) occupied
by that object, with boxes at scales ¢;. Using a number of
different scales ¢;, and plotted on a log-log scale, the slope of
that resulting line yields the FD (“Richardson effect”).

log N(e;) =dy -loge+D.

For perfect fractals, this slope is estimated in the limit,
but for practical estimation, objects are assumed to be fractal
when the slope remains approximately constant over a range
of scales. We use a standard box-counting method [12] directly
for points which we have obtained from the hidden state
output.

1) Arithmetic Encoding: Arithmetic encoding describes the
idea to convert a sequence of symbols into a real-valued
number in an iterative procedure. For the encoding, each
symbol is assigned an interval with a size proportional to
the probability of the occurrence of that particular symbol. In
this way, recursively, a sequence of symbols can be encoded
until the encoder hits the limit of accuracy of the underlying
numerical representation. Here, arithmetic encoding is to map
a finite sequence of a discrete set of symbols into a real
value z; in the range[0, 1]. This real value that represents the
sequence can then be transmitted to a receiver. The number of
digits transmitted has to be large enough to make it possible
to identify the initial sequence.

Originally, arithmetic encoders have been developed at
IBM [26] for data compression, competing with Huffman
coding. Interesting applications of arithmetic encoders can be

found in, e.g., [30], [31]], [32], [33]]. Recent investigations have
revealed an analogy between arithmetic encoders and optimal
ESNs [6], [34], (90, [35], 5], [36]. Making use of this idea,
the connectivity in an RNN would be arranged such that for
the given input statistics in U, the network performs a data
compression so that as many as possible past input values are
represented in the reservoir.

We rephrase the definition of arithmetic encoders as a
recursive filter, and as a result its conformity with the ESP
becomes obviousﬂ As a pre-requisite, it is necessary to esti-
mate or quantify the probability p(k;) of a discrete, finite set
of symbols «; with ¢ < [.

Now we can define a function 0 < g(i) < 1:

g(ki) = ZP(’%)-
j<i
g(i) is a step-wise monotonously increasing function which
can be reverted to
ki = §(x).
To encode a finite sequence u; from 0 < ¢ < T of those
symbols, we choose an initial value xy = a, where a can be

an arbitrary real number in the range [0, 1].
We then can calculate recursively for all 0 < ¢ < T

Tiy1 = p(ui) -z + g(wi).

x741 can then be transmitted. However, this value can only
be transmitted using a finite accuracy. The required accuracy

2For this purpose the impact of the time axis has to be inverted from the
original approach [26].



can be derived from considering the initializing setting of xo =
a. One can then define

= zrq1(ur, ..., up, xo = 0)

=21 (ur, ... up,mo = 1)

The necessary number of digits that have to be transmitted
to receive the message unambiguously has to be chosen such
that the receiver can know z € [z~, "] but also = ¢ [0, 27|
and x ¢ [z, 1]. The necessary digits then form an optimally
short code, equivalent to a Huffman code.

At the same time it is possible to estimate an upper limit to

T
- > (maxp(m)) .

If we assume our time series to have non-zero entropy, we
know max; p(k;) < 1. Thus, in the limit for T — oo, this
value is zero, i.e., the arithmetic encoder is uniformly state
contracting and, as a result, conform with the ESP. Arithmetic
encoding is a one unit reservoir ESN.

Using the arithmetic encoder, with correctly chosen distri-
bution, and if p(x;) is ii.d. with regard to the position of
the symbol within the sequence, the representation of possible
symbol sequences is dense on z, for sufficient large 7'. Thus,
the fractal dimension of the mapping of U on X is 1.0.

The fractal dimension will be lower than 1.0 if we were
using imperfect estimates for p(k;). As an example, if we were
to assume a code statistics of three identical and independent
distributed symbols A, B, C with equal probability % but in
reality the sequences contained only the symbols A and C
with equal probability %, one can organize the structure of
the resulting gaps in the corresponding representation as a
Cantor set. In this case, we achieve a fractal dimension of

log2
22 ~ 0.63.

IV. RESULTS

In this section we show results of determining the FD
and subsequent classification using a support vector machine
(SVM). The SVM is used to show whether the input sequence
mapping to the hidden states of the network is separable.

The graphs in Fig. 3] are result of using the FD obtained by
applying the box-counting method, where x-axis and y-axis
represents the first neuron and second neuron, respectively.
Fig.[3a]is the state space visualization generated for v = 1 and
B = 0.45, a promising result. Fig. [3b|is an example with poor
results for « = 1 and § = 0.8. For low [ values, there will
not be any gaps between the points, and the goal is to avoid
an overlap between points. In this example, 5 < 0.45 results
in overlapping and 8 > 0.45 results in large gaps between the
points as shown in Fig. Using Richardson effect’s box-
counting supports this result, see Fig. For § = 0.45, we
achieve an almost optimal dimensionality of close to 2, equal
to the number of neurons. Fig. [3d| shows the unsatisfactory
result for 5 = 0.8. with a dimensionality of 1.2. In Figs.
and[3d] the z- and y-axes represent the log € and log N, values,
respectively.

Fig. @] shows a 3d-visualization of FDs on multiple scales of
« and (. The decrease in 3 is clearly visible as the dimension
value increases (the values range from 2.0 to 0.2 from left
to right). As « increases, the fractal dimension increases (or
vice-versa). That is to say, the measured dimension strongly
depends on tuning the « and 3 values.

We also observe a trend in the number of support vectors
while alpha and beta changes: The complexity of the hy-
perplane as generated by the SVM model is approximately
proportional to the number of support vectors, because each
support vector will define one or more twists or turns.

Figure [5] shows results of a classification with a SVM. We
plot the number of support vectors for different a-values (z-
axis), with different beta values (indicated by color). When
« increases, the number of support vectors has a tendency to
increase.

Along with the result of Fig. [d] we aim to use the rela-
tionship between box-counting and the SVM to analyze ESN.
When o« = 1 and 8 = 0.2 or 8 = 0.4, we achieve to lift the
FD close to the number of neurons. The same parameters have
been used for experiments in both figures.

A. Simulation details

For simulations in Fig. 2] we used W = O(2.0), where O
is a 2 x 2 rotation matrix around the angle 0.5 rad; w;, =
(\/0.7, —\/(ﬁ), a = 0.8 and 8 = 0.5. The network has been
stimulated by all possible combinations of 1 and —1 up to a
limit length emulating iid. random sequences.

For Fig. 3] and ] we used 100 input sequences of 1 and
-1, each sequence with about 1 million temporal steps. Hence,
for each pair of o and 8, 100 million points were generated
in total, using the network with weight matrix

[ 0.0169 0.5711

W= 08436 07381 [ W= | o005 02500 |

Moreover, the interval of « and 5 were set to
a:[0.4,0.45,0.5- - ,1] ={X € R|lz;, — 2,1 = 0.5};
3:[0.15,0.2,0.25--- ,2] = {X € R|z,, — z,—1 = 0.5}

The slope and the 3D illustration in Fig. [3] and Fig. [
respectively, were produced by the box-counting method with

e = {300, 500, 600, 650, 700, 750, 800, 850, 900, 950, 1000}

The simulation of Fig. [5] consists of 3000 training data
generated from network states in SVM model. The weight
matrix used for Fig. 5] was same as the one used for Fig. [3]
The values « and 3 are tuned between O and 1. The classifier
to explore separation is a radial basis function kernel SVM,
with the Gaussian kernel:

. 2
o= - 25

202

where o is a tunable parameter. This parameter influences the
“reach” of each single example: when o is small, the SVM
model can capture more complex data. We chose ¢ = 0.05,
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to have a good ability of classifying the overlapping sam-
ples, which means the shape of decision boundary may be
more complicated. An additional hyper-parameter C' trades
off correctness and complexity of the model (essentially a
regularization parameter). We set C' = 2.0.

V. DISCUSSION

One one hand, the arithmetic encoding approach has a
strong relationship to ESNs with one neuron, and complies
with the ESP. One the other hand, it is well established
that arithmetic encoders are optimal encoders of an (input)
sequence. In the ideal case, for correctly applied arithmetic
encoders and appropriate input sequences, this will lead to
a compact, dense state representation of input sequences,
resulting in a FD of 1 (per neuron). At the same time
overlapping representations have to be avoided. Heuristics hint
towards the notion that both conditions are fulfilled exactly at
the limit point where the FD reaches the reservoir size.

For input sequences composed from discrete sets, we see
arithmetic encoders as a very valuable guideline to understand
optimal representations in reservoirs, leading to new criteria
for reservoir and RNN initialization. We suggest the following
new concepts with regard to optimizing reservoirs:

e The FD of the mapping U — X shall be near the number
of neurons. This an important requirement, since the
requirement of the complete coverage of the layer of
input neurons appears to be difficult in the case of the
ESN formulation.

o The modified ESN shall work like a non-linear vector
arithmetic encoder.

o Reservoirs with overlapping representations have indis-
tinguishable states for readouts by means of regression
or classification. We have to avoid those overlapping
representations of different input histories.

This result has implications for a previously formalized idea
of power law forgetting [37] and the edge of chaos heuristics:
for input sequences with non-zero entropy, this idea would lead
to overlapping representations. Overlapping representations of
several recently variant input time series have clearly an impact
on the performance of all ESNs including those with hundreds
of recurrent neurons. Since this phenomenon occurs at a lower
bound than the heuristically found edge of chaos it seems
plausible that future discussions might lead to a new bound
for the ESP, that is the ESP of non-overlapping representations
with regard to a given input statistics.

VI. CONCLUSION

The fractal structure of representations in RNNs is to our
best knowledge an unnoticed aspect with implications for
reservoir computing. It opens a new field of research which can
bring together aspects of fractal analysis, information theory,
and representation learning. Our results have been combined
with the insight that overlapping representations of variant
input time series better shall be avoided. This leads us to still
preliminary proposed ESP II, for which a less heuristic and

better analytically founded formulation is still ongoing work
in progress.
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