
A new perspective on probabilistic image modeling
Alexander Gepperth

Applied Computer Science Department
University of Applied Sciences Fulda

Fulda, Germany
alexander.gepperth@cs.hs-fulda.de

Abstract—We present the Deep Convolutional Gaussian Mix-
ture Model (DCGMM), a new probabilistic approach for image
modeling capable of density estimation, sampling and tractable
inference. DCGMM instances exhibit a CNN-like layered struc-
ture, in which the principal building blocks are convolutional
Gaussian Mixture (cGMM) layers. A key innovation w.r.t. related
models like sum-product networks (SPNs) and probabilistic
circuits (PCs) is that each cGMM layer optimizes an independent
loss function and therefore has an independent probabilistic
interpretation. This modular approach permits intervening trans-
formation layers to harness the full spectrum of (potentially non-
invertible) mappings available to CNNs, e.g., max-pooling or half-
convolutions. DCGMM sampling and inference are realized by
a deep chain of hierarchical priors, where a sample generated
by a given cGMM layer defines the parameters of sampling
in the next-lower cGMM layer. For sampling through non-
invertible transformation layers, we introduce a new gradient-
based sharpening technique that exploits redundancy (overlap)
in, e.g., half-convolutions. DCGMMs can be trained end-to-end
by SGD from random initial conditions, much like CNNs. We
show that DCGMMs compare favorably to several recent PC and
SPN models in terms of inference, classification and sampling,
the latter particularly for challenging datasets such as SVHN.
We provide a public TF2 implementation.

I. INTRODUCTION

This conceptual work is in the context of probabilistic image
modeling by a hierarchical extension of Gaussian Mixture
Models (GMMs), which we term Deep Convolutional Gaus-
sian Mixture Model (DCGMM). Main objectives are density
estimation, image generation (sampling) and tractable infer-
ence (e.g., image in-painting).

Recent approaches (e.g., GANs, VAEs) excel in image
generation by harnessing the full spectrum of CNN transfor-
mations, such as convolution or pooling. An issue is how-
ever the lack of density estimation and tractable inference
capacity, i.e., explicitly expressing and exploiting the learned
probability-under-the-model p(x) of an image x. In con-
trast, recent ”deep” probabilistic approaches like sum-product-
networks and probabilistic circuits [14], [15], [21], [13], [3]
have been explicitly designed to perform these functions on
images. However, strong constraints must be satisfied at every
hierarchy level to maintain a global probabilistic interpretation,
which excludes, e.g., overlapping convolutions and pooling.
We aim at overcoming these limitations by constructing
deep hierarchies of convolutional Gaussian Mixture Models
(GMMs) in order to perform density estimation, realistic
sampling and inference within a single model for large-scale,
complex visual problems.

  1 / 4

G
M

M

P
o

ol
in

g

F
ol

di
ng

C
la

ss
if.

In
p

ut ...

G
M

M

Top-level control signal

2

1

Fig. 1. High-level structure of a typical DCGMM instance with principal
layer types. DCGMMs have two operation modes: 1©the forward mode which
estimates the probability of a presented data sample 2©the backwards mode in
which a top-level control signal is propagated in reverse direction to generate
a sample according to the learned model. The whole architecture is trained
end-to-end, with each trainable layer being independently optimized.

A. DCGMM: Model overview and salient points

DCGMM instances can operate in density estimation (”for-
ward”) and sampling (”backwards”) mode, and are realized
by a succession of convolutional Gaussian Mixture Model
(cGMM) and transformation layers, see Fig. 1.

Most prominently, DCGMMs optimize independent loss
functions (no back-propagation) for all cGMM layers. This
ensures a probabilistic interpretation of cGMM layer outputs
and removes the need for structural constraints as imposed in
related models (see Sec. I-B).

Since DCGMMs relax the assumption of a single loss function,
they can perform standard CNN operations between cGMM
layers, e.g., half-convolution and pooling, which are non-
invertible to different degrees.

In order to allow sampling through non-invertible oper-
ations, we exploit the fact that DCGMM convolutions are
unconstrained and can thus be overlapping as in CNNs. We
introduce a novel gradient ascent technique that exploits the
redundancy thus created to compensate for the information
loss due to non-invertible transformations.

A cGMM layer implements parameter sharing, using the
same πk, Σk and µk for all positions of a four-dimensional
NHWC input tensor (see Fig. 2). This allows powerful models
to be trained with few adjustable parameters.

DCGMM sampling realizes a deep chain of hierarchical
priors: A cGMM layer propagates posterior probabilities, for
which the next upstream cGMM learns a model. A sample
drawn from the upstream cGMM thus represents a likely
realization of these posteriors. As such, it is a natural choice
for controlling sampling in the current layer.

ar
X

iv
:2

20
3.

11
03

4v
1 

 [
cs

.L
G

] 
 2

1 
M

ar
 2

02
2



B. Related Work

GANs and VAEs and related models The currently most
widely used models of image generation are GANs and
VAEs [2], [10], [5], [8]. GANs can sample photo-realistic
images [16], but are incapable of density estimation. VAEs
show similar performance when it comes to sampling, and
outlier detection can be performed, although general density
estimation with VAEs is problematic as well . Inference with
VAEs is complicated and potentially inefficient. Approaches
with similar strength and weaknesses are realized by the
PixelCNN architecture[12], GLOW [7] and variants.

Hierarchical MFA/GMM Two related approaches are de-
scribed in [20], [19]. These approaches realize hierarchical
MFA as modular decompositions of single ”flat” MFAs, and
thus possess a single loss function that is optimized by
Expectation-Maximization (EM). Closer to our approach is the
proposal of [17], which proposes to train an MFA layer on the
inferred latent variables of another, independent MFA instance.
Transformations occurring in these models are global, i.e.,
affect all input variables. Local operations like convolutions or
max-pooling are not used, and the dimensionality of samples
treated in the experiments is low. A preliminary version of
DCGMMs was described in [1].

Probabilistic circuits and sum-product networks Probabilis-
tic circuits are deep directed graphs whose leaves compute
probabilities from inputs via tractable parameterized distribu-
tions. These probabilities are further processed at weighted-
sum- and product nodes, with the aim of obtaining a tractable
distribution at the root node. This is ensured if some structural
constraints are met, and the resulting PCs are often termed
Sum-Product Networks (SPNs, see, [15]). In particular, SPNs
allow efficient sampling, density estimation and tractable in-
ference even if graphs are very deep.

Similarly to neural networks, finding a graph structure
suitable for a particular learning task is challenging, especially
if data dimensionality is high. Several interesting ideas for this
have been put forward in [14], [15], [21], [13], [3]. An appeal-
ing approach is realized by RAT-SPNs [14] which construct
random SPNs that are then combined by a single root node,
at the price of additional hyper-parameters. Efficient learning

  4 / 4

W

C

 F(3,1)
 G(5)  P(2,2)  F(2,1)  G(5)

positions

patch

Fig. 2. A simple DCGMM instance applied to a NHWC tensor with N and W
dimensions omitted. It contains max-pooling(P), half-convolution/folding(F)
and cGMM (G) layers, see text for details. Lower cGMM layers analyze local
image patches at different positions. The topmost cGMM layer is global in
the sense that it has a single output position only, in which the whole image is
described. Each cGMM layer provides a ”fresh” probabilistic interpretation,
indicated by uniform coloring for each position.

and inference in SPNs is addressed by Einsum Networks [13]
where successive sum and product nodes are combined into a
GPU-friendly Einsum operation.

SPNs suffer from the structural constraints required for
representing valid, tractable distributions. These exclude over-
lapping convolutions and max-pooling. Convolutions can be
performed in special cases [3], [21], but general CNN-like
convolutions remain inaccessible.

SPNs have been successfully trained on high-dimensional
visual problems [14], [21], [14], [3] like the MNIST and
FashionMNIST benchmarks. Sampling and inference in SPNs
are mostly demonstrated for the ”Olivetti faces” benchmark
[3], [21], [15] which is high-dimensional but contains only a
few hundred samples. To the best of our knowledge, sampling
has not been demonstrated for MNIST and FashionMNIST.
In [13], sampling and inference is demonstrated for the
SVHN benchmark using a simple SPN and extensive data pre-
processing. Generated samples are of good quality but not yet
comparable to GANs or VAEs. An interesting overview of the
research in hierarchical generative mixture models is given in
[6].

C. Objective, Contribution and Novelty

The objectives of this article are to introduce a deep GMM
architecture which exploits the same principles that led to the
performance explosion of CNNs. Novel points are:

• fundamentally new approach to hierarchical mixture mod-
eling based on independent losses

• fundamentally new approach to sampling as a deep chain
of hierarchical priors

• use of arbitrary transformations like convolution and
pooling in probabilistic image modeling

• realistic sampling for complex visual tasks like SVHN

II. DATASETS

For the evaluation we use the following image datasets:

MNIST [9] consists of 60 000 28× 28 gray scale images
of handwritten digits (0-9). FashionMNIST [22] consists of
images of clothes in 10 categories and is structured like the
MNIST dataset. SVHN [11] contains color images of house
numbers (0-9, resolution 32× 32).

These datasets are not particularly challenging w.r.t. classifica-
tion, but their dimensionality of 784 (MNIST, FashionMNIST)
and 3072 (SVHN) is high, and the variability of SVHN, in
particular, is considerable.

III. METHODS: DCGMM

In order to introduce DCGMMs as a possible hierarchical
generalization of GMMs, we will first review facts about
vanilla GMMs and introduce the basic notation, which will
subsequently be generalized to a multi-layered structure.



A. Review of GMMs

GMMs aim to explain the observed data X = {xn} by
expressing their density as a weighted mixture of K Gaussian
component densities N (xn;µk,Σk)≡Nk(xn):

p(xn) =

K∑
k=1

πkNk(xn), (1)

where the normalized component weights πk modulate the
overall influence of each component.

GMMs assume that each observed data sample {xn} is
drawn from one of the K Gaussian component densities Nk.
The selection of this component density is assumed to depend
on an unobservable latent variable zn ∈ {1, . . . ,K} which
follows an unknown distribution. The complete-data likelihood
for a single data sample reads:

p(xn, zn) = πznNzn(xn) (2)

p(X, z) =
∏
n

p(xn, zn) (3)

For a single sample, Bayes’ theorem gives us the GMM
posteriors or responsibilities γ(xn)=p(zn=k|xn):

γk(xn) =
p(xn, zn=k)∑
j p(xn, zn=j)

=
πkNk(xn)∑
j πjNj(xn)

, (4)

which can be computed without the latent variables. Marginal-
izing the unobservable latent variables out of Eq. (2), we obtain
the incomplete-data log-likelihood L:

L = log p(X) = log
∏
n

p(xn) = log
∏
n

∑
k

p(xn, zn=k)

= log
∏
n

∑
k

πkNk(xn) =
∑
n

log
∑
k

πkNk(xn). (5)

The function L contains only observable quantities and is a
suitable loss function for optimization. At stationary points
of Eq. (5), the component weights represent the average
responsibilities: πk = Enγk(xn). For sampling, one therefore
draws a latent variable sample ẑ ∼M(π) from a multinomial
distribution parameterized by the π, and then draws a sample
t̂ ∼ Nẑ from the component density Nẑ .

B. DCGMM basics

The basic data format in a DCGMM instance (see Fig. 1)
are four-dimensional NHWC tensors. For conciseness, we will
omit the batch dimension (N) from all formulas. We will
denote the dimensions of the current layer L as H,W,C and
those of the preceding layer L−1 as H ′,W ′,C ′. Lower-case
indices are used similarly, and are sometimes grouped into
tuples ~m=[h,w,c]T or ~m′=[h′,w′,c′]T for brevity.

Contrary to DNNs, DCGMMs have two operational modes,
see Fig. 1: forward for density estimation, and backwards
for sampling. In forward mode, each layer with index L≥1
receives input from the preceding layer L−1, and generates
activitiesA(L)∈RH,W,C which serve as inputs to the subsequent
layer L+1. As per the usual convention, L=0 denotes the data
samples themselves. In backwards mode, each layer L receives

a control signal T (L)∈RH,W,C from layer L+1 and produces
another control signal T (L−1)∈RH’,W’,C’ for layer L−1. We
define four layer types, see also App. A: folding layers F (f,∆)
implementing half-convolutions, CNN-like max-pooling layers
P (f,∆) that include a backwards mode, convolutional GMM
layers G(K) and linear classification layers C(S).

In the following text, we will discuss how the different
DCGMM layer types implement the computation of loss
functions (where applicable), activities and control signals.

C. Convolutional Gaussian Mixture Layer

cGMM layers are realized by GMMs, slightly modified to a
convolutional formulation. As with any GMM (see Sec. III-A),
this layer type is defined by K weights π(L)

k , centroids µ(L)
k

and covariance matrices P (L)
k .

Forward mode Activities A(L) of the layer are computed as
a function of preceding layer activities A(L−1). Specifically,
activities are realized by GMM posteriors, see Sec. III-A.
Since the layer is convolutional, the posteriors are computed
from the channel content A(L−1)

hw,: at every position h,w in the
tensor of input activities A(L−1), see Fig. 2:

P
(L)
hw,k

(
A(L−1)) = p

(
A

(L−1)
hw,:

)
(6)

A
(L)
hw,k

(
P (L)

)
= γk

(
P

(L)
hw,:

)
(7)

Backwards mode In this mode, the cGMM layer generates a
control signal T (L−1) by sampling at every position h,w, see
Sec. III-A. Instead of the parameters ~π, sampling is governed
by an hierarchical prior: the up-stream control signal T (L). In
analogy to Sec. III-A, we can write: T (L−1)

hw,: ∼ N
Ẑ

(L−1)
hw

, with

Ẑ
(L−1)
hw ∼M

(
T

(L)
hw,:

)
. In case there is no control signal (layer

is topmost DCGMM layer), the Ẑ
(L−1)
hw are drawn from an

uniform distribution.

Loss function For efficient and numerically stable training,
we use an approximation to the GMM log-likelihood (see
Sec. III-A), which we term the max-component approximation,
see [4]. It is analogous to EM with hard assignments, see,
e.g., [20]. As stated in Sec. I-A, each cGMM layer has a
loss function that is computed and optimized independently
of other layers. For a single sample, it reads:

L(L) = Eh,w log maxkP
(L)
hw,k (8)

An essential point about cGMM layers is that the activi-
ties A(L) and control signals T (L−1) are computed using a
single set of centroids, weights and covariance matrices at
every position. Thus, these quantities are shared in the same
way CNN filters are shared across an image. In this way,
large images can be described while requiring relatively few
trainable parameters. If memory consumption is not an issue,
independent parameters can be used as well.



D. Max-Pooling Layer

Pooling is governed by a kernel size f and a stride
∆, see Fig. 2, where we usually assume non-overlapping
pooling: f=∆. We assign to every position ~m a receptive
field ν(~m)={~m′:h′∈[h∆,h∆+f [, w′∈[w∆,w∆+f [, c′=c}. In
forward mode, this layer type behaves exactly like a CNN
max-pooling layer, see Fig. 2: A(L)

~m = max~m′∈ν(~m)A
(L−1)
~m′ . In

backwards mode, the pooling layer aims at reconstructing a
tensor that would have resulted in the provided control signal.
We choose to perform upsampling here: T (L−1)

~m′∈ν(~m)=T
(L)
~m . The

non-uniqueness of the this mapping must be counteracted by
sharpening, see Sec. III-I.

E. Folding Layer

Forward mode Folding layers perform a half-convolution on
preceding layer activities governed by a kernel size f and
a stride ∆, see also Fig. 2. No computation is performed,
just a remapping of activities, from position ~m′(~m) in layer
L−1 to ~m in layer L, see App. A for details on this relation:
A

(L)
~m =A

(L−1)
~m′(~m).

Backwards mode Inverting the one-to-many mapping
~m′(~m) can be done in J different ways ~mj(~m

′). To ob-
tain a control signal, we average over all possibilities:
T

(L−1)
~m′ = 1

J

∑J
j T

(L)
~mj(~m′)

.

F. Classification Layer

This layer implements linear classification for S classes.
Trainable parameters are the weight matrix W and the bias
vector b. In forward mode, it generates per-class probabilities
as P

(L)
s (x) = Ss

(
flatten

(
A(L−1))W+b

)
, where Ss repre-

sents component s of the softmax function. In backwards
mode, it performs an approximate inversion of this operation:
T (L−1) = reshapeH′W ′C′W

T
(

log(T (L))−b+c
)
. The control

signal T (L) must contain a one-hot encoding of the class
that should be generated. The constant c that arises due to
the ambiguity in inversing the softmax must be chosen such
that the control signal is positive, as it must be if it is to
represent GMM posteriors. Classification layers optimize an
independent cross-entropy loss function.

G. End-to-end DCGMM training

A defining characteristic of DCGMMs is the fact that each
trainable layer optimizes its own loss function. We propose a
training scheme where all layers are optimized in parallel. To
avoid convergence problems, we start adapting the trainable
layer L at time δ(L), which increases with the position in
the hierarchy. Thus, lower layers achieve some convergence
before higher layers start their adaptation, which works well
in practice, for small delays δ(L).

Training cGMM layers is performed by SGD from random
initial conditions as detailed in [4]. As explained in [4], SGD
parameters are very robust and are kept constant throughout
all experiments in this article.

  2 / 4

G
M

M

D

G
M

M ?

G
M

M

A

CB F
ol

di
ng

D

target layer
gradients

… B

A C
activitiesF

ol
di

ng

Fig. 3. The gradient-based sharpening procedure, see text for details. A©
Control signal sampled from folding layer B© forward propagation of control
signal to chosen target GMM layer C© back-propagated gradients applied for
modifying control signal D© final control signal passed to layer L−1.

H. Density estimation and outlier detection

These are the principal functions of the forward mode,
see Fig. 1. In contrast to, e.g., deep MFA or SPN instances,
see Sec. I-B, where sample probability is expressed by the
root node, any cGMM layer L expresses sample probability
by its log-likelihood L(L). Lower layers usually model small
image patches, whereas higher ones capture the global image
structure. We evaluate in Sec. V-B which cGMM layers are
best suited for outlier detection.

I. Sampling and sharpening

Sampling is performed in backwards mode, see Fig. 1.
Triggered by a top-level control signal, each layer L operates
in backwards mode, generating control signals T (L−1) until
the sampling result is read out for L=0. Just as density
estimation, sampling is efficiently conducted in mini-batches.
As detailed in [1], control signals can be thresholded and
renormalized to contain only the S highest values, which
controls the variability of sampling.

Max-pooling and folding layers perform forward transfor-
mations that are not invertible. In backwards mode, this means
that they can generate control signals that differ from the
true data statistics. To rectify this, we first observe that up-
stream cGMM layers ”know” the statistics of their inputs
through training. Additionally, folding layer outputs contain
redundancies since their receptive fields usually overlap, which
can be exploited.

We therefore propose a statistics-correcting sharpening pro-
cedure applied at each folding layer L, see Fig. 3. First, we
operate the folding layer in backwards mode to obtain the ini-
tial control signal T (L−1)(i=0). We then select a target layer
L′>L (usually the next-highest cGMM layer) and perform
gradient ascent on T (L−1)(i) for I iterations with step size
εsh. Goal is to maximize the target layer loss L(L′)(i) obtained
by forward-propagating T (L−1)(i). In this fashion, we obtain
a statistics-corrected control signal T (L−1)≡T (L−1)(i=I).

J. Tractable Inference: in-painting

In in-painting, we present a partially occluded image and
ask the DCGMM instance to complete the missing part. To
achieve this, we perform a forward pass up to the topmost
cGMM layer X , and then a backwards pass with control signal
T (X)=A(X). The sampling result for the unknown image part
is used to complete the input sample.



IV. METHODS: MODELS AND PARAMETERS

DCGMM We define 7 DCGMM instances which are sum-
marized in App. A. They differ in depth and by their use
of stepped folding –vs– max-pooling. The principal hyper-
parameter is the number of components in cGMM layers,
which are chosen such that a batch size of 100 remains
feasible. In some experiments, we disable parameter sharing
between input positions for specific layers. Learning rates and
other SGD-related parameters are kept as described in [1], [4].
Since these parameters do not appear to be task-dependent, we
do not vary them in the presented experiments. The training
delay (see Sec. III-G) for cGMM layer L is set to δ(L)=0.1L,
where L∈{1, 2, . . . } indicates the number of cGMM layers
below the current one.

RAT-SPN We implemented RAT-SPNs as described in the
original publication [14] using the implementation proposed in
[14]. As in [13], for every experiment we vary the following
parameters: number of distributions per leaf region/number
of sums per sum node I, S ∈ {5, 20, 40}, split depth D ∈
{1, 5, 9} and number of repetitions R ∈ {10, 25, 40}. To speed
up training, we employ binomial leaf distributions. Training is
conducted for 25 epochs. Variances are constrained as in [14].

Deep generalized convolutional SPNs (DGCSPNs) We im-
plemented the convolutional architecture for generative ex-
periments from the original publication [21] using libspn-
keras. The number of sums per sum layer is varied as
S ∈ {16, 32, 64}. Training is conducted for 15 epochs.
Accumulators are initialized by a Dirichlet distribution with
α = 0.1, the number of normal leaf distributions is set to 4,
and centroids are initialized from training data as described in
[21], where it is also suggested that variances be kept constant
at 1.0 for all normal leaves.

Poon-Domingos SPN architecture As an SPN baseline, we
use PD-SPN, a very simple instance of the Poon-Domingos
architecture as described in [14] using the implementation
proposed in [13]. As in [13], we use ∆ = {8} for SVHN and
∆ = {7} for MNIST, along the horizontal dimension only.
We vary the number of distributions per leaf region/number
of sums per sum node: I, S ∈ {5, 20, 40}.

V. EXPERIMENTS

Compared models are DCGMM, RAT-SPN, PD-SPN and
DGCSPN, using parameter (ranges) as given in Sec. IV. All
experiments were performed on a cluster of 50 off-the-shelf
PCs using nVidia GeForce RTX 2060 GPUs, and our own
TensorFlow-based implementation of DCGMMs (see App. A
for details). Generally, we repeat each experiment 5 times
with different initializations. When grid-searching for feasible
parameters, we use the averaged performance measures to
identify the best settings. Where feasible, we report mean and
standard deviations for experiments.

Fig. 4. Test losses for all 4 cGMM layers in the deep DCGMM-F instance for
MNIST(left) and FashionMNIST(right). Please note that individual cGMM
layers’ losses have different ranges, and that they are maximized (not
minimized) by DCGMM training!

ID MNIST FashionMNIST ID MNIST FashionMNIST
A 95.4±0.2 62.2±0.3 E 92.8±0.4 74.9±0.2
B 93.3±0.5 72.2±0.2 F 84.1±0.4 68.1±0.1
C 94.2±0.2 74.3±0.1 G 77.4±0.3 62.7±0.1
D 92.5±0.3 68.1±0.1 - - -

TABLE I
OUTLIER DETECTION BY THE TOP LAYERS OF VARIOUS DCGMM
INSTANCES, SEE APP. A, MEASURED BY THE MEAN AUC (IN %).

A. DCGMM training dynamics

We train the DCGMM-F instance, see App. A, on the
full MNIST and FashionMNIST datasets and record the test
losses for each cGMM layer. cGMM Parameters are clamped
for a certain percentage of training time in different cGMM
layers, see Sec. IV. As we can observe in Fig. 4, cGMM
layer converge sequentially in the order of the hierarchy.
Initially, losses in layers L4, L6 and L8 decrease due to
parameter adaptation in lower layers, before increasing once
the latter have become stationary. The fact that final losses are
sometimes lower than initial ones underscores that they are
not global measures for the whole DCGMM. The individual
losses, as depicted in Fig. 4, always converge to the values
obtained by a layer-by-layer training scheme.

B. DCGMM outlier detection experiments

The goal of this experiment is to assess the outlier detection
capabilities of DCGMMs. In particular, we investigate which
DCGMM architectures are most suited for this purpose, and
which cGMM layer the outlier detection should be based
on. We construct outlier detection problems from classes 1–9
(inliers) –vs– 0 (outliers) of the MNIST and FashionMNIST
datasets. Test losses on inlier and outlier classes are recorded
for all layers in a DCGMM instance after training on the
inliers. Outlier detection is evaluated separately based on each
cGMM layer’s loss. By varying the threshold for outlier de-
tection (see Sec. III-H), we obtain ROC-like outlier detection
plots, see App. A. The area-under-the-curve (AUC) is used
as a quality measure. Results are summarized in Tab. II. We
find that the highest cGMM layers are most suited for outlier
detection, so we report performance only for these layers. For
FashionMNIST, the depth of a DCGMM instance increases its
outlier detection capacity. For MNIST, the ”flat” DCGMM-
A performs best, but MNIST might really be to simple a



ID MNIST AUC in % FMNIST AUC in %
DCGMM-E 92.8± 0.4 74.9 ± 0.2
RAT-SPN 91.8 ± 0.7 39.2 ± 0.4
DGCSPN 90.6 ± 0.7 57.1 ± 0.9
PD-SPN 91.2± 0.6 48.5 ± 1.7

TABLE II
OUTLIER DETECTION FOR DCGMM-E AND SPN MODELS FOR MNIST

AND FASHIONMNIST, QUANTIFIED BY THE AUC MEASURE.

benchmark, and the deep instances have similar performance.
Results with different outlier classes are comparable.

C. Outlier detection: model comparison

Here, we compare the outlier detection capacity of
DCGMM-E, the best DCGMM instance from Sec. V-B, to
various RAT-SPN, PD-SPN and DGCSPN instances, using
the same procedures. To find the best parameters for each
SPN type, a grid search is conducted over parameters ranges
as stated in Sec. IV, repeating each experiment 5 times
with identical parameters. Best outlier detection capacities,
measured as in Sec. V-B, are reported in Tab. II. We observe
a clear edge for DCGMM-E, in particular for FashionMNIST.

D. DCGMM sampling and sharpening

To demonstrate how the sharpening procedure of Sec. III-I
improves sampling through non-invertible operations, we train
DCGMM instances with max-pooling (C and D, see App. A),
to sample from MNIST and FashionMNIST. Then, we com-
pare sampling results with and without sharpening, see Fig. 5.
When sharpening is used, target layers are always the next-
highest cGMM layers, and gradient ascent is performed for
I = 300 iterations using a step size εsh=1.0. Figure 5 shows
that strong blurring effects occur without sharpening, due to
ambiguities in inverting max-pooling layers. In contrast, sharp-
ening removes these ambiguities while maintaining diverse
samples. This works best for DCGMM-B (one max-pooling
layer), whereas more max-pooling steps seem to destroy
too much information, leading to frayed-looking samples.
We conclude that ”softer” strategies than max-pooling may
be required for sampling with really deep DCGMMs. The
corresponding figures for FashionMNIST are given in App. A
and corroborate this view.

E. Sampling: visual model comparison

In this experiment, we perform a visual comparison of
samples generated from DCGMM and the SPN models de-
scribed in Sec. IV. SPN models are used in the configurations
given in the literature (see Sec. IV) and the best parameters
found by grid-search in Sec. V-C. Since the configurations in
the literature are tailored to certain datasets, we restrict this
investigation to the MNIST and FashionMNIST datasets. For
DCGMM, we selected DCGMM-F, see App. A, an instance
without max-pooling, since this generally leads to more real-
istic samples, see Sec. V-D.

Typical samples generated by these instances are shown
in Fig. 6. We observe that the DCGMM samples generally
look smoother and more realistic than SPN-generated ones.

ID parameters MNIST acc. FMNIST acc.
DCGMM-A 38.416 98.2± 0.1 80.3± 2.6
DCGMM-B 293.657 98.7± 0.05 83.6± 1.7
DCGMM-E 40.850 99.1± 0.2 94.5 ± 1.7
DCGMM-F 50.850 99.9± 0.07 89.0 ± 2.5
RAT-SPN 1.187.840 99.2± 0.1 85.4 ± 1.9
DGCSPN 7.560.576 98.0± 0.1 80.4± 6.0
PD-SPN 515.683 97.2± 0.2 81.2± 2.4

TABLE III
SAMPLE GENERATION CAPACITY FOR DCGMM AND SPN MODELS AS

MEASURED BY A CNN CLASSIFIER ON GENERATED SAMPLES, SEE TEXT
FOR DETAILS. WE OBSERVE THAT ALL MODELS PERFORM VERY

SIMILARLY ON MNIST, WHEREAS DCGMM-E OUTPERFORMS SPNS FOR
FASHIONMNIST. AVERAGES AND STANDARD DEVIATIONS ARE TAKEN

OVER 5 INDEPENDENT TRAINING RUNS OF THE CNN CLASSIFIER.

Instances from other DCGMM instances, and the correspond-
ing FashionMNIST samples, are shown in App. A.

F. Sampling: quantitative model comparison

Since visual appearance can be deceptive, this experiment
aims to provide a quantitative comparison of the sampling
capacity of DCGMMs and SPNs, relying on MNIST and Fash-
ionMNIST. We first train a CNN classifier on both datasets to
deliver state-of-the-art accuracy for CNNs (details in App. A).
DCGMMs and SPNs are separately trained on each class in
both datasets, and asked to generate 1000 samples from all
10 classes. The quality measure is the CNN’s classification
accuracy on the generated samples. Results are shown in
Tab. III. We observe that DCGMM sampling seems to produce
samples that more accurately match the real data than SPN-
based models.

G. Sampling for complex visual problems

Here, we demonstrate that DCGMMs can be trained on
complex and high-dimensional visual problems like SVHN,
and generate high-quality samples when compared to SPNs.
DCGMM instances A and B (the latter with the higher cGMM
layer in ”independent” mode, see Sec. III-C) are separately
trained on each SVHN class, and then used for sampling. We
observe that the deeper DCGMM-B instance generates more
diverse images, and that DCGMM-B samples even compare
favorably to VAE samples (details in App. A).

H. Inference: in-painting

We perform in-painting (see Sec. III-J) on MNIST samples
from which the right half was erased. In-painting has the
same complexity as sampling, i.e., linear in the number of
cGMM layers. Results for the shallow DCGMM-A and the
deep DCGMM-F instance are shown in Fig. 8. We observe that
completion fits the original image better with a deep DCGMM
instance. This is natural since DCGMM-A is essential a vanilla
GMM and can just replicate its limited set of components, with
added Gaussian noise. A deep DCGMM instance, in contrast,
exhibits much greater variability since each cGMM layer adds
(guided) randomness in the choice of the component to sample
from.



Fig. 5. Samples from DCGMMs with pooling. Left to right: DCGMM-C (no sharpening), DCGMM-C (sharpening), DCGMM-D (no sharpening), DCGMM-D
(sharpening). The most beneficial effect of sharpening is observed for the shallow DCGMM-C instance.

Fig. 6. Visual comparison of sampling results. From left to right: DCGMM-F, RAT-SPN, PD-SPN, DGCSPN.

Fig. 7. SVHN sampling. Left to right: a) SVHN samples b) VAE c) DCGMM-A d) DCGMM-B.

Fig. 8. Examples of in-painting the erased right half of an image. Left:
DCGMM-A, right: DCGMM-F.

model MNIST acc. in % FMNIST acc. in %
DCGMM-B 98.0 ± 0.1 89.6 ± 0.2
RAT-SPN 98.19 89.52
DGCSPN 98.66 90.74

TABLE IV
CLASSIFICATION ACCURACIES IN % OBTAINED FOR MNIST AND

FASHIONMNIST. FOR RAT-SPNS AND DGCSPNS, MEAN ACCURACY
OVER 5 RUNS IS TAKEN FROM [21].

I. Generative-discriminative learning

This experiment assesses DCGMM classification accuracy
on MNIST and FashionMNIST by adding a top-level classifi-

cation layer to the shallow DCGMM-B instance (see Tab. V).
To boost classification performance, we use activities of the 2
highest cGMM layers as input to the classifier layer. We find
that DCGMM-B classification accuracy is similar but slightly
inferior to DGCSPN and RAT-SPN from the literature, see
Tab. IV, and that deeper DCGMM instances consistently gave
worse results.

VI. PRINCIPAL CONCLUSIONS FROM EXPERIMENTS

Sample probability is best expressed by the topmost cGMM
layer loss, see Sec. V-B. This is an important result, since
DCGMMs optimize several loss functions, each of which
expresses a different local model of the data.

Max-pooling produces excellent results for outlier detection,
see Sec. V-B, and is feasible for sampling in shallower
DCGMMs due to sharpening, see Sec. V-D). However, in deep
DCGMM instances, the information loss seems too severe for
good sampling performance. Here, stepped, overlapping half-
convolutions are found to be a better choice.

Parameter sharing is very effective for reducing the number
of model parameters especially in lower layers, and does not
seem to impair sampling performance (see Sec. V-G). This



is probably because the local ”visual alphabet” (see App. A)
is nearly position-invariant in lower layers and thus can be
shared between positions with little loss.

Classification Since DCGMMs optimize independent loss
functions, discriminative training of a classification layer does
not influence unsupervised training in lower layers, because
no back-propagation is performed. Thus, the DCGMM is still
be able to generate realistic samples, at the price of similar
but slightly inferior classification accuracy, see Sec. V-I. This
is in contrast to discriminative SPN training, see [21], [14].
Here, RAT-SPNs and DGC-SPNs perform classification by
optimizing a global cross-entropy loss, but can no longer
generate realistic samples.

Realistic sampling The DCGMM samples presented in
Secs. V-D and V-G have a clear edge w.r.t. samples produced
by SPNs. This shows that linking independent probabilistic
descriptions (the cGMM layers) by a deep chain of hierar-
chical priors is a feasible way to describe complex (image)
distributions. SPN training on complex problems like SVHN is
described in [13], where the PD-SPN architecture (see Sec. IV)
is trained on preprocessed SVHN data. Due to non-overlapping
scopes in the PD architecture, all samples exhibit ”stripe”
artifacts which are absent from DCGMM samples, presumably
because their scopes can overlap.

REFERENCES

[1] anonymous citation. 2, 4, 5
[2] M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein generative

adversarial networks. In International conference on machine learning,
pages 214–223. PMLR, 2017. 2

[3] C. J. Butz, J. S. Oliveira, A. E. dos Santos, and A. L. Teixeira.
Deep convolutional sum-product networks. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 33, pages 3248–3255,
2019. 1, 2

[4] A. Gepperth and B. Pfülb. Gradient-based training of gaussian mixture
models for high-dimensional streaming data. Neural Processing Letters,
2021. 3, 4, 5

[5] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio. Generative adversarial nets.
Advances in Neural Information Processing Systems, 3(January):2672–
2680, 2014. 2

[6] P. Jaini, P. Poupart, and Y. Yu. Deep homogeneous mixture models:
Representation, separation, and approximation. In NeurIPS, pages 7136–
7145, 2018. 2

[7] D. P. Kingma and P. Dhariwal. Glow: generative flow with invertible 1×
1 convolutions. In Proceedings of the 32nd International Conference on
Neural Information Processing Systems, pages 10236–10245, 2018. 2

[8] D. P. Kingma and M. Welling. Auto-encoding variational bayes, 2014.
2

[9] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–
2323, 1998. 2

[10] M. Mirza and S. Osindero. Conditional Generative Adversarial Nets.
pages 1–7, 2014. 2

[11] Y. Netzer and T. Wang. Reading digits in natural images with unsuper-
vised feature learning, 2011. 2

[12] A. v. d. Oord, N. Kalchbrenner, O. Vinyals, L. Espeholt, A. Graves, and
K. Kavukcuoglu. Conditional image generation with pixelcnn decoders.
arXiv preprint arXiv:1606.05328, 2016. 2

[13] R. Peharz, S. Lang, A. Vergari, K. Stelzner, A. Molina, M. Trapp,
G. Van den Broeck, K. Kersting, and Z. Ghahramani. Einsum networks:
Fast and scalable learning of tractable probabilistic circuits. In Inter-
national Conference on Machine Learning, pages 7563–7574. PMLR,
2020. 1, 2, 5, 8

[14] R. Peharz, A. Vergari, K. Stelzner, A. Molina, X. Shao, M. Trapp,
K. Kersting, and Z. Ghahramani. Random sum-product networks:
A simple and effective approach to probabilistic deep learning. In
Uncertainty in Artificial Intelligence, pages 334–344. PMLR, 2020. 1,
2, 5, 8

[15] H. Poon and P. Domingos. Sum-product networks: A new deep
architecture. In 2011 IEEE International Conference on Computer Vision
Workshops (ICCV Workshops), pages 689–690. IEEE, 2011. 1, 2

[16] E. Richardson and Y. Weiss. On GANs and GMMs. Advances in Neural
Information Processing Systems, 2018-December(NeurIPS):5847–5858,
2018. 2

[17] Y. Tang, R. Salakhutdinov, and G. Hinton. Deep mixtures of factor
analysers. Proceedings of the 29th International Conference on Machine
Learning, ICML 2012, 1:505–512, 2012. 2

[18] M. S. Tanveer, M. U. K. Khan, and C.-M. Kyung. Fine-tuning darts for
image classification. In 2020 25th International Conference on Pattern
Recognition (ICPR), pages 4789–4796. IEEE, 2021. 9

[19] A. Van Den Oord and B. Schrauwen. Factoring variations in natural
images with deep Gaussian mixture models. Advances in Neural
Information Processing Systems, 4(January):3518–3526, 2014. 2

[20] C. Viroli and G. J. McLachlan. Deep Gaussian mixture models. Statistics
and Computing, 29(1):43–51, 2019. 2, 3

[21] J. Wolfshaar and A. Pronobis. Deep generalized convolutional sum-
product networks. In International Conference on Probabilistic Graph-
ical Models, pages 533–544. PMLR, 2020. 1, 2, 5, 7, 8

[22] H. Xiao, K. Rasul, and R. Vollgraf. Fashion-MNIST: a Novel Image
Dataset for Benchmarking Machine Learning Algorithms. pages 1–6,
2017. 2

APPENDIX

Precise layer configurations of the various DCGMM in-
stances used in this article are given in Tab. V. As a rule,
cGMM components were chosen as high as possible while
respecting memory constraints during training. All cGMM
layers are assumed to use parameter sharing, otherwise the
number of trainable parameters will be higher. We observe
that the number of trainable parameters actually decreases as
more cGMM layers are added. As with CNNs, this is because
the number of parameters mainly scales with the filter size of
folding layers, which can be kept small in deep architectures.
DCGMM layers transform inputs of dimension H ′,W ′,C ′

ID Configuration parameters
A F(28,1)-(49) 38416
B F(8,2)-G(49)-F(11,1)-G(49) 293657
C F(8,1)-G(49)-P(2,2)-G(49) 243236
D F(3,1)-G(25)-P(2,2)-F(4,1)-G(25)-

P(2,2)-F(5,5)-G(49) 40850
E F(3,1)-G(25)-F(4,2)-G(25)-

F(12,1)-G(49) 186625
F F(3,1)-G(25)-F(4,2)-G(25)-F(4,2)-

G(25)-F(5,1)-G(49) 50850
G F(3,1)-G(25)-P(2,2)-F(3,1)-

G(25)-P(2,2)-F(3,1)- G(25)-P(2,2)-
F(2,1)-G(49) 16375

TABLE V
OVERVIEW OF DCGMM CONFIGURATIONS USED IN THE EXPERIMENTS.
LAYER TYPES ARE F (HALF-CONVOLUTION LAYER), G (CGMM LAYER)

AND P(MAX-POOLING LAYER). OPTIONALLY, A LINEAR CLASSIFIER
LAYER CAN BE ADDED AT THE TOP OF EACH INSTANCE FOR CONDITIONAL

SAMPLING.

into activities of dimension H,W,C. Since each layer in
forward mode implements a deterministic transformation, the
dimensions of activities depend only on the dimensions of the
inputs as listed in Tab. VI.



Layer type Notation H W C

Folding F (f,∆) 1+H′−f
∆

1+W ′−f
∆

f2C′

Max-Pooling P (f,∆) 1+H′−f
∆

1+W ′−f
∆

C′

Classification C(S) 1 1 S
cGMM G(K) H′ W ′ K

TABLE VI
OVERVIEW OF DCGMM LAYER TYPES AND THEIR NOTATION. THE THREE
RIGHTMOST COLUMNS INDICATE THE SHAPE OF ACTIVITIES IN FORWARD

MODE IF THE LAYER RECEIVES AN INPUT OF DIMENSIONS H′,W ′,C′ .
FOLDING AND MAX-POOLING LAYERS ARE PARAMETERIZED BY KERNEL

SIZE f AND THE STRIDE ∆, GMM LAYERS BY THE NUMBER OF
COMPONENTS K AND CLASSIFICATION LAYERS BY THE NUMBER OF

CLASSES S .

The CNN classifier used in Sec. V-F has a layer structure as
given in Tab. VII. It is implemented in TensorFlow2/Keras and
trained for 15 Epochs on either MNIST or FashionMNIST,
using an Adam optimizer, a learning rate of 0.01 and a
batch size of 100. For MNIST, this is sufficient for state-of-
the-art performance (> 99%), whereas for FashionMNIST, a
performance of roughly 91% can be reached. While this is
inferior to the performance obtained by more refined models
(e.g., [18]), we accept it here for simplicity, and also because
the CNN classifier is just a tool to detect differences in the
distributions of real and generated samples.

Type Kernel Prob. channels/neurons
Dropout 0.1

Conv/ReLU 3 64
Conv/ReLU 3 64

Pooling 2
Conv/ReLU 3 64

Pooling 2
Conv/ReLU 3 64

Pooling 2
Dense/ReLU 350

Dropout 0.1
Dense/ReLU 350
Dense/ReLU 350

Dense/Softmax 10
TABLE VII

HYPER-PARAMETERS OF THE CNN USED FOR ASSESSING SAMPLING
PERFORMANCE.

Sharpening behaves similarly for the FashionMNIST dataset
as it was found for MNIST in Sec. V-D. Namely, the shal-
lower DCGMM-B instance profits strongly from a sharpening
through a single max-pooling layer, but we observe deteriora-
tion of sampling performance when more max-pooling layers
are involved, as in instance DCGMM-D. Figure 9 shows this
quite nicely.

Outlier detection is quantified using a ROC-like curve,
plotting kept inliers against rejected outliers while varying
the separation threshold that is applied to the log-likelihoods.
Typical examples of such curves are shown in Fig. 10.
Table VIII gives details about the convolutional VAE used to
generate SVHN samples. It was trained for 100 epochs on all
SVHN classes using the Adam optimizer and a learning rate
of 0.0001.

This appendix gives MNIST sampling results in a more
complete fashion, that is, including more DCGMM instances,

Type Kernel Stride channels/size
Encoder

Conv/ReLU 3 1 64
Conv/ReLU 3 2 128
Conv/ReLU 3 2 256
Conv/ReLU 2 2 512

Flatten - - 4096
Dense 2*64

Decoder
Dense/ReLU 4*4*128

Reshape 4,4,128
Conv2DT /ReLU 4 1 1024
Conv2DT /ReLU 5 1 512
Conv2DT /ReLU 4 2 256
Conv2DT /ReLU 5 1 128
Conv2DT /ReLU 3 1 128
Conv2DT /ReLU 3 1 3

TABLE VIII
HYPER-PARAMETERS OF THE VAE USED FOR SVHN SAMPLING.

in Fig. 12. Figure 13 gives samples from the same DCGMM
instances for FashionMNIST, whereas Fig. 11 shows Fashion-
MNIST samples generated by SPNs.

The lower cGMM layers of a cGMM instance usually
model small image patches extracted by a preceding folding
layer. With parameter sharing enabled, the cGMM therefore
describes all positions within an image using a single set
of parameters. This makes the most sense for low-hierarchy
layers, since local image content tends to be similar across
image at small patch sizes. The cGMM prototypes there form
a kind of ”visual alphabet”, a set of centroids that, together,
best describe local image content. We exemplarily show this
for MNIST and FashionMNIST by visualizing the centroids
of the lowest cGMM layer in instance DCGMM-B, which
models 8x8 image patches. We observe in Fig. 14 that the basic
building blocks of both datasets are faithfully represented.
For implementing RAT-SPN and PD-SPN, we made use of the
public code provided under https://github.com/cambridge-mlg/
EinsumNetworks which relies mainly on PyTorch. DGCSPNs
are implemented using libspn-keras which is TensorFlow2-
based and can be obtained from https://github.com/pronobis/
libspn-keras. VAEs and CNNs are self-implemented in Tensor-
Flow2/Keras. TensorFlow2-Code for DCGMM can be found
under https://github.com/anon-scientist/ijcnn22-dcgmm. Code
for selected experiment of this article is available under
https://github.com/anon-scientist/ijcnn22-experiments.

The relation between preceding and current layer activities
is governed by a one-to-many mapping. This means that a
single activity in layer L−1 can be mapped to several activities
in layer L by the relation ~m′(~m). One-to-many situations
always occur when filters are set to overlap. The precise form
of this relation reads:

~m′(~m) =

 h∆ + c//(fC ′)
w∆ + (c//C ′)%f

c%C ′

 , (9)

(10)

where // and % represent integer and modulo division.

https://github.com/cambridge-mlg/EinsumNetworks
https://github.com/cambridge-mlg/EinsumNetworks
https://github.com/pronobis/libspn-keras
https://github.com/pronobis/libspn-keras
https://github.com/anon-scientist/ijcnn22-dcgmm
https://github.com/anon-scientist/ijcnn22-experiments


Fig. 9. Sharpening for DCGMMs with pooling on FashionMNIST. Left to right: DCGMM-C (no sharpening), DCGMM-C (sharpening), DCGMM-D (no
sharpening), DCGMM-D (sharpening). The most beneficial effect of sharpening is observed for the shallow DCGMM-C instance.

Fig. 10. Examples of ROC-like curves for outlier detection. Left: DCGMM-A (MNIST), middle: DCGMM-A (FashionMNIST), right: DCGMM-
E(FashionMNIST). The area under these curves is taken to be a measure of outlier detection capacity.

Fig. 11. SPN samples for FashionMNIST. From left to right: RAT-SPN, PD-SPN, DGCSPN.



Fig. 12. Samples from several DCGMM instances for MNIST. Upper
row: DCGMM-A(left), DCGMM-B(right). Lower row: DCGMM-E(left),
DCGMM-F(right).

Fig. 13. Samples from several DCGMM instances for FashionMNIST. Upper
row: DCGMM-A (left), DCGMM-B (right). Lower row: DCGMM-E (left),
DCGMM-F (right).

Fig. 14. Visualization of centroids in the lowest cGMM layer of DCGMM-B.
Left: training on MNIST, right: training on FashionMNIST.


	I Introduction
	I-A DCGMM: Model overview and salient points
	I-B Related Work
	I-C Objective, Contribution and Novelty

	II Datasets
	III Methods: DCGMM
	III-A Review of GMMs
	III-B DCGMM basics
	III-C Convolutional Gaussian Mixture Layer
	III-D Max-Pooling Layer
	III-E Folding Layer
	III-F Classification Layer
	III-G End-to-end DCGMM training
	III-H Density estimation and outlier detection
	III-I Sampling and sharpening
	III-J Tractable Inference: in-painting

	IV Methods: models and parameters
	V Experiments
	V-A DCGMM training dynamics
	V-B DCGMM outlier detection experiments
	V-C Outlier detection: model comparison
	V-D DCGMM sampling and sharpening
	V-E Sampling: visual model comparison
	V-F Sampling: quantitative model comparison
	V-G Sampling for complex visual problems
	V-H Inference: in-painting
	V-I Generative-discriminative learning

	VI Principal Conclusions from Experiments
	References
	Appendix

