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Abstract—Multifunctional neural networks are capable of
performing more than one task without changing any network
connections. In this paper we explore the performance of a
continuous-time, leaky-integrator, and next-generation ‘reservoir
computer’ (RC), when trained on tasks which test the limits of
multifunctionality. In the first task we train each RC to recon-
struct a coexistence of chaotic attractors from different dynamical
systems. By moving the data describing these attractors closer
together, we find that the extent to which each RC can reconstruct
both attractors diminishes as they begin to overlap in state space.
In order to provide a greater understanding of this inhibiting
effect, in the second task we train each RC to reconstruct
a coexistence of two circular orbits which differ only in the
direction of rotation. We examine the critical effects that certain
parameters can have in each RC to achieve multifunctionality in
this extreme case of completely overlapping training data.

Index Terms—Reservoir Computing; Multifunctionality; Flo-
quet analysis

I. INTRODUCTION

Advancements in machine learning oftentimes arise from
a ‘two-way street’ between neuroscientific observation and
mathematical representation. By following this approach,
‘multifunctional reservoir computing’ [1] has emerged as a
means of training an artificial neural network to perform
more than one task without the need to switch between
different network configurations unlike other approaches such
as modular neural networks [2], or conceptors [3].

‘Multifunctionality’ describes the ability of a single neural
network to perform a multitude of mutually exclusive tasks, in
other words, they possess a form of multistability. There are
many examples of multifunctional neural networks in nature,
for further reading we suggest [4].

The types of multistabilities that multifunctional reservoir
computers (RCs) have been trained to produce range from re-
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constructing the dynamics of chaotic attractors which already
coexist, to creating a coexistence of chaotic attractors from two
different dynamical systems [1], [5]. Furthermore, in [6], it was
shown that even when there are overlapping regions between
these attractors, a RC can also achieve multifunctionality.
However, this required increasing the spectral radius of the
RCs internal connections from the case where there was no
overlap to achieve multifunctionality.

As no multistable autonomous dynamical system will ordi-
narily have coexisting attractors which share common regions
of state space, this brings into question what are the essential
conditions for a RC to achieve multifunctionality in this
scenario. In order to gain a greater understanding of the
limits of multifunctionality in the case of overlapping training
data, in this paper we examine the critical effects that certain
parameters can have in the training of different types of
RCs. Furthermore, by exploring these limitations we are able
to come closer to establishing the extent of the dynamical
functionality a given RC can reconstruct.

In our numerical experiments we investigate the behaviour
of three RC setups, a continuous-time RC (CT-RC) [7], a
leaky-integrator RC (LI-RC) [8], and the recently introduced
‘next generation’ RC (NG-RC) [9]. Each of these RCs are
trained using a ridge regression approach.

These experiments consist of training a RC to achieve
multifunctionality by reconstructing a coexistence of chaotic
attractors from the Lorenz and Halvorsen systems like the
example used in [5]. In this task we examine the performance
of each RC setup as the data describing each attractor are
moved closer together. For a given set of training parameters
we find that each RC can reconstruct both attractors reasonably
well when they are well separated in state space. However, for
the same set of training parameters, the closer the attractors
are to one another, the poorer each RC performs.

To place further emphasis on the influence of these training
parameters, in the second task we study an extreme case

 



of overlapping training data. In this experiment each RC is
trained to reconstruct a coexistence of trajectories on two
completely overlapping circular orbits rotating in opposite
directions. In order for the CT-RC and LI-RC to achieve
multifunctionality in this scenario, these RCs are required
to convert this overlapping driving input data into attractors
with two distinct basins of attraction that can be projected to
resemble the desired coexistence. While for the NG-RC, we
find that it achieves multifunctionality in a different way due
to its design. Instead of generating trajectories on limit cycles,
the trained NG-RC is a linear system which produces centers.

Overall, our results indicate that the LI-RC outperforms the
CT and NG-RC on these tasks. Despite arguing that memory
is a key element for the RCs to achieve multifunctionality
in the case of overlapping training data, we find that a
commonly used ‘memory capacity’ metric [10] is insufficient
in distinguishing whether different random realisations of the
RCs can give rise to multifunctionality. Instead, we find that
a Floquet analysis provides a more rigorous assessment.

The rest of the paper is organised as follows: In Sec. II we
outline the steps involved in training each RC setup to achieve
multifunctionality. In Sec. III we describe the numerical exper-
iments in greater detail and the analysis tools used to assess
the performance each RC. In Sec. IV we discuss our results
and in Sec. V we provide some concluding remarks.

II. MULTIFUNCTIONAL RESERVOIR COMPUTING

Since the introduction of echo-state networks (ESNs) [11],
liquid-state machines (LSMs) [12], and their unification under
the umbrella term of reservoir computing [13], there have been
many variations of RCs in terms of mathematical formulation
and topology [14]–[18].

In this paper we examine the performance of CT, LI, and
NG RC setups on tasks requiring multifunctionality. We now
outline the method of using each RC for time series prediction.

A. Continuous-time RC

We use the CT-RC setup introduced in [7]. During the
training stage, the CT-RC is driven by an input signal, u(t),
and its response is described by,

ṙCT (t) = γ [−rCT (t) + tanh (MrCT (t) + σWinu(t))] . (1)

rCT (t) ∈ S ⊂ RN is the state of the CT-RC in state space, S,
at a given time t, N is the number of neurons, and rCT (0) = 0.
γ is a time-scale parameter. M ∈ RN×N is the adjacency
matrix. The input strength parameter, σ, and the input matrix,
Win ∈ RN×D, assign the weight given to the D-dimensional
input, u(t) ∈ RD, as it’s projected into the reservoir. M and
Win are randomly initialised and design details are provided
in the Appendix. The relationship between multifunctionality
and the spectral radius, ρ, of M is assessed in Sec. IV.

Solutions of Eq. (1) are generated using the 4th order
Runge-Kutta method with time step τ = 0.01. From
t = tlisten to t = ttrain, we store the CT-RCs state
in X = [q(rCT (tlisten)) . . . q(rCT (ttrain))] for q(r(t)) =
(r(t) r2(t))T , and the input in Y = [u(tlisten) . . . u(ttrain)].

In order to train the RC we compute a readout layer, ψ(r(t)) =
Wout q(r(t)) using the following ridge regression formula,

Wout = YXT
(
XXT + β I

)−1
. (2)

β is the regularisation parameter, and I is the identity matrix
of the appropriate dimension. Note that the RCs response from
t = 0 until t = tlisten is not included in the training in order
to remove any dependence the RC has on its initialisation.

After training, the ‘predicting RC’ evolves according to,

˙̂rCT (t) = γ[−r̂CT (t)+ tanh( M r̂CT (t)

+ σWinWout q(r̂CT (t)) )], (3)

and r̂CT (0) = rCT (ttrain).

B. Leaky integrator RC

The LI-RC was introduced in [8], its response to a driving
input signal, u[i], during the training stage is given by,

rLI [i+ 1] = (1− α)rLI [i] + α tanh(MrLI [i] + σWinu[i]),
(4)

where rLI [i] describes the state of the LI-RC in discrete-time
with terms equivalently defined as the CT-RC in Sec. II-A.
The difference between the CT-RCs and LI-RCs is the role
of the leaky-integrator parameter, α ∈ [0, 1]. For α = 1, the
influence of the RCs previous state appears only in tanh (·).

The LI-RC is trained with the same approach as the CT-RC
for the corresponding solutions between ilisten and itrain. The
predicting LI-RC is written as,

r̂LI [i+ 1] = (1− α)r̂LI [i]+α tanh( Mr̂LI [i]

+ σWinWoutq(r̂LI [i]) ), (5)

and r̂LI [0] = rLI [itrain].
Note, dividing Eq. (5) by τ and taking the limit as τ → 0

gives Eq. (3) and implies that γ = ατ and t = iτ . In Sec. IV
we compare the influence that different values of α and γ have
on the LI and CT RCs.

C. Next generation RC

The NG-RC we use was introduced in [9]. In this setup,
the input data are transformed with a polynomial multi-
plication dictionary, P[O], into a higher dimensional state
space consisting of the unique polynomials of orders, O. For
example, transforming a two-dimensional input data point,
u[i] = (u1[i], u2[i])

T , with P for O = 1, 2 is written as,

P[1,2](u[i]) =
(
u1[i] u2[i] u

2
1[i] u

2
2[i] u1[i]u2[i]

)T
. (6)

A time shift expansion function, Ls
k, of the input data

is used in [9] to distinguish the NG-RC from nonlinear
vector autoregression algorithms [19]. The k value defines
the number of past data points that the current data point
is concatenated with, and the s value denotes how far these
points are separated in time. Following the example of a two-
dimensional input data point, we write this time shift as,

L1
2(u[i]) = (u1[i] u2[i] u1[i− 1] u2[i− 1])

T
. (7)

 



The NG-RCs response to u[i] during training is written as,

rNG[i+ 1] = P[O](Ls
k(u[i])). (8)

Therefore, in this example we write rNG[i+ 1] ∈ R14 as,

(u1[i] u2[i] u1[i− 1] . . . u1[i]u2[i− 1] u2[i]u2[i− 1])
T
. (9)

In this setup, the reservoir state vector, rNG[i], is projected
using a readout matrix, Wout, to resemble, ∆u[i] = u[i] −
u[i − 1], for i > itrain. Wout is found using Eq. 2, with the
corresponding X and Y constructed as follows.

The input training data Y = [u[iwarm], . . . ,u[itrain]] is
transformed to the state matrix X = q

(
P[O](Ls

k(Y))
)
. Note,

a warm up time of iwarm = ks is needed, where entries of
the state matrix at time i < iwarm are not defined. The output
target matrix used in Eq. 2 for this setup is written as, Y′ =
Y[i]−Y[i− 1]. The trained NG-RC evolves according to,

r̂NG[i+ 1] = P[O](Ls
k(ûNG[i− 1] +Woutq (r̂NG[i]))),

(10)

for r̂NG[0] = rNG[itrain] and ûNG[i − 1] = u[itrain] +∑i−1
itrain

Woutq (r̂NG[i]) estimates u[i] for i > itrain.
As the NG-RC requires tuning only O, k, s, and β, the

issues which relate to improper random initialisations of M
and Win do not arise. On the other hand we see in Sec. IV
that there are limitations to what can be achieved with the NG-
RC because of its design in comparison to CT and LI-RCs.

D. Training each RC to achieve multifunctionality
The same steps are used in training each RC to achieve

multifunctionality and are outlined as follows.
For multifunctionality, we require the same Wout to hold

for ψ(r̂S1
(t)) ≈ uP1

(t) and ψ(r̂S2
(t)) ≈ uP2

(t) for t >
ttrain in the CT-RC and i > itrain in the LI and NG-RCs .
r̂S1

and r̂S2
describe the state of each RC on the coexisting

attractors, S1 and S2, which are the RC’s representation of the
time series described by uP1 and uP2 that each RC is required
to reconstruct a coexistence of.

To do this, we generate each RCs response to uP1 and store
it in XS1 . The same process is repeated for uP2 to obtain
XS2

. These RC training data matrices are concatenated as,
XC = (XS1

, XS2
), and similarly for the corresponding YP1

and YP2
to obtain YC . Wout is calculated using Eq. 2 for

X = XC and Y = YC .
As all RCs are trained using Eq. 2, in Sec. IV we compare

the performance of each RC for different values of β.

III. NUMERICAL EXPERIMENTS AND ANALYSIS TOOLS

In this section we outline the specifics of each numerical
experiment used to test the limits of multifunctionality.

A. Coexisting chaotic attractors
We train each RC to provide a coexistence of the chaotic

Lorenz attractor, L, described by,

ẋ = 10(y − x),

ẏ = x(28− z)− y, (11)

ż = xy − 8

3
z + x,

and the chaotic Halvorsen attractor, H, described by,

ẋ = −1.3x− 4y − 4z − y2,

ẏ = −1.3y − 4z − 4x− z2, (12)

ż = −1.3z − 4x− 4y − x2.

This pairing of attractors was studied in [5] when investigating
the relationship between symmetry and ‘mirror attractors’.

The training data is obtained by generating solutions of
Eqs. 11-12 using the 4th order Runge-Kutta method with time
step τ = 0.01. Trajectories on L and H are normalised
such that the furthest point away from the origin on each
attractor is less than 1. In our numerical experiments we move
both normalised attractor data sets equidistantly in opposite
directions along the z-axis with shift parameter, δz.

B. The ‘seeing double’ problem

For the second task we consider training each RC to
reconstruct trajectories on two completely overlapping circular
orbits rotating in opposite directions. We call this paradigmatic
multifunctionality task, the ‘seeing double’ problem.

We generate the respective input sequences for the RC with,

u(t) =

(
x(t)
y(t)

)
=

(
cx cos (t)
cy sin (t)

)
. (13)

We use Eq. 13 to construct a time-series which resembles a
trajectory around a circle of radius c = |cx| = |cy| and
centered at (0, 0). Two sets, CA and CB , are produced with
Eq. 13 and the corresponding input time-series are denoted by
uCA

and uCB
. To create CA we set cx = cy = 5 and for CB

we set cx = −5 and cy = 5.

C. Analysis tools

In Sec. IV we use the following analysis tools to assess
performance of the RCs in the task described in Sec. III-B. As
the data points describing both circles are effectively the same,
the RC needs to have a sufficient memory of its previous state
in order to remain on the correct circular orbit. To measure
a given RCs memory we make use of the memory capacity
metric introduced in [10].

1) Roundness: To determine whether a given RC achieves
multifunctionality, we examine the predictions of the trained
RC with an error metric called the ‘roundness’. For both
cycles, we first determine if the prediction of a given cycle
is indeed a periodic, and then if it is rotating in the correct
direction. Following this we compute the roundness as the
difference between the radius of the largest and smallest circle
needed to enclose and inscribe the predicted cycle. If the
maximum roundness of both roundness values is less than a
threshold value = 0.5 (determined from empirical testing),
then we say the RC has achieved multifunctionality.

2) Memory capacity: We use the ‘short-term memory’
(STM) [10] to assess if, in this sense, a given RCs memory is
critical to achieving multifunctionality.

The STM characterises the capability of a RC to remember
inputs from the past. It is measured by training the RC to fit an
input signal, µ[n], at time n to its time shifted signal, µ[n−j],

 



with each point in µ chosen from a uniformly random i.i.d of
real numbers in [−1, 1]. Instead of ‘closing the loop’ after
training, the RC is driven with the input signal µ. The STM
is then calculated as the square of the correlation between the
reservoir output Wj

outr[n] and the true values given by µ[n−j]
summed over all j,

STM =
∑

j
cor2

(
µ[n− j],Wj

outr[n]
)
. (14)

W j
out depends on j since for every j the training process needs

to be repeated. Note that, M, is shared by the RC used during
prediction and the RC used to measure the STM while the
input and output matrices are different.

3) Floquet multipliers: Given the periodic nature of the
seeing double problem, by computing the Floquet multipliers
of the RC we can determine whether or not a given configura-
tion of the RC can support the coexistence of both CA and CB
after the training. The Floquet multipliers are the eigenvalues
of the ‘monodromy matrix’, Q, which is the solution of,

Q̇(t) = J(t)Q(t), Q(0) = I, (15)

after one period, T , of the RCs response to a given u(t) for
one period, T , during the training. Here J(t) is the Jacobian
matrix of the predicting RC and I is the identity matrix.

For a given driving input signal, if the absolute value of
any Floquet multiplier, λi, is > 1 then the limit cycle in S
is unstable or, if the absolute value of the largest Floquet
multiplier, λ1, is 1 and all other λi’s have absolute value < 1
then a given limit cycle is stable.

IV. RESULTS

The training parameters used to generate all the results
shown in this section are given in Tables I-III in the Appendix.

A. Reconstructing Lorenz and Halvorsen

In this section we discuss the results shown in Fig. 1 where
each RC is trained on the task described in Sec. III-A.

In Fig. 1 we see that all RCs reconstruct a coexistence of
L and H for 0.75 ≤ δ ≤ 1.25. However, there are some
noticeable differences in the performance of each RC as the
attractors are brought closer together and further apart. For the
set of training parameters specified in the Appendix, no RC
is capable of reconstructing a coexistence of L and H for all
δz’s and in particular for δz = 0. The NG-RC is unable to
reconstruct both attractors in the case of overlapping data, the
CT and LI-RC are able to provide reasonable reconstruction
of both L and H for δz = 0.25 where large parts of the
attractors are already overlapping. This relationship between
multifunctionality and overlap is not trivial as, for instance,
the CT-RC fails to achieve multifunctionality at times when
there is less of an overlap between the attractors , i.e., for
δ = 0.5 the CT-RC only reconstructs L but for δ = 0.25
both are reconstructed. For the CT-RC and NG-RC we see
that as L and H are moved away from one another, both RCs
fail to achieve multifunctionality with the CT-RCs predictions
decaying to limit cycles and the NG-RC becoming unstable.

As a further comment, in our experiments we found that
the CT and NG-RCs achieve multifunctionality for δ > 1.5
with different training parameters. However, by keeping the
parameters fixed this provides better insight towards the com-
plex relationship between multifunctionality and overlapping
training data. In the modes of failure, the main difference
between the NG-RC and the ‘traditional’ CT and LI-RCs is
that the state of the NG-RC tends to infinity whereas the CT
and LI-RCs prediction decay to some other attractor.

B. Solving the seeing double problem

In this section we compare the performance of each RC on
the seeing double problem and assess the effects that different
training parameters have on multifunctionality.

1) LI-RC: ρ and memory capacity: In Fig. 2a we illustrate
the number of times out of 100 random realisations of M and
Win that a given LI-RC gave rise to multifunctionality for
different values of ρ as determined by the roundness analysis
procedure described in Sec. III-C1. We see that for α = 0.05
these LI-RCs outperform the LI-RCs with α = 1 resulting in
not only a broader range of ρ values where multifunctionality
was achieved but also a greater probability of success.

In order to determine if the RCs memory as measured with
the STM approach discussed in Sec. III-C2 plays an important
role in a given RCs ability to achieve multifunctionality,
in Figs. 2b-2d we compute the STM for ten LI-RCs which
achieve multifunctionality and for ten LI-RCs that do not
at different ρ values chosen from Fig. 2a. While there is
no significant difference in the STM amongst successful or
unsuccessful realisations of the LI-RCs, there is a significant
difference in the STM for α = 1 compared to LI-RCs with
α = 0.05. Given that the LI-RC performed much better for
α = 0.05 as shown in Fig. 2a, we see here in Figs. 2b-2d that
there is no correlation between multifunctionality and STM.

2) CT-RC: ρ and Floquet multipliers: In this section we
examine the behaviour of the CT-RC for different values of
ρ and determine that the Floquet multipliers, as discussed in
Sec. III-C3 is a more suitable analysis tool than the STM to
distinguish between whether a given realisation of the CT-RC
can given rise to multifunctionality in this scenario.

Similarly to Fig. 2a, in Fig. 3a we illustrate the number of
times out of 100 that a given random realisation of the CT-RC
gave rise to multifunctionality for different values of ρ.

In contrast to the LI-RCs with α = 0.05, these CT-RCs with
γ = 5 are able to achieve multifunctionality with a success
ratio > 50% for a smaller range of ρ values but still performs
much better than the LI-RCs with α = 1. Furthermore, from
Figs. 3b-3d we see that there is a direct correlation between
whether a given CT-RC gave rise to multifunctionality and its
Floquet multipliers for different values of ρ.

3) CT & LI RCs: γ, α, and β: In this section we restrict our
analysis to ρ = 1.4 where we found reasonable performance
for both the CT and LI-RCs in order to determine the influence
that different values of α, γ, and β, have on multifunctionality.
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Fig. 5: β vs. wo
i,j , the elements of Wout for the NG-RC setup

In Fig. 4 we plot the number of times out of 100 that a given
pair of (β, α) or (β, γ) values give rise to multifunctionality
using the error analysis technique as described in Sec. III-C1.

In Figs. 4a and 4b we see that the limit of α = γτ for τ → 0
also holds for only small values of α and γ. Furthermore, in
Fig. 4a we see no significant improvement in the performance
of the CT-RC for different β and γ values. In particular, for
γ > 40 the majority of random realisations of the CT-RCs will
not give rise to multifunctionality. Whereas for the LI-RC in
Fig. 4b, its best performance occurs for the same α ≈ 0.05.
However there is a much wider range of α and β values where
over 70% of the tested LI-RCs achieve multifunctionality.

What is common between both Figs. 4a and 4b is the role of
β. If β is too small then both RCs have a success rate < 5%
and while larger β values prevent overfitting, if β is too large
this also prevents the RCs from learning the correct dynamics.

4) NG-RC: In this section we discuss the results of training
the NG-RC on the seeing double task with O = [1, 2], k =
2, s = 1. Note the square readout function, q(·), is not used
to obtain Wout. As a result, the trained Wout is ∈ R2×14, and
in Fig. 5 we plot each element, wo

m,n, vs. β.
As indicated by the vertical dotted lines in Fig. 5 we find

that the NG-RC only achieves multifunctionality within this
range of β values. Here there are four Wout elements, wo

1,1 =
0.99989995, wo

1,3 = −0.99999995, wo
2,2 = 0.99990005, and

wo
2,4 = −1.00000005 which are ̸≈ 0. For β < 4 × 108, the
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Fig. 6: Trained NG-RC output dynamics

state of the NG-RC tends to infinity, and for β > 105 the
system tends to the fixed point at the origin.

Given the architecture of the NG-RC we are able to write
the learned equations as,

x(t+ 1) = x(t) + ∆x(t) = (1 + wo
1,1)x(t) + wo

1,3x(t− 1),

y(t+ 1) = y(t) + ∆y(t) = (1 + wo
2,2)y(t) + wo

2,4y(t− 1).

Here we see that these governing equations are uncoupled
and linear, like the driving input described in Eq. 13. As a
consequence, the NG-RC has not reconstructed limit cycles
but has produced a set of equations that can mimic the
input training data. Furthermore, in Fig. 6 we show that by
initialising the trained NG-RC with two consecutive points on
a circle it produces circular trajectories of any given radius.

It’s also important to note that despite, wo
1,1 ≈ 1, wo

1,3 ≈
−1, wo

2,2 ≈ 1, and wo
2,4 ≈ −1, the NG-RC becomes unstable

if the values 1 and −1 are used for the weights.

V. CONCLUSIONS

In this paper we investigate some of the limits of multifunc-
tionality in CT, LI, and NG RCs when overlapping training
data is introduced in different tasks.

As illustrated in Fig. 1, we find that for a given set of
training parameters, each RC can reconstruct a coexistence
of the chaotic Lorenz and Halvorsen attractors when the data
is sufficiently separated in state space, however if the attractors
are too far apart then we see the CT and NG RCs begin to
fail. For the same set of training parameters, the NG-RC is
unable to reconstruct a coexistence of these attractors once
they begin to overlap while the CT and LI RCs are able to
achieve multifunctionality when the attractors share mutual
regions of state space up to a certain extent.

In order to further explore the limits of multifunctionality,
we investigate the performance of each RC when trained to
solve the seeing double problem. As shown in Figs. 2a and
3a, it is clear that ρ, the parameter associated with memory
in the CT and LI RCs, plays an important role in whether a
given RC can achieve multifunctionality. To measure the RCs
memory we use the STM metric as described in Sec. III-C2,
and in Figs. 2b-2d, we identify the shortcomings of the STM
metric as a means to successfully capture the role of memory



in this sense. However, by using the Floquet analysis described
in Sec. III-C3 we are able to identify in Figs. 3b-3d that the
effect of ‘closing the loop’ is of greater significance to whether
a given RC can achieve multifunctionality. Furthermore, we
find that despite choosing a NG-RC with polynomial terms, the
trained NG-RC results in a uncoupled set of linear equations
which can generate circular trajectories when initialised with
two consecutive on any given circle.

The defining characteristic of the reservoir computing ap-
proach to machine learning is the need to train only a suitable
readout layer, Wout, to solve a given problem. However, it has
only recently been discovered that a given Wout can enable a
RC to perform more than one task. In this context, other than
the results regarding multifunctionality, RCs have been trained
to infer unseen attractors, learn global bifurcation structures
and anticipate synchronisation [20]–[23].

Multifunctionality opens up new application areas for RCs,
for instance, in producing data-driven models of real world
phenomenon where multistability is thought to play a role, like
in the epileptic brain [24]. However, many questions remain,
in particular, how much dynamical functionality a single RC
can be trained to exhibit. In future work we aim to address
this with further RC designs in other paradigmatic scenarios
given the insight gained through the seeing double problem.

APPENDIX

M ∈ RN×N has a sparse Erdös–Renyi network where each
element is chosen independently with probability p from a

uniform distribution of (−1, 1). After initialisation, the spectral
radius, ρ, of M is tuned in order to provide the network with
a sufficient amount of memory. Win ∈ RN×D is designed
such that each row has only one nonzero randomly assigned
element, chosen uniformly from (−1, 1).
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