
MAD: Self-Supervised Masked Anomaly Detection
Task for Multivariate Time Series

Yiwei Fu
GE Research

Niskayuna, NY, USA
yiwei.fu@ge.com

Feng Xue
GE Research

Niskayuna, NY, USA
xue@ge.com

Abstract—In this paper, we introduce Masked Anomaly
Detection (MAD), a general self-supervised learning task for
multivariate time series anomaly detection. With the increasing
availability of sensor data from industrial systems, being able
to detecting anomalies from streams of multivariate time series
data is of significant importance. Given the scarcity of anomalies
in real-world applications, the majority of literature has been
focusing on modeling normality. The learned normal representa-
tions can empower anomaly detection as the model has learned
to capture certain key underlying data regularities. A typical
formulation is to learn a predictive model, i.e., use a window of
time series data to predict future data values. In this paper, we
propose an alternative self-supervised learning task. By randomly
masking a portion of the inputs and training a model to estimate
them using the remaining ones, MAD is an improvement over
the traditional left-to-right next step prediction (NSP) task. Our
experimental results demonstrate that MAD can achieve better
anomaly detection rates over traditional NSP approaches when
using exactly the same neural network (NN) base models, and
can be modified to run as fast as NSP models during test time on
the same hardware, thus making it an ideal upgrade for many
existing NSP-based NN anomaly detection models.

Index Terms—time series, anomaly detection, masked models,
self-supervised learning, neural networks

I. INTRODUCTION

Anomaly detection has been widely studied and is of
significant importance in many application areas such as fraud
detection, cyber security, and complex system health monitor-
ing [1]. In recent years, deep learning has seen increasing
adoptions in anomaly detection [2]. Of particular interest
to this paper is anomaly detection on industrial multivariate
time series data. With the increasing number of sensors as
well as cost-effective data transmission and storage solutions,
industrial systems (such as power plants, wind turbines, en-
gines, etc.) generate large amounts of time series data during
their operations. It is important to monitor these systems for
spotting abnormal behaviors, which could lead to significant
reliability consequences.

Anomalies, also referred to as outliers, are observations
which deviate so much from the majority of all the other
ones. In the context of industrial time series data, systems are
usually being operated under their designed normal operating
conditions (NOCs), and these system measurements partially
capture of the dynamic states governed by first principles and
underlying control logic. The core idea of developing anomaly

detection is to learn the spatial (across multiple system mea-
surements and commands) and temporal relationships under
NOC. In an abnormal situation, such relationships will not
adhere to the learned representation, resulting in deviations
from the normal operating patterns. The higher a deviation is,
the more likely there is an anomaly.

In the process control and model-based fault detection com-
munity, a number of data driven approaches have been used for
anomaly detection of industrial time series data, for example,
Principal Component Analysis (PCA), Dynamic PCA [3],
subspace aided approach [4]. These traditional approaches take
into account some multivariate linear relationships, and to
some extent temporal dependencies (in the cases of Dynamic
PCA and subspace aided approach). Another commonly-used
approach is one-class SVM such as the one presented in [5].
In recent years, however, deep learning has taken the center
stage for multivariate anomaly detection [6]–[11].

One of the most common deep learning tasks for modeling
normal time series data is next step prediction (NSP), in
which past observations within a temporal window are used to
predict the future. A Recurrent Neural Network (RNN) such
as an LSTM [12] is usually used for such tasks, although
recent work [13], [14] demonstrated that a causal convolutional
network might be a good alternative to RNNs in term of
effectiveness and training efficiency. NSP models have the
basic assumption that normal instances are temporally more
predictable than anomalies [15]. Based on the same assump-
tion and partially inspired by BERT [16], it should also be
true that masked instances anywhere in the temporal window,
as opposed to only the last steps in the NSP task, are more
predictable for normal data than abnormal ones.

In this paper, we formally propose MAD (Masked Anomaly
Detection), a self-supervised anomaly detection task for time
series data representation learning, where models are trained to
estimate masked values anywhere in a window of time series
data. This task will enable learning from bidirectional contexts
(when the base model allows, such as Transformer [17]). In
contrast, NSP models is limited to left-to-right unidirectional
context. Furthermore, even when the base model is inherently
not bidirectional (such as LSTM), the MAD task is still valid
as a task to reconstruct the masked values from previous
inputs. It extends the NSP task in that a NSP task can be
regarded as a MAD model with masking only the last steps in

ar
X

iv
:2

20
5.

02
10

0v
1

 [
cs

.L
G

]
 4

 M
ay

 2
02

2

a sequence. MAD is also very flexible: it allows for the use of
any neural network base models that can generate a sequence,
and during test time it can run slower but more accurate (by
masking all steps sequentially) or as fast and accurate as NSP
models (by masking only the last step).

The contributions of this paper are as follows:
• We proposed a self-supervised learning task, MAD, for

time series anomaly detection. To our knowledge, this is
the first attempt to use masked self-supervised learning
for multivariate time series anomaly detection. Although
masked language model (MLM) has been studied before,
we extend this to industrial anomaly detection scenarios
where the data is continuous and multivariate.

• Our experiments demonstrated the superior performance
of this learning task over the traditional NSP task in
anomaly detection. We also proposed two inference
modes (MAD vs. Fast-MAD) for anomaly detection,
allowing trading off a small accuracy loss from MAD
for faster inference in Fast-MAD. The latter performs an
NSP-like inference by masking only the last steps, but
with better or similar accuracy.

• Unlike BERT where the underlying model architecture
is fixed, we show that MAD can accommodate any base
model that generates sequence outputs, and improve all
of them over the NSP task. This flexibility has significant
implications for real-world applications: existing NSP
models can be improved by simply switching to our
proposed MAD framework. Since the base models are the
same, they should be able to run in the same hardware
for better performance.

We emphasize that the goal of this paper is not to find a
set of hyperparameters for one particular model that performs
better on some benchmark datasets over other models. Instead,
we are focusing on a more general setting and trying to present
a new learning task that is widely applicable regardless of the
choice of base models and their hyperparameters. We also
acknowledge that other learning tasks could be formulated
(e.g., end-to-end anomaly score learning, direct classification
with abundant anomaly data, etc.), but for fair comparison they
are not presented here because they generally cannot use the
same data, base models, or hyperparameters.

II. RELATED WORK

A. Masked Language Models

BERT [16] is a popular language representation learning
model. Based on the concept of Masked Language Model
(MLM), BERT is designed to pre-train deep bidirectional rep-
resentations from unlabeled text. The idea that a representation
which is able to learn the context around a word rather than
just before the word is able to better capture its meaning
provides inspirations for us that similar mechanisms could
potentially also be useful for time series anomaly detection.

Following BERT’s success, there is an explosion of re-
cent work that either tries to improve BERT itself or apply
BERT to some other domains. For example, RoBERTa [18]

tries to improve BERT by training longer and with bigger
batches, removing the next sentence prediction objective (thus
leaving only the MLM objective), using longer sequences,
and changing masking patterns dynamically. ALBERT [19]
is a lightweight version of BERT with fewer parameters
and faster training. XLNet [20] leverages both autoregressive
language models and contextual-based BERT pretraining while
attempting to avoid their respective limitations. On the one
hand, XLNet uses bidirectional context like BERT; on the
other hand, it works as an autoregressive language model and
does not rely on data masking.

Different from these MLMs, our proposed MAD framework
is focused on multivariate time series data. The continuous
nature of industrial data (mostly from sensor measurements)
means that we cannot have a discrete mask token, and a new
masking procedure needs to be examined. We also do not limit
the base model to Transformer only.

B. Self-Supervised Representation Learning

Self-supervised learning enables supervised-like learning
without a labeled dataset by creating artificial “labels” for free
from the data itself. This can be achieved by formulating the
learning task as predicting a subset of information using the
rest (e.g., predicting the future from the past, past from present,
or a part of the input from the rest, etc.). BERT [16] also falls
into this category. Usually, the self-supervised task (or the pre-
train task) is a means to an end: it learns a useful representation
that can be beneficial to some downstream tasks.

Various self-supervised learning approaches have been pro-
posed for images. Pathak et al. [21] use inpainting to fill in the
missing parts in an image. Doersch et al. [22] formulated the
self-supervised task as learning the relative position between
two random patches in an image. Noroozi & Favaro extended
this to jigsaw puzzles [23]. Other methods uses various dif-
ferent tasks, for example, colorization [24], [25], geometric
distortion [26], [27], noise as targets [28], clustering [29],
contrast learning [30], [31]. Many of these pretext tasks
are easily constructed on images and the learning can be
automatically done on the dataset by requiring the network
to recover the modified information in these images.

There has also been some work on videos, because spa-
tiotemporal data are a natural fit for the self-supervised learn-
ing scheme, although in general they are more challenging
than images. LSTM and its variants for future prediction are
the most common models [32], [33]. Wang et al. [34] used
visual tracking to learn visual representations. Misra et al. [35]
formulated the pretext task as a sequential verification task
for determining whether a sequence of frames from a video
is in the correct temporal order. Vondrick et al. [36] extend
image colorization to videos and find that the model learns to
track visual regions. Ali et al. [37] used a frame permutation
prediction task for visual anomaly detection.

C. Transformers for Time Series

Transformer [17] has seen tremendous success in replacing
traditional RNNs for sequence modeling, in not only the

language domain but also many others.
Specifically, Zerveas et al. [38] used Transformer for un-

supervised multivariate time series representation learning,
but the authors focus on regression and classification. This
approach was shown to outperform supervised methods in
benchmark datasets. Wu et al. [39] developed a Transformer
model for forecasting influenza prevalence and showed supe-
rior performance over previous models. Li et al. [40] used
a variant of Transformer that has a lower memory cost for
long-sequence univariate time series forecasting.

There exists some other work that utilizes Transformers for
anomaly detection. Guo et al. [41] used BERT for detecting
anomalous events in online computer systems by learning
the patterns of normal log sequences. This work is closer to
language than time series because logs are basically language
data. Meng et al. [42] used a transformer-based architecture for
spacecraft anomaly detection. The authors developed a specific
masking scheme where the front and end parts of a sequence
are used as inputs to the model, and the middle part is masked.
In contrast, our proposed MAD framework is more general,
can incorporate different base models, and is not limited to a
specific dataset and problem setup.

III. MASKED ANOMALY DETECTION

In general, anomaly detection with neural networks can
be categorized into three paradigms: deep learning for feature
extraction, learning feature representation of normality, and
end-to-end anomaly score learning [15]. In a typical industrial
setting, normal operation data are usually abundant while
the number of faulty cases is often very small (if there are
any). Therefore, the paradigm of modeling normality is often
used: it learns a representation of data by using an objective
function that is not directly measuring an anomaly score, but
the learned normal representation can still be useful in an
anomaly detection setting since they capture some underlying
properties of the normal data.

Traditionally, anomaly detection problems in an industrial
setting often uses a next step prediction (NSP) task as shown
in Figure 1a. Let xt ∈ Rn be the multivariate sample of
dimension n at time t, and denote the j-th dimension at time t
as xjt (i.e., xt = [x1t , x

2
t , ..., x

n
t]), the NSP approach is trying to

estimate xt from all observations up to time t−1. In practice,
a window of length T is often used as the inputs to the model
instead of all samples prior to time t. This window length
can be adjusted to different applications and datasets. The
distance metric d can be chosen as the Euclidean distance,
corresponding to a mean squared error (MSE) loss during
training as in Equation 1:

Lmse =
1

n

n∑
j=1

(
ˆ
xjt − x

j
t)

2 (1)

This distance metric measures the deviation of a sample from
what it should have been under normal operating conditions.
Therefore, a sample whose deviation is above a defined
threshold can be regarded as anomalous.

𝒙𝒕"𝑻 𝒙𝒕"𝑻$𝟏 𝒙𝒕"𝟐 𝒙𝒕"𝟏

Base Model

… 𝒙𝒕

𝒙𝒕# 𝑑(𝒙𝒕, 𝒙𝒕#)

(a) Traditional next step prediction (NSP) formulation for anomaly
detection: Given a sequence [xt−T, ...,xt], the first T inputs are used
to predict x̂t, and then the distance between x̂t and xt is calculated.

Mask Mask

𝒙𝒕"𝑻 𝒙𝒕"𝑻$𝟏 𝒙𝒕"𝟏 𝒙𝒕…

Base Model

𝒙𝒕"𝟐

𝒙𝒕"𝑻$𝟏# 𝒙𝒕"𝟏#
…

$ 𝑑(𝒙𝒎, 𝒙𝒎()
(∈ℳ⊂[-".,…,-]

If 𝑡 − 𝑇 + 1 ∈ ℳ If 𝑡 − 1 ∈ ℳ

(b) MAD, our proposed self-supervised anomaly detection task:
Given a sequence [xt−T, ...,xt], some inputs xm are masked if
m ∈ M, where M is a randomly chosen subset of [t − T, ..., t].
The model learns to estimate the masked values and calculates the
distance between x̂m and xm for all m ∈M.

Fig. 1: Comparison between traditional NSP anomaly detec-
tion formulation and our proposed MAD task.

Given a sequence of time series data [xt−T, ...,xt], the NSP
approach only uses the data in one direction. However, there
is no need to constrain the model to only learn normality
unidirectionally. Instead, partially inspired by the success of
BERT [16] in language modeling tasks, we propose a general
self-supervised learning task for anomaly detection, MAD.
Under this formulation, the task is to model the normal data
[xt−T, ...,xt] by randomly masking a portion of the inputs
and training a model to estimate those masked samples. Note
that we are using the same window here as the NSP task. By
formulating the learning task this way, there are two major
benefits:

1) The model is able to utilize the training data more
efficiently because the same sequence can be masked in
different ways, which effectively creates more training
data.

2) The model is more comprehensive than unidirectional
NSP models, because the latter one can be viewed as a
special case of when only the last sample is masked.

More formally, our proposed MAD formulation for
anomaly detection is shown in Figure 1b. Given a sequence
[xt−T, ...,xt], some inputs xm are masked if m ∈M, where
M is a randomly chosen subset of [t − T, ..., t] indicating
the indices to be masked. Since too little masking makes
the model expensive to train and too much masking would
give not enough context, we follow the BERT [16] setup of
masking out 15% of the samples in all our experiments (i.e.,

|M| = (T +1) ∗ 15% for a sequence). Different from the lan-
guage models used in BERT where input tokens are discrete,
industrial time series are often continuous. Therefore, we do
not have a single discrete mask token. Instead, we replace all
masked samples with random values within the input ranges.
Then the masked sequence would be provided to the model to
predict those masked values, and a distance metrics d(·, ·) is
used to calculate the deviations between the predicted values
and real values. During training,

∑
m∈M d(xm, x̂m) can be

used to calculate the loss. For example, the MSE loss for this
formulation is given in Equation 2:

Lmse =
1

|M|
1

n

∑
m∈M

n∑
j=1

(
ˆ
xjm − xjm)2 (2)

where n is the spatial dimension of the time series data at
a certain time step. It should be noted that a univariate time
series can be think of as a special case for this formulation
where n = 1.

After a MAD model is trained on normal data, it can be
used in anomaly detection. Fundamentally, the model learns a
representation of the normal data by being able to fill in the
blanks of those masked inputs, thus when an anomaly happens
it would predict a different value given a mask. In Figure 2 we
show the anomaly detection evaluation used in later sections
for multivariate time series data. During the anomaly detection
phase, we can mask every sample separately and calculate the
total deviation for the entire sequence. If the deviation is above
a defined threshold, then this sequence can be regarded as
anomalous. Contrasting to the anomaly detection of traditional
NSP methods in Figure 1a where the deviation is calculated
only with the last sample d(xt, x̂t), our MAD task calculates
the following:

t∑
i=t−T

d(xi, x̂i) (3)

thus, it is able to better capture anomalies in time series data by
looking at more than just the last step. Furthermore, in this way
MAD models use masks consistently between training and
testing, unlike the discrepancy in BERT between pretraining
and task specific fine tuning where the artificial mask symbol
is only introduced in the pretrain phase but not used in the
fine tune phase.

One potential disadvantage of MAD is that it has a higher
time complexity during inference. This can be seen from
Equation 3: because we have to mask each time step separately
and sum them up, MAD makes T times more computations
than the traditional NSP formulation. In situations where speed
or early alarm is crucial during inference, we can make use of
the same MAD-trained model by only masking the last time
step, and then calculate the distance d(xt, x̂t). We call this
Fast-MAD as shown in Figure 2. In fact, this is very similar
to how traditional NSP models perform a test, both in terms
of the metrics calculated and time complexity. Theoretically,
Fast-MAD should run fast as traditional NSP during test time,
and we will verify this in the experiments section.

Base Model

… , 𝒙𝒕Mask
𝒙𝒕"𝑻

𝒙𝒕"𝑻$

Base Model

𝒙𝒕"𝑻, … Mask
𝒙𝒕

𝒙𝒕%

…Base Model

… , 𝒙𝒕Mask
𝒙𝒕"𝑻$𝟏

𝒙𝒕"𝑻𝟏

𝒙𝒕"𝑻

MAD
Total Deviation = ∑ 𝑑(𝑥& , 𝑥&%)'

&('")

Fast-MAD
Deviation = 𝑑(𝑥', 𝑥'%)

Fig. 2: Anomaly detection after a MAD model is trained.
Given a new sequence [xt−T, ...,xt], we can mask each
sample xi separately and estimate the normal values x̂i, then
calculate the total deviation for anomaly detection. Alterna-
tively, we can mask only the last step for faster inference,
which we call Fast-MAD.

Therefore, after a MAD model is trained, it has the flex-
ibility to make a prediction as fast as NSP models by only
masking the last time step, or slower but more accurate by
masking each step (or anywhere in between). This flexibility
does not exist in traditional NSP approaches: if we want to
predict different-length outputs, different models have to be
trained. In terms of space complexity and NN model size,
since they are using the same base model, both MAD and
NSP are basically equivalent. It means that for any real-world
application that is already running NSP models, there is no
reason that the same hardware could not handle MAD instead.

IV. EXPERIMENTAL RESULTS

In this section, the effectiveness of the proposed MAD task
for anomaly detection is demonstrated on two case studies: the
Tennessee Eastman Process (TEP) dataset [43] and the HIL-
based Augmented ICS (HAI) security dataset [44].

For comparison, in both of these case studies, anomaly
detection with both the traditional NSP formulation and our
proposed MAD formulation (as in Figure 1) using various base
models are tested. Base models and data inputs are kept the
same across the two tasks. All the input variables from the
datasets are scaled to a range of [0, 1] before they are passed
to the models.

The main objective of this paper is to compare the two
anomaly detection tasks. Therefore, we present results from
the same sets of hyperparameters for each base model across
the two formulations. For the same reason, we also excluded
more complicated post-processing methods for anomaly de-
tection. Instead, we deliberately kept the comparisons simple
by using the same metrics (i.e., MSE) during the training and
anomaly detection phases to limit other contributing factors.

A. Datasets

1) TEP Dataset: 1 The Tennessee Eastman process (TEP)
is an industrial benchmark by the Eastman Chemical Company
for process monitoring and control studies [43]. It models a

1TEP dataset can be downloaded at https://dataverse.harvard.edu/dataset.
xhtml?persistentId=doi:10.7910/DVN/6C3JR1.

https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/6C3JR1
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/6C3JR1

real industrial process computationally and is widely studied
for anomaly detection algorithms [45], [46].

The TEP is comprised of 4 reactants, 2 products, 1 by-
product and 1 inert components denoted as A-H. These
components undergo a chemical process enabled by 5 major
units: a reactor where the reaction happens for the gas feed
components (A, C, D and E) into liquid products (G and H),
a condenser that cools down the gas stream coming out of the
reactor, a separator that separates gas and liquid components
from the cooled product stream, a compressor that feeds the
gas stream back into the reactor and a stripper that strips the
two products from any unreacted feed components.

The TEP dataset [47] contains 52 variables in total, 41 of
which are sensor measurements (XMEAS(1) - XMEAS(41))
and 11 are manipulated variables ((XMV(1) - (XMV11)).
Therefore, the multivariate samples xt have a dimension of
52, or n = 52 following our previous notation. The dataset
is divided into “fault-free” and “faulty” files. The former cor-
responds to the processes under normal operating conditions
(NOC) while the latter contains 20 different simulated process
faults. The fault-free training data consists of sequences of
length 500. The test data sequence length is 960, with the first
160 samples in the normal region, and faults are introduced
for the next 800 samples. For fault detection rate (FDR)
calculations, we only considered the length 800 faulty region:

FDR =
number of alarm samples after introducing fault

total number of samples after introducing fault
(4)

And the false alarm rate (FAR) is calculated as:

FAR =
number of alarm samples during NOC

total number of samples during NOC
(5)

For TEP data, we take a window of length 20 as the
inputs to the NSP models and length 1 as the output.
That is to say, we use [xt−20,xt−19, ...,xt−1] to estimate
xt. For our proposed MAD approach, the entire sequence,
i.e., [xt−20,xt−19, ...,xt], is used for masked training and
anomaly detection.

It should be noted that in this dataset, controllable faults
(Fault 3, 9, 15) have disturbances that can be dealt with by the
control system (thus “controlable”), and therefore they would
return to normal operating regions. In these circumstances,
the FDR is not expected to be significantly different from the
FAR [46].

2) HAI Dataset: 2 The HIL-based Augmented ICS (HAI)
Security Dataset was collected from a realistic industrial
control system (ICS) testbed augmented with a Hardware-In-
the-Loop (HIL) simulator that emulates steam-turbine power
generation and pumped-storage hydro power generation [44].
Both normal and abnormal behaviors for ICS anomaly de-
tection are included in the dataset, with the abnormal one
collected based on various attack scenarios with the six control
loops in three different types of industrial control devices.

The HAI testbed consists of four processes: Boiler Process
(P1), Turbine Process (P2), Water-treatment Process (P3) and

2HAI dataset can be downloaded at https://github.com/icsdataset/hai.

HIL Simulation(P4). During normal operation, it is assumed
that the operator operates the control facility in a routine
manner, while abnormal behaviors occur when some of the
parameters are outside the normal range or are in unexpected
states due to attacks, malfunctions, and failures. This study
is conducted based on the 20.07 version of HAI dataset,
which has a training and testing dataset with n = 59 process
measurements to model. The data also contains label informa-
tion about whether there is an attack and where in the three
processes. There are a total of 177 hours of data in the training
set and 123 hours of data in the test set.

Since we have already looked into different faulty cases
in the TEP dataset, here for simplicity we only examine the
overall anomaly detection performance across all different
attack locations (i.e., we treat all attacks as one “abnormal”
class). Following the TEP dataset formulation, we also use
a sequence of length 20, i.e., [xt−20,xt−19, ...,xt] at time
t for training and anomaly detection. Additionally, if any of
the samples inside a sequence contains an attack, we label the
entire sequence as abnormal.

B. Base Model Setups

Here we introduce some base models used in the ex-
periments for evaluating MAD vs NSP anomaly detection.
Transformer [17] and its encoder-only variants are natural fits
for MAD, because of their abilities to “fill in the blanks”,
i.e., to reconstruct the masked inputs or to predict missing
parts of the inputs from the entire sequence bidirectionally.
But any model that supports seq2seq modeling can be used
as a base model. Specifically, we also tested Long Short-
Term Memory (LSTM) network [12], Temporal Convolutional
Network (TCN) [14], and FNet [48]. The mix of commonly-
used time series models and newer NLP models should provide
good insights into the comparison between the two tasks.

For each base model, their hyperparameters are set as
follows:
• Transformer [17]: model dimension 128, feed-forward

dimension 512, number of heads 8, number of encoder
& decoder layers 6, and dropout rate 0.1.

• Transformer-Encoder [17]: same as Transformer, but
without decoders.

• LSTM [12]: 2 hidden layers each with dimension 50.
• TCN [14]: 2 hidden layers each with channel size 50,

convolutional kernel size 7 and stride 1, dilation factor is
2i where i is the i-th layer, and dropout rate 0.2.

• FNet [48]: same as Transformer-Encoder, but using 2D
FFT encoders with real and imaginary parts concatenated
(Lee-Thorp et al. in [48] used 1D FFT encoders and
discarded imaginary parts for language data).

In all experiments, we trained on a GPU using an Adam
optimizer [49] with β1 = 0.9, β2 = 0.999, ε = 10−8 and
a learning rate of 0.001. Model batch size is set to be 1000
and number of epochs is 1000. The metrics for calculating
loss during training and deviations during anomaly detection
is MSE. For both training sets, 80% of the data was used for
training and 20% for validation. For our MAD formulation,

https://github.com/icsdataset/hai

unless otherwise noted, we use a mask probability of 0.15,
and 100% of the masked values are replaced with random
uniform numbers drawn from the normalized data range.

C. Results and Discussions

1) TEP Dataset: We report the FDR for all 20 fault cases
with a set FAR of 5%. For HAI dataset, we use both ROC
(Receiver Operating Characteristic) and PR (Precision-Recall)
curves to evaluate the performance. AUC (Area Under Curve)
for the ROC curve and Average Precision (AP) are calculated
as the overall performance measure. For experiments presented
in this section, the same set of hyperparemeters for each base
model is used for the proposed MAD task and the traditional
NSP task, in order to make the comparison completely fair.

Results for TEP dataset are summarized in Table I and
grouped by base models. We compare the fault detection
results using our proposed MAD formulation and the tradi-
tional NSP formulation. The FAR for the normal case is set
to be 5%, and the corresponding FDRs in percentage are
presented in this table. It can be seen that with the exact
same base model and hyperparameters, our MAD approach
significantly outperforms the NSP approach in many cases
(e.g., Fault # 5, 10, 11, 16, 19, 20). Furthermore, for none
of the faults and any base model, MAD under-performs NSP
by more than 1% FDR. These results show that for an anomaly
detection problem, one can achieve better results from the
same base model, by simply switching to our MAD framework
for training and inference.

2) HAI Dataset: Results for HAI dataset are reported in
Table II and also grouped by base models. We compare
the anomaly detection results using our proposed MAD for-
mulation, its corresponding Fast-MAD evaluations, and the
traditional NSP formulation. Note that for Fast-MAD we do
not need to train a new model, but simply use the same MAD
models with masks applied to only on the last step for anomaly
detection.

We report both the area under curve for ROC curves and
the average precision (AP). The higher values for a given base
model are presented in bold. These results again show that
for this multivariate industrial time series anomaly detection
problem, better results can be easily achieved by simply
switching to our proposed MAD task from the traditional NSP
task for any given base model. Furthermore, the Fast-MAD
results are in general unsurprisingly worse than MAD results,
but still better or at least as good as NSP results. We also
listed the average wall-clock time for testing the entire dataset
on the same hardware in Table II. Please note that these wall-
clock values are not meant to provide a strictly quantitative
comparison between different methods, because in reality there
are many factors that can affect the elapsed time of running
a program. Nevertheless, the point is that for the same base
algorithm, Fast-MAD is almost exactly as fast as traditional
NSP methods.

The improvements of MAD over NSP across the board can
be explained by viewing MAD as a more generalized version
of NSP, in the sense that the latter is similar to only masking

the last time step (Fast-MAD). Since Fast-MAD is performing
at a better to similar level to NSP, and MAD is strictly better
than Fast-MAD in terms of accuracy, MAD is therefore able
to outperform NSP significantly. The comparable speed from
Fast-MAD further solidifies the point that the proposed MAD
formulation could replace NSP formulation in almost all real-
world industrial settings. Even when computational resources
are limited, the proposed MAD-trained model can be easily
adapted at inference time to run in Fast-MAD mode, because
the systems that can already run NSP models should be able
to run Fast-MAD models with the same hardware at the same
speed. Furthermore, Fast-MAD inference would also not cause
any delay in raising alarms compared to NSP inference, since
they are both predicting the last step in the sequences.

D. Ablation Studies

In this subsection, we perform experiments over a number
of factors in MAD to better understand the anomaly detection
performances.

One major difference between MAD and BERT [16] mask-
ing procedures is that for language models, there can be a
dedicated discrete mask token to indicate that an input has
been masked, but in industrial time series data where many
sensor data are not categorical but continuous, such discrete
mask token does not exist. This is the reason that we used all
random masks in MAD for results presented in Section IV-C.

The following is an ablation study to evaluate the effect of
different masking procedures for MAD. In this study, we keep
the overall mask probability to be 0.15. Here, we have three
masking rates for an input once it is chosen to be masked
based on the aforementioned overall probability: pRND is the
probability that an input is replaced with a random number,
pSAME is the probability that an input is kept the same, and
pZERO is the probability that an input is replaced with a zero.
Furthermore, pRND + pZERO + pSAME = 1. The default
setting for the experiments in Section IV-C is that pRND = 1
and pZERO = pSAME = 0. That is to say, 100% of the
15% selected inputs are masked with random, while none are
masked with zero or kept the same.

In Table III we report the results of different masking
rates on the same Transformer-Encoder model used in Sec-
tion IV-C. We also explored a different masking strategy, i.e.,
instead of masking all input dimensions for selected time steps
(Step=True in Table III), we can randomly mask 15% of the
inputs (i.e. only some dimensions for certain time steps are
masked, Step=False in Table III). The first row in this table
corresponds to the default strategy we used in Section IV-C,
i.e., all of 15% selected time steps are masked 100% with
random values, and it gives the best overall performance. We
believe for continuous time series, replacing with zeros is
counterproductive because a 0 value has physical meanings, so
it is inappropriate as a mask token. Instead, the best strategy
is to just replace masked inputs with random values within the
ranges of the input.

TABLE I: TEP dataset fault detection results. The FAR for the NOC is set to be 5%, and the FDR (in percentage) is listed
for each of the 20 faults. We report the results using our proposed MAD task and the traditional NSP task. If for the same
base model, there is a greater than 1% differences for a certain fault, then the higher one is presented in bold.

Base Model Transformer Transformer-Encoder LSTM TCN FNet

Fault # MAD NSP MAD NSP MAD NSP MAD NSP MAD NSP
1 99.55 99.64 99.56 99.66 99.54 99.74 99.42 99.61 99.48 99.67
2 98.38 98.45 98.37 98.40 98.57 97.99 98.58 97.93 98.59 98.64
3 5.40 5.00 5.41 5.03 5.82 5.12 5.80 5.12 4.97 4.86
4 99.97 99.96 99.97 99.99 99.96 99.95 99.88 100.00 99.90 99.18
5 85.42 28.86 80.00 25.74 86.21 20.63 55.15 26.46 56.70 25.82
6 99.97 100.00 99.97 100.00 99.92 100.00 99.91 100.00 99.92 100.00
7 99.99 100.00 99.99 100.00 99.99 100.00 99.95 100.00 99.98 100.00
8 97.57 96.43 97.52 95.80 97.57 93.42 97.49 94.68 97.57 96.76
9 6.05 5.19 6.06 5.17 6.39 5.21 6.06 5.19 5.78 5.16
10 73.62 17.48 71.17 15.51 83.22 21.06 73.05 35.57 64.30 18.87
11 99.15 77.51 99.15 76.83 99.12 80.43 98.66 80.51 98.84 76.08
12 99.10 98.20 99.10 97.89 99.12 95.87 98.98 96.63 99.06 98.11
13 95.02 94.01 94.98 93.66 95.14 93.21 94.96 93.48 95.02 94.07
14 99.86 99.97 99.86 99.97 99.83 99.96 99.79 99.97 99.83 99.96
15 6.71 5.39 6.53 5.35 7.21 5.37 7.27 5.36 7.43 5.48
16 73.72 13.43 75.15 12.46 82.63 16.99 63.69 21.10 56.56 13.74
17 96.04 91.53 96.05 96.02 96.11 95.46 95.91 96.14 95.58 91.05
18 94.17 93.76 94.09 93.78 93.91 93.70 93.81 93.90 93.81 93.70
19 99.02 25.13 99.06 24.40 99.04 24.10 93.50 23.39 96.33 24.43
20 86.30 48.05 89.78 46.87 91.81 71.11 84.12 47.92 80.92 45.59

Average 80.75 64.90 80.49 64.36 82.06 65.96 78.30 66.25 77.55 64.56

TABLE II: HAI dataset anomaly detection results. We report
ROC AUC and Average Precision. For the same base model,
higher values are in bold. We also list the average inference
time for running the entire test set 5 times on the same
hardware in seconds.

Base Model Method ROC AUC AP Inference Time

Transformer
MAD 0.8032 0.4542 325.31s

Fast-MAD 0.7916 0.3948 28.83s
NSP 0.7839 0.3617 28.66s

Transformer-
Encoder

MAD 0.8160 0.5153 135.72s
Fast-MAD 0.7973 0.3991 20.42s

NSP 0.7411 0.3253 20.76s

LSTM
MAD 0.7715 0.4859 25.76s

Fast-MAD 0.7432 0.3313 14.41s
NSP 0.7441 0.2480 15.26s

TCN
MAD 0.7686 0.4580 27.48s

Fast-MAD 0.7539 0.3508 14.46s
NSP 0.7080 0.2389 15.11s

FNet
MAD 0.8112 0.5162 106.28s

Fast-MAD 0.7949 0.3307 18.69s
NSP 0.7754 0.3909 18.80s

V. CONCLUSION

In this paper, we proposed and validated a self-supervised
learning task, Masked Anomaly Detection (MAD), for multi-
variate time series anomaly detection. The main research angle
of this paper is not to find an optimal set of hyperparameters
for a particular dataset, but rather to show that in general
MAD tasks can outperform traditional next step prediction
(NSP) tasks in anomaly detection, even when using exactly
the same base model, and they can run as fast as NSP
models during testing if needed. We also investigated different

TABLE III: HAI dataset ablation study over different masking
procedures. ROC AUC and AP are reported. The base model
is Transformer-Encoder and kept the same across different
masking strategies. If ‘Step’ is true, then entire time steps
are masked across all channels, otherwise only a subset of
channels may be masked at a step.

Masking Rates Step ROC AUC AP
pRND pSAME pZERO

100% 0% 0% True 0.8160 0.5153
10% 10% 80% True 0.7629 0.4809
0% 0% 100% True 0.7331 0.2813
20% 0% 80% True 0.7680 0.2484
0% 20% 80% True 0.7169 0.1787
80% 20% 0% True 0.8021 0.4955

100% 0% 0% False 0.8085 0.4293

design choices for our MAD formulation, including different
evaluation techniques and masking procedures, highlighting
best practices for using this proposed method. Since our
proposed MAD task is not restricted to a particular neural
network architecture, existing applications using NSP can
easily switch to MAD without changing the base model or
hardware and gain performance improvements. Therefore, we
believe our proposed MAD task has significant impacts on
real-world industrial anomaly detection applications.

ACKNOWLEDGMENT

This material is based upon work supported by the De-
partment of Energy, National Energy Technology Laboratory

under Award Number DE-FE0031763.3

REFERENCES

[1] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,”
ACM computing surveys (CSUR), vol. 41, no. 3, pp. 1–58, 2009.

[2] R. Chalapathy and S. Chawla, “Deep learning for anomaly detection: A
survey,” arXiv preprint arXiv:1901.03407, 2019.

[3] W. Ku, R. H. Storer, and C. Georgakis, “Disturbance detection and
isolation by dynamic principal component analysis,” Chemometrics and
intelligent laboratory systems, vol. 30, no. 1, pp. 179–196, 1995.

[4] S. X. Ding, P. Zhang, A. Naik, E. L. Ding, and B. Huang, “Subspace
method aided data-driven design of fault detection and isolation sys-
tems,” Journal of process control, vol. 19, no. 9, pp. 1496–1510, 2009.

[5] J. Ma and S. Perkins, “Time-series novelty detection using one-class
support vector machines,” in Proceedings of the International Joint
Conference on Neural Networks, 2003., vol. 3. IEEE, 2003, pp. 1741–
1745.

[6] K. Hundman, V. Constantinou, C. Laporte, I. Colwell, and T. Soder-
strom, “Detecting spacecraft anomalies using lstms and nonparametric
dynamic thresholding,” in Proceedings of the 24th ACM SIGKDD
international conference on knowledge discovery & data mining, 2018,
pp. 387–395.

[7] P. Malhotra, A. Ramakrishnan, G. Anand, L. Vig, P. Agarwal, and
G. Shroff, “Lstm-based encoder-decoder for multi-sensor anomaly de-
tection,” arXiv preprint arXiv:1607.00148, 2016.

[8] Y. Guo, W. Liao, Q. Wang, L. Yu, T. Ji, and P. Li, “Multidimensional
time series anomaly detection: A gru-based gaussian mixture variational
autoencoder approach,” in Asian Conference on Machine Learning.
PMLR, 2018, pp. 97–112.

[9] B. Zong, Q. Song, M. R. Min, W. Cheng, C. Lumezanu, D. Cho, and
H. Chen, “Deep autoencoding gaussian mixture model for unsupervised
anomaly detection,” in International Conference on Learning Represen-
tations, 2018.

[10] Y. Su, Y. Zhao, C. Niu, R. Liu, W. Sun, and D. Pei, “Robust anomaly
detection for multivariate time series through stochastic recurrent neural
network,” in Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, 2019, pp. 2828–
2837.

[11] F. Xue, W. Yan, T. Wang, H. Huang, and B. Feng, “Deep anomaly
detection for industrial systems: a case study,” in Annual Conference of
the PHM Society, ser. 1, vol. 12, Nov. 2020.

[12] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[13] A. v. d. Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves,
N. Kalchbrenner, A. Senior, and K. Kavukcuoglu, “Wavenet: A gener-
ative model for raw audio,” arXiv preprint arXiv:1609.03499, 2016.

[14] S. Bai, J. Z. Kolter, and V. Koltun, “An empirical evaluation of generic
convolutional and recurrent networks for sequence modeling,” arXiv
preprint arXiv:1803.01271, 2018.

[15] G. Pang, C. Shen, L. Cao, and A. v. d. Hengel, “Deep learning for
anomaly detection: A review,” arXiv preprint arXiv:2007.02500, 2020.

[16] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[17] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” arXiv preprint
arXiv:1706.03762, 2017.

[18] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized bert
pretraining approach,” arXiv preprint arXiv:1907.11692, 2019.

3Disclaimer: This report was prepared as an account of work sponsored
by an agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or responsibility
for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise
does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.

[19] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut,
“Albert: A lite bert for self-supervised learning of language representa-
tions,” arXiv preprint arXiv:1909.11942, 2019.

[20] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. Salakhutdinov, and Q. V. Le,
“Xlnet: Generalized autoregressive pretraining for language understand-
ing,” arXiv preprint arXiv:1906.08237, 2019.

[21] D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A. Efros,
“Context encoders: Feature learning by inpainting,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, 2016,
pp. 2536–2544.

[22] C. Doersch, A. Gupta, and A. A. Efros, “Unsupervised visual repre-
sentation learning by context prediction,” in Proceedings of the IEEE
international conference on computer vision, 2015, pp. 1422–1430.

[23] M. Noroozi and P. Favaro, “Unsupervised learning of visual representa-
tions by solving jigsaw puzzles,” in European conference on computer
vision. Springer, 2016, pp. 69–84.

[24] R. Zhang, P. Isola, and A. A. Efros, “Colorful image colorization,” in
European conference on computer vision. Springer, 2016, pp. 649–666.

[25] G. Larsson, M. Maire, and G. Shakhnarovich, “Learning representations
for automatic colorization,” in European conference on computer vision.
Springer, 2016, pp. 577–593.

[26] A. Dosovitskiy, P. Fischer, J. T. Springenberg, M. Riedmiller, and
T. Brox, “Discriminative unsupervised feature learning with exemplar
convolutional neural networks,” IEEE transactions on pattern analysis
and machine intelligence, vol. 38, no. 9, pp. 1734–1747, 2015.

[27] S. Gidaris, P. Singh, and N. Komodakis, “Unsupervised repre-
sentation learning by predicting image rotations,” arXiv preprint
arXiv:1803.07728, 2018.

[28] P. Bojanowski and A. Joulin, “Unsupervised learning by predicting
noise,” in International Conference on Machine Learning. PMLR,
2017, pp. 517–526.

[29] M. Caron, P. Bojanowski, A. Joulin, and M. Douze, “Deep clustering
for unsupervised learning of visual features,” in Proceedings of the
European Conference on Computer Vision (ECCV), 2018, pp. 132–149.

[30] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, “Momentum contrast
for unsupervised visual representation learning,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 9729–9738.

[31] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework
for contrastive learning of visual representations,” in International
conference on machine learning. PMLR, 2020, pp. 1597–1607.

[32] N. Srivastava, E. Mansimov, and R. Salakhudinov, “Unsupervised learn-
ing of video representations using lstms,” in International conference on
machine learning. PMLR, 2015, pp. 843–852.

[33] Y. Fu, S. Sen, J. Reimann, and C. Theurer, “Spatiotemporal represen-
tation learning with gan trained lstm-lstm networks,” in 2020 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2020, pp. 10 548–10 555.

[34] X. Wang and A. Gupta, “Unsupervised learning of visual representations
using videos,” in Proceedings of the IEEE international conference on
computer vision, 2015, pp. 2794–2802.

[35] I. Misra, C. L. Zitnick, and M. Hebert, “Shuffle and learn: unsupervised
learning using temporal order verification,” in European Conference on
Computer Vision. Springer, 2016, pp. 527–544.

[36] C. Vondrick, A. Shrivastava, A. Fathi, S. Guadarrama, and K. Murphy,
“Tracking emerges by colorizing videos,” in Proceedings of the Euro-
pean conference on computer vision (ECCV), 2018, pp. 391–408.

[37] R. Ali, M. U. K. Khan, and C. M. Kyung, “Self-supervised rep-
resentation learning for visual anomaly detection,” arXiv preprint
arXiv:2006.09654, 2020.

[38] G. Zerveas, S. Jayaraman, D. Patel, A. Bhamidipaty, and C. Eickhoff, “A
transformer-based framework for multivariate time series representation
learning,” arXiv preprint arXiv:2010.02803, 2020.

[39] N. Wu, B. Green, X. Ben, and S. O’Banion, “Deep transformer mod-
els for time series forecasting: The influenza prevalence case,” arXiv
preprint arXiv:2001.08317, 2020.

[40] S. Li, X. Jin, Y. Xuan, X. Zhou, W. Chen, Y.-X. Wang, and X. Yan, “En-
hancing the locality and breaking the memory bottleneck of transformer
on time series forecasting,” arXiv preprint arXiv:1907.00235, 2019.

[41] H. Guo, S. Yuan, and X. Wu, “Logbert: Log anomaly detection via bert,”
arXiv preprint arXiv:2103.04475, 2021.

[42] H. Meng, Y. Li, Y. Zhang, and H. Zhao, “Spacecraft anomaly detec-
tion and relation visualization via masked time series modeling,” in

2019 Prognostics and System Health Management Conference (PHM-
Qingdao). IEEE, 2019, pp. 1–7.

[43] J. J. Downs and E. F. Vogel, “A plant-wide industrial process control
problem,” Computers & chemical engineering, vol. 17, no. 3, pp. 245–
255, 1993.

[44] H.-K. Shin, W. Lee, J.-H. Yun, and H. Kim, “{HAI} 1.0: Hil-based
augmented {ICS} security dataset,” in 13th {USENIX} Workshop on
Cyber Security Experimentation and Test ({CSET} 20), 2020.

[45] S. Yin, S. X. Ding, A. Haghani, H. Hao, and P. Zhang, “A comparison
study of basic data-driven fault diagnosis and process monitoring meth-
ods on the benchmark tennessee eastman process,” Journal of process
control, vol. 22, no. 9, pp. 1567–1581, 2012.

[46] W. Sun, A. R. Paiva, P. Xu, A. Sundaram, and R. D. Braatz, “Fault
detection and identification using bayesian recurrent neural networks,”
Computers & Chemical Engineering, vol. 141, p. 106991, 2020.

[47] C. Rieth, B. Amsel, R. Tran, and M. Cook, “Additional tennessee
eastman process simulation data for anomaly detection evaluation,”
2017.

[48] J. Lee-Thorp, J. Ainslie, I. Eckstein, and S. Ontanon, “Fnet: Mixing
tokens with fourier transforms,” arXiv preprint arXiv:2105.03824, 2021.

[49] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

	I Introduction
	II Related Work
	II-A Masked Language Models
	II-B Self-Supervised Representation Learning
	II-C Transformers for Time Series

	III Masked Anomaly Detection
	IV Experimental Results
	IV-A Datasets
	IV-A1 TEP Dataset
	IV-A2 HAI Dataset

	IV-B Base Model Setups
	IV-C Results and Discussions
	IV-C1 TEP Dataset
	IV-C2 HAI Dataset

	IV-D Ablation Studies

	V Conclusion
	References

