
Speech Augmentation Based Unsupervised Learning
for Keyword Spotting

Jian Luo1, Jianzong Wang1∗, Ning Cheng1, Haobin Tang1,2, Jing Xiao1
1Ping An Technology (Shenzhen) Co., Ltd.

2University of Science and Technology of China

Abstract—In this paper, we investigated a speech augmentation
based unsupervised learning approach for keyword spotting
(KWS) task. KWS is a useful speech application, yet also heavily
depends on the labeled data. We designed a CNN-Attention
architecture to conduct the KWS task. CNN layers focus on
the local acoustic features, and attention layers model the long-
time dependency. To improve the robustness of KWS model, we
also proposed an unsupervised learning method. The unsuper-
vised loss is based on the similarity between the original and
augmented speech features, as well as the audio reconstructing
information. Two speech augmentation methods are explored in
the unsupervised learning: speed and intensity. The experiments
on Google Speech Commands V2 Dataset demonstrated that
our CNN-Attention model has competitive results. Moreover, the
augmentation based unsupervised learning could further improve
the classification accuracy of KWS task. In our experiments,
with augmentation based unsupervised learning, our KWS model
achieves better performance than other unsupervised methods,
such as CPC, APC, and MPC.

Index Terms—Speech Augmentation, Unsupervised Learning,
Keyword Spotting

I. INTRODUCTION

Keyword Spotting (KWS) is a useful speech application
in real-world scenarios. KWS aims at detecting a relatively
small set of pre-defined keywords in an audio stream, which
usually exists on the interactive agents. The KWS systems
usually have two kinds of applications: Firstly, it can detect
the startup commands, such as “hey Siri” or “OK, Google”,
providing explicit cues for interactions. Secondly, KWS can
help to detect some sensitive words to protect the privacy of the
speaker. Therefore, highly accurate and robust KWS systems
can be of great significance to real speech applications [1]–[3].

Recently, extensive literature research on KWS has been
published [4]–[6]. As a traditional solution, keyword/filler Hid-
den Markov Model (HMM) has been widely applied to KWS
tasks, and remains competitive results [7]. In this generative
approach, an HMM model is trained for each keyword, while
another HMM model is trained from not-keyword speech
segments. At inference, the Viterbi decoding is required, which
might be computationally expensive depending on the HMM
topology. In recent years, deep learning models have gained
popularity on the KWS task, which show better performance
than traditional approaches. Google proposed to use Deep
Neural Networks (DNN) to predict sub-keyword targets. It
uses the posterior processing method to generate the final
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confidence score, and outperforms the HMM-based system [8].
In contrast, Convolutional Neural Networks (CNN) is more
attractive, because DNN ignores the input topology, but audio
features could have a strong dependency in time or frequency
domains [9]–[11]. However, there is a potential drawback
that CNN might not model much contextual information.
Also, Recurrent Neural Networks (RNN) with Connectionist
Temporal Classification (CTC) loss was also investigated for
KWS. However, the limitation of RNN is that it directly
models the speech features without learning local structure
between successive time series and frequency steps [12]. There
are also some works that combined CNN and RNN to improve
the accuracy of KWS. For example, Convolutional Recurrent
Neural Networks (CRNN) and Gated Convolutional Long
Short-Term Memory (LSTM), achieved better performance
than that of only using CNN or RNN [13]. In recent years,
many researchers focus on the transformer-based models with
self-attention mechanism. As a typical model, Bidirectional
Encoder Representations from Transformer (BERT) has been
proven to be an effective model in many Natural Language
Processing (NLP) tasks [14]–[16]. The transformer-based
models have also obtained much application in Automatic
Speech Recognition (ASR) tasks [17], [18]. In this work, we
introduced transformer to the network architecture of KWS.
We think that transformer encoder has great advantage on the
speech representation, and established a CNN-Attention based
network to deal with the KWS task. The CNN helps network
to learn the local feature, and the self-attention mechanism of
transformer focuses on the long-time information.

The above supervised approaches have acquired good per-
formance, but these models require a lot of labeled datasets.
Obviously, for KWS task, the negative samples could be more
procurable than positive samples, meaning that the positive
samples might not be obtained easily. Especially when the
keyword changes, it requires much time to collect the positive
target samples, and the existing models might not easily
transfer to other KWS models. In this paper, we focus on the
unsupervised learning approach to alleviate this problem. The
unsupervised learning mechanism allows the neural network to
be trained on unlabeled datasets. With unsupervised learning,
the performance of downstream task could be improved with
limited labeled datasets. Unsupervised learning has made
great success in the audio, image and text tasks [19]. In
speech area, researchers also proposed some unsupervised pre-
training algorithms [20]–[22]. Contrastive Predictive Coding

ar
X

iv
:2

20
5.

14
32

9v
1 

 [
cs

.S
D

] 
 2

8 
M

ay
 2

02
2



(CPC) is one of those unsupervised approaches, extracting
speech representation by predicting future information [23].
Apart from CPC, the Autoregressive Predictive Coding (APC)
is another pre-training model, which also gets comparable
results on phoneme classification and speaker verification
tasks [24]. Meanwhile, Masked Predictive Coding (MPC)
designs a Masked Language Model (MLM) objective in the
unsupervised pre-training, and enables the model to incor-
porate context from both directions [25]. Based on these
unsupervised learning methods, lots of unlabeled audio data
can be used to obtain a better audio representation and this
representation can be applied to the follow-up tasks through
fine-tuning mechanism. For a robust KWS system, it should
deal with different styles of speech in real-world applications.
Speed and volume are major variations of the speech style.
Unlike traditional unsupervised learning focuses on the general
audio representation, we proposed an augmentation based
approach. Our approach is to improve the model performance
on KWS task with different speed and intensity situations.
We designed an unsupervised loss based on the distance
between the original and augmented speech, as well as the
audio reconstructing information for auxiliary training. We
think that speech utterances with the same keyword but at
different speeds or volumes should have similar high-level
feature representations for KWS tasks.

This paper investigated unsupervised speech representative
methods to conduct KWS task. The unsupervised learning
methods could utilize a lot of unlabeled audio datasets to
improve the performance of downstream KWS task when
labeled data are limited. In addition, speech augmentation
based unsupervised representation might help the network to
learn the speech information in various speech styles, and get a
more robust performance. In summary, our major contributions
of this work are the followings:

• Propose a CNN-Attention architecture for keyword spot-
ting task, having competitive results on Google Speech
Commands V2 Dataset.

• Design an unsupervised loss based on the Mean Square
Error (MSE) to measure the distance between the original
and augmented speech.

• Define a speech augmentation based unsupervised learn-
ing approach, utilizing the similarity between the bottle-
neck layer feature, as well as the audio reconstructing
information for auxiliary training.

The rest of the paper is organized as follows. Sec. II
highlights the related prior works about data augmentation,
unsupervised learning, and other methodologies of KWS tasks.
Sec. III describes the proposed model architecture and aug-
mentation based unsupervised learning loss. Sec. IV reports
the experimental results compared with other pre-training
methods. We also discuss relationship between pre-training
steps and performance of downstream KWS tasks. In Sec. V,
we conclude with the summary of the paper and future works.

II. RELATED WORK

Data augmentation is a common strategy to enlarge the
training set of speech applications, such as Automatic Speech
Recognition (ASR) and Keyword Spotting (KWS). The
work [26] studied the vocal tract length perturbation method to
improve the performance of ASR systems. The work [27] in-
vestigated a speed-perturbation technique to change the speed
of the audio signal. Noisy audio signals have been used in [28],
corrupting clean training speech with noise signal, to improve
the robustness of the speech recognizer. SpecAugment [29] is
a spectral-domain augmentation whose effect is to mask bands
of frequency and/or time axes. SpecAugment is also explored
further on large scale dataset in [30]. WavAugment [31]
combines pitch modification, additive noise and reverberation
to increase the performance of Contrastive Predictive Coding
(CPC). In this work, we apply the speed and volume pertur-
bation in our speech augmentation method.

Although supervised learning has been the major approach
in keyword spotting area, current supervised learning models
require large amounts of labeled data. Those high quality
labeled datasets require substantial effort and are hardly
available for the less frequently used languages. For this
reason, recently there has been a great surge of interest in
weakly supervised solutions that use datasets with few human
annotations. Noisy student training, a semi-supervised learning
method was proposed to ASR [32] and later used for robust
keyword spotting [33]. There also have been related researches
investigating the use of unsupervised methods to perform
keyword spotting [34]–[36]. [34] proposed a self-organizing
speech recognizer, and minimal transcriptions are used to train
a grapheme-to-sound-unit converter. [35] presented a prototype
KWS system that doesn’t need manually transcribed data to
train the acoustic model. In [36], the authors proposed an un-
supervised learning framework without transcription. A GMM
model is used to label keyword samples and test utterances by
Gaussian posteriorgram. After that, segmental dynamic time
warping (SDTW) gives a relevant score, and ranks the score
to figure out the output. The feasibility and effectiveness of
these results encourage us to introduce unsupervised learning
framework to the task of keyword spotting.

Google Speech Commands V2 Dataset, is a well-studied
and benchmarked dataset for novel ideas in KWS. A lot
of previous works perform experiments on this dataset. [37]
introduced a convolutional recurrent network with attention
on multiple KWS tasks. MatchboxNet [38] is a deep residual
network composed from 1D time-channel separable convolu-
tion, batch-norm layers, ReLU and dropout layers. Inspired
by [37] and [38], EdgeCRNN [39] was proposed, an edge-
computing oriented model of acoustic feature enhancement
for keyword spotting. Recently, [40] combined a triplet loss-
based embedding and a variant of K-Nearest Neighbor (KNN)
for classification. We also evaluated our speech augmen-
tation based unsupervised learning method on this dataset,
and compared with other unsupervised approaches, including
CPC [23], APC [24] and MPC [25].



III. PROPOSED METHOD

A. KWS Model Architecture
The keyword spotting task could be described as a sequence

classification task. The keyword spotting network maps an
input audio sequence X = (x0, x1, ..., xT ) to a limited of
keyword classes Y ∈ y1:S . In which, T is the number of
audio frames and S is the number of classes. Our proposed
model architecture for keyword spotting is shown in Fig 1. The
network contains five parts: (1) CNN Block, (2) Transformer
Block, (3) Feature Selecting Layer, (4) Bottleneck Layer, and
(5) Project Layer.

Fig. 1. The Architecture of our CNN-Attention model for keyword spotting
task. The network is composed of CNN layers, self-attention layers, feature
selecting layer, bottleneck layer, and project layer. In the feature selecting
layer, the last few frames are selected. Finally, the project layer maps the
features to predict the keyword classification.

The CNN block consists of several 2D-convolutional layers,
handling the local variance on time and spectrum axes.

Ecnn = 2DConv×N (X) (1)

In which, N is the number of convolutional layers. Then, the
CNN output Ecnn is inputted to the transformer block, to
capture long-time information with self-attention mechanism.

Etran = SelfAttention×M (Ecnn) (2)

In which, M is the number of self-attention layers. After
transformer block, we designed a feature selecting layer to
extract keyword information from sequence Etran.

Efeat = Concat(Etran[T − r, T ]) (3)

In feature selecting layer, we firstly collect last r frames of
Etran. And then, we concatenate all the collected frames
together, into one feature vector Efeat. After feature selecting
layer, we use a bottleneck layer and a project layer, projecting
the hidden states to the predicted classification classes Ỹ .

Ebn = FCbn(Efeat) (4)

Ỹ = FCproj(Ebn) (5)

Finally, the the cross-entropy (CE) loss for supervised learning
and model fine-tuning is calculated via predicted classes Ỹ and
ground truth classes Y .

Lce = CE(Y, Ỹ ) (6)

B. Augmentation Method

Data augmentation are the most common used methods
to promote the robustness and performance of the model in
speech tasks. In this work, speed and volume based augmen-
tation are investigated in the unsupervised learning of keyword
spotting. For a given audio sequence X , we denote it as the
amplitude A and time index t.

X = A(t) (7)

For speed augmentation, we set a speed ratio λspeed to adjust
the speed of X .

Xaug = A(λspeedt) (8)

For volume augmentation, we also set an intensity ratio
λvolume to change the volume of X .

Xaug = λvolumeA(t) (9)

With different ratios λspeed and λvolume, we could obtain
multiple speech sequence pairs (X,Xaug), to train the audio
representation network with unsupervised learning. We think
that speech utterances at different speed or volume should have
similar high-level feature representation for KWS tasks.

C. Unsupervised Learning Loss

The overall architecture of augmentation based unsuper-
vised learning is shown in Fig 2. Similar to other unsupervised
methods, the proposed approach also consists of two stages:
(1) pre-training on unsupervised data, and (2) fine-tuning on
supervised KWS data. In the pre-training stage, the bottleneck
feature was obtained through training the unlabeled speech. In
fine-tuning stage, the extracted bottleneck features are used for
KWS prediction.

In the pre-training stage, the pair speech data (X,Xaug) are
inputted into the CNN-Attention models respectively, but with
the same model parameters. Because Xaug comes from X , our
designed unsupervised methods expect that X and Xaug will
output similar high-level bottleneck features. It means that no
matter how fast or how loud a speaker says, the content of the
speech is the same. Thus, the optimization of network needs
to reflect the similarity of X and Xaug . We choose the Mean
Square Error (MSE) Lsim to measure the distance between
the output of X and Xaug .

Lsim =
1

Ubn

Ubn∑
u=0

|Ebn(u)− Eaug
bn (u)|2 (10)

Where Ubn represents the dimension of the bottleneck feature
vector. Ebn and Eaug

bn are the output of bottleneck layer of
original speech X and augmented speech Xaug respectively.



Fig. 2. The proposed speech augmentation based audio unsupervised learning
method. In the pre-training stage, the pair of original and augmented speech
will be inputted into the network separately but with the same model
parameters. The network will output the average speech feature values and
the bottleneck feature. The two bottleneck features are calculated by MSE
loss, since the augmented and original speech should output similar high-
level features for keyword spotting.

In addition, the designed network has another branch for
auxiliary training, which predicts the average feature of the
input speech segment. This branch guides the network to learn
the intrinsic feature of the speech utterance. We firstly compute
the average vector of the input Fbank vector X alongside
the time axis t. Then, we use another reconstructing layer
attached to the bottleneck layer, to reconstruct the average
Fbank vector X̃ . We also use MSE loss Lx to calculate
the similarity between these two audio vectors alongside the
feature dimension Ux.

X =
1

T

∑
T

(X)

X̃ = FCreconstruct(Ebn)

Lx =
1

Ux

Ux∑
u=0

|X (u)− X̃(u)|2

(11)

In which, Ux represents the dimension of Fbank feature
vector, and X denotes the average vector of X . Similarly, the
loss Laug

x between the augmented average audio X aug and

ured feature X̃aug could be defined as follows:

Laug
x =

1

Ux

Ux∑
u=0

|X aug(u)− X̃aug(u)|2 (12)

Therefore, the final loss function Lul of the unsupervised
learning (UL) consists of the above three losses Lsim, Lx, and
Laug
x .

Lul = λ1Lsim + λ2Lx + λ3Laug
x (13)

Where λ1, λ2, λ3 are factor ratio of each loss component.
In fine-tuning stage, the branch of average feature prediction

is removed. A project layer and a softmax layer are added after
the bottleneck layer to make the KWS prediction. In the fine-
tuning, the parameters of original network could be fixed or
updated. In our experiments, we found that updating all the
parameters could help to improve the performance. Thus, we
choose to update all parameters in the fine-tuning stage.

IV. EXPERIMENTS

In this section, we evaluated the proposed method in
keyword spotting tasks. We implemented our CNN-Attention
model with supervised training and compared it with Google’s
model. We also made an ablation study, to explore the effect
of speed and volume augmentation on unsupervised learn-
ing. What’s more, other unsupervised learning methods are
compared with our approach, including CPC, APC, MPC.
When implementing these approaches, we used the network
and hyperparameters in their publications, but all experimental
tricks were not leveraged [23]–[25]. We also discuss the
impact of different pre-training steps on the performance and
convergence of downstream KWS task.

A. Datasets

We used Google’s Speech Commands V2 Dataset [41] for
evaluating the proposed models. The dataset contains about
106000 one-second or more long utterances. Total 30 short
words were recorded by thousands of different people, as
well as background noise such as pink noise, white noise, and
human-made sounds. The KWS task is to discriminate among
12 classes: “yes”, “no”, “up”, “down”, “left”, “right”, “on”,
“off”, “stop”, “go”, unknown, or silence. The dataset was split
into training, validation, and test sets, with 80% training, 10%
validation, and 10% test. This results in about 37000 samples
for training, and 4600 each for validation and testing. We

TABLE I
MODEL CONFIGURATIONS

Unit Name Hyperparameters
#CNN Blocks M = 2 layers, 3× 3 kernel, 2× 2 stride, 32 channels
#Transformer Block N = 2 layers, dimension = 320, 4 head, feedforward = 1024
#Feature Selecting Layer Last r = 2 frames, 2× 320 dimension
#Bottleneck Layer one FC layer, 800 dimension
#Project Layer one FC layer, 12 dimension softmax
#Reconstruct Layer one FC layer, 40 dimension softmax
#Factor Ratio λ1 = 0.9, λ2 = 0.05, λ3 = 0.05



TABLE II
RESULTS COMPARISON OF KWS MODEL, CLASSIFICATION ACCURACY (%)

Model Name Supervised Training Data Dev Eval
Sainath and Parada (Google) Speech Commands - 84.7
CNN-Attention (ours) Speech Commands 86.4 85.3
CNN-Attention + volume & speed augment (ours) Speech Commands 87 85.7

TABLE III
ABLATION STUDY, THE EFFECT OF SPEED AND VOLUME AUGMENTATION, CLASSIFICATION ACCURACY (%)

Model Name Pre-training Data Fine-tuning Data Dev Eval
CNN-Attention + volume pre-training Speech Commands Speech Commands 86.1 85.9
CNN-Attention + speed pre-training Speech Commands Speech Commands 87.8 86.9
CNN-Attention + volume & speed pre-training Speech Commands Speech Commands 87.9 87.2
CNN-Attention + volume pre-training Librispeech-100 Speech Commands 86.3 86.0
CNN-Attention + speed pre-training Librispeech-100 Speech Commands 87.9 87.9
CNN-Attention + volume & speed pre-training Librispeech-100 Speech Commands 88.2 88.1

used the real noisy data HuNonspeech1 to corrupt the original
speech. In the experiments, the Aurora4 tools were used to
implement this strategy2. Each utterance will be randomly
corrupted by public 100 kinds of noise in HuNonspeech. Each
utterance has a level of 0-20dB Signal Noise Ratio (SNR), and
all datasets have an average 10dB SNR.

Similar to other unsupervised methods, a large unlabeled
corpus, 100 hours of Librispeech [42] clean speech were
also leveraged to pre-train the network by unsupervised
learning. Firstly, the long utterances were split up into 1
second segments, keeping consistent with Speech Commands
datasets. Nextly, the clean segments were also mixed with
noisy HuNonspeech data by Aurora 4 tools, and the corrupted
mechanism was as same as the Speech Commands.

B. Experimental Setups

The acoustic features were 40-dimensional log-mel filter-
bank with 30ms frame length and 10ms frame shift. The
detailed hyperparameters of our proposed network were shown
in Table I. For training the KWS model, all of the matrix
weights are initialized with random uniform initialization, and
the bias parameters are initialized with the constant value 0.1.
In our experiments, we trained all the networks with Adam
optimizer for 30k steps with a batchsize 200 until the loss
becomes little change. In addition, the factor ratios of loss λ1,
λ2, and λ3 are set to 0.9, 0.05, 0.05 respectively.

To demonstrate the effectiveness of our proposed model,
we investigated several other approaches for comparison. For
supervised learning, we used Sainath and Parada’s model
by Google [43] as the baseline model. The Google blog
post released the Sainath and Parada’s model implemented
by TensorFlow. For unsupervised learning, we compared our
method with other pre-training models:

• Contrastive Predictive Coding (CPC) [23]: Through an
unsupervised mechanism by utilizing next step prediction,
CPC learns representations from high-dimensional signal.

1http://web.cse.ohio-state.edu/pnl/corpus/HuNonspeech/
2http://aurora.hsnr.de/index-2.html

The CPC network mainly contains a non-linear encoder
and an autoregressive decoder. An input sequence is
embedded to a latent space, producing a context repre-
sentation. Targeting at predicting future observations, the
density ratio is established to maximize the mutual infor-
mation between future observations and current context
representation.

• Autoregressive Predictive Coding (APC) [24]: APC
also belongs to the family of predictive models. APC
directly optimizes L1 loss between input sequence and
output sequence. APC has proved an effective method
in recent language model pre-training task and speech
representation.

• Masked Predictive Coding (MPC) [25]: Inspired by
BERT, MPC uses Masked Language Model (MLM)
structure to perform predictive coding on Transformer
based models. Similar to BERT, 15% of feature frames
in each utterance are chosen to be masked during the
pre-training procedure. Among these chosen frames, 80%
are replaced with zero vectors, 10% are replaced with
random positions, and the rest remain unchanged. L1 loss
is computed between masked input features and encoder
output at corresponding position. Dynamic masking was
also adopted where the masking pattern is generated when
a sequence is fed into the model.

C. Results

Table II lists the experimental results of supervised learning
with Speech Commands dataset. We firstly implemented the
Google’s Sainath and Parada model by the original TensorFlow
recipes, achieving the accuracy of 84.7%. Secondly, our CNN-
Attention model is implemented by supervised loss Lce with-
out any augmented data and achieved 0.6% higher accuracy
than Google’s model. It is proved that our designed CNN-
Attention architecture is effective for KWS task. Finally, after
adding speed and volume augmentation to speech, we got a
higher accuracy. It corresponds with the existing research that
augmented dataset is helpful for improving the performance



TABLE IV
COMPARED WITH OTHER UNSUPERVISED LEARNING METHODS, CLASSIFICATION ACCURACY (%)

Model Name Pre-training Data Fine-tuning Data Dev Eval
Contrastive Predictive Coding (CPC) [23] Speech Commands Speech Commands 87.6 86.9
Autoregressive Predictive Coding (APC) [24] Speech Commands Speech Commands 87.2 86.5
Masked Predictive Coding (MPC) [25] Speech Commands Speech Commands 87.0 86.7
CNN-Attention + volume & speed pre-training (ours) Speech Commands Speech Commands 87.9 87.2
Contrastive Predictive Coding (CPC) [23] Librispeech-100 Speech Commands 87.8 87.4
Autoregressive Predictive Coding (APC) [24] Librispeech-100 Speech Commands 87.7 87.5
Masked Predictive Coding (MPC) [25] Librispeech-100 Speech Commands 87.9 87.0
CNN-Attention + volume & speed pre-training (ours) Librispeech-100 Speech Commands 88.2 88.1

of the model. It also inspires our motivation for building
augmentation based unsupervised learning methods.

To analyze the effect of speed and volume augmentation on
unsupervised learning, we also made an ablation study in our
experiments. The experimental results are shown in Table III.
The volume pre-training model means that the augmented
speech pairs (X,Xaug) only contain the intensity augment
data. Meanwhile, the speed pre-training model is trained
only by speed augmented pairs. For better investigation, we
pre-trained the model with two datasets by unsupervised
learning loss Lul. The results indicate that speed augmented
unsupervised learning has better performance than intensity
based augmented pre-training. With both volume and speed
augmentation, we could achieve better classification accuracy
than only with single augmentation method. In addition, large
datasets pre-training (Librispeech-100) results in better perfor-
mance than small datasets (Speech Commands). Our proposed
augmentation based unsupervised method (Eval 87.2% in
Table III) also promotes the accuracy of adding augmentation
to supervised training (Eval 85.7% in Table II) even with the
same training data.

After that, we established the CPC, APC, MPC and made
the comparison with these unsupervised learning methods. As
depicted in Table IV, CPC achieves better performance than
APC and MPC. Our augmentation based approach outperforms
all of the other unsupervised methods on both two pre-
training datasets (Speech Commands and Librispeech-100).
The comparison demonstrated that our proposed augmentation
based unsupervised learning is capable of extracting the speech
information, and is an effective approach for KWS tasks.

D. Pre-training Analysis

More pre-training steps usually help to improve the per-
formance of downstream tasks. To get a better understanding
of our unsupervised approach, we also conducted experiments
with different pre-training steps. The 5K, 10K, 20K, 30K pre-
training steps were used for making this comparison. The
performance of different steps is plotted in Fig 3.

We show the model training of supervised learning with
these different steps of pre-training. Our experiments demon-
strated that more pre-training steps are not only helpful for
achieving better performance but also making downstream
KWS task converge faster. Unsupervised learning with 30K
steps has the highest classification accuracy and the fastest

Fig. 3. The results comparison with different pre-training steps. Different
pre-training steps of unsupervised learning result in different accuracy per-
formance and fine-tuning convergence. In our experiments, pre-training 30K
steps have the highest classification accuracy, and fastest convergence.

convergence. It also should be noted that the difference be-
tween 20K and 30K was very close, meaning that the pre-
training steps are enough to obtain the desired performance.

V. CONCLUSION

This paper investigated unsupervised learning method for
keyword spotting task. We designed a CNN-Attention ar-
chitecture and achieved competitive results on the Speech
Commands dataset. In addition, we proposed a speech aug-
mentation based unsupervised learning approach for KWS.
Our method uses speed and intensity augmentation to establish
training pairs, and pre-trains the network via the similarity loss
between the speech pair and the speech reconstructed loss. In
our experiments, the proposed unsupervised approach could
further improve the model performance, and outperform other
unsupervised methods, such as CPC, APC and MPC. We also
found that more pre-training steps are not only helpful for
better performance but also for faster convergence. In future
works, we are interested in applying the augmentation based
unsupervised learning approach to other speech tasks, such as
speaker verification and speech recognition.
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M. Douze, and E. Dupoux, “Data augmenting contrastive learning of
speech representations in the time domain,” in 2021 IEEE Spoken
Language Technology Workshop (SLT), 2021.

[32] D. S. Park, Y. Zhang, Y. Jia, W. Han, C.-C. Chiu, B. Li, Y. Wu, and Q. V.
Le, “Improved noisy student training for automatic speech recognition,”
in arXiv preprint:2005.09629, 2020.

[33] H.-J. Park, P. Zhu, I. L. Moreno, and N. Subrahmanya, “Noisy
student-teacher training for robust keyword spotting,” in arXiv
preprint:2106.01604, 2021.

[34] A. Garcia and H. Gish, “Keyword spotting of arbitrary words using min-
imal speech resources,” in IEEE International Conference on Acoustics
Speech and Signal Processing Proceedings (ICASSP), 2006.

[35] P. Li, J. Liang, and B. Xu, “A novel instance matching based unsuper-
vised keyword spotting system,” in Second International Conference on
Innovative Computing, Informatio and Control (ICICIC), 2007.

[36] Y. Zhang and J. R. Glass, “Unsupervised spoken keyword spotting
via segmental dtw on gaussian posteriorgrams,” in IEEE Workshop on
Automatic Speech Recognition & Understanding (ASRU), 2009.

[37] D. C. de Andrade, S. Leo, M. L. D. S. Viana, and C. Bernkopf,
“A neural attention model for speech command recognition,” in arXiv
preprint:1808.08929, 2018.

[38] S. Majumdar and B. Ginsburg, “Matchboxnet: 1d time-channel sepa-
rable convolutional neural network architecture for speech commands
recognition,” in arXiv preprint:2004.08531, 2020.

[39] Y. Wei, Z. Gong, S. Yang, K. Ye, and Y. Wen, “Edgecrnn: an edge-
computing oriented model of acoustic feature enhancement for keyword
spotting,” in Journal of Ambient Intelligence and Humanized Computing,
2021.

[40] R. Vygon and N. Mikhaylovskiy, “Learning efficient representations for
keyword spotting with triplet loss,” in arXiv preprint:2101.04792, 2021.

[41] P. Warden, “Speech commands: A dataset for limited-vocabulary speech
recognition,” arXiv preprint:1804.03209, 2018.

[42] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Librispeech: An
asr corpus based on public domain audio books,” in IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), 2015.

[43] T. N. Sainath and C. Parada, “Convolutional neural networks for small-
footprint keyword spotting,” in Conference of the International Speech
Communication Association (INTERSPEECH), 2015.


	I Introduction
	II Related Work
	III Proposed Method
	III-A KWS Model Architecture
	III-B Augmentation Method
	III-C Unsupervised Learning Loss

	IV Experiments
	IV-A Datasets
	IV-B Experimental Setups
	IV-C Results
	IV-D Pre-training Analysis

	V Conclusion
	VI Acknowledgement
	References

