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Abstract
How to aggregate information from multiple instances is a
key question multiple instance learning. Prior neural mod-
els implement different variants of the well-known encoder-
decoder strategy according to which all input features are en-
coded a single, high-dimensional embedding which is then
decoded to generate an output. In this work, inspired by
Choquet capacities, we propose Capacity networks. Unlike
encoder-decoders, Capacity networks generate multiple inter-
pretable intermediate results which can be aggregated in a se-
mantically meaningful space to obtain the final output. Our
experiments show that implementing this simple inductive
bias leads to improvements over different encoder-decoder
architectures in a wide range of experiments. Moreover, the
interpretable intermediate results make Capacity networks in-
terpretable by design, which allows a semantically meaning-
ful inspection, evaluation, and regularization of the network
internals.

Introduction
In many important problems, a label is not given for each
individual instance but only a set of instances. For instance,
in histopathological classification of breast cancer images
(Sudharshana et al. 2019), only one label that indicates if a
patient has cancer or not is given for a set of images. Sim-
ilarly, in drug activity prediction (Dietterich, Lathrop, and
Lozano-Pérez 1997), a label is only provided for a set of
molecule shapes, but not for individual molecule shapes.
In sentiment analysis, only a single label may be given
for a document that is comprised of multiple sentences,
without labeling information on the sentence level (Pappas
and Popescu-Belis 2017; McAuley, Leskovec, and Jurafsky
2012).

Problems with this characteristic are in the focus of
multiple instance learning (MIL) (Dietterich, Lathrop, and
Lozano-Pérez 1997; Maron and Lozano-Perez 1998; Ray
and Page 2001; Carbonneau et al. 2018). More formally, in
MIL, an input consists of a set of instances X ⊂ G, where G
is a ground set of individual instances. The goal is to learn
a set function f from training pairs (Xi, Yi) that maps input
sets to set labels. Supervision (i.e. labeling information) for
individual instances is not provided.

A key question in MIL is how to aggregate the informa-
tion from the multiple instances in the input sets. Prior neural
approaches for MIL such as Zaheer et al. (2017); Ilse, Tom-
czak, and Welling (2018); Murphy et al. (2019); Lee et al.
(2019) implement different variants of the encoder-decoder
strategy. Encoder-decoders use an encoder networks to ag-
gregate the features of all individual instances x1, . . . , xn ∈
X into a single, high-dimensional set embedding Z. The set
embedding is then decoded by a decoder network to generate
an output Y . We provide a high-level illustration of sequen-
tial and parallel encoder-decoder networks in Figure 1a.

In this work, we present an alternative approach to ag-
gregate information from multiple instances and demon-
strate its effectiveness and interpretability. Inspired by a
sequential decomposition of Choquet capacities (Choquet
1954; Sugeno 1974), we propose to decompose multiple
instance learning tasks with sets of size n into n smaller
sub-problems (i.e. one for each instance in the input) and
to produce a meaningful intermediate result for each sub-
problem. More specifically, for each instance i, an neural
module generates an intermediate set embedding which is
immediately decoded by another neural module to gener-
ate an intermediate result. Each intermediate result models
the added value of instance xi with respect to all already
seen instances x1, . . . , xi−1. Like in Choquet capacities, all
intermediate results can be simply summed to obtain the
final output. In Figure 1, we illustrate the architectures of
the resulting family of neural networks, which we denote as
Capacity networks, and show how it differs from encoder-
decoder architectures.

Capacity networks have two major advantages over their
encoder-decoder counterparts: improved effectiveness and
interpretability by design. More specifically, we find that
Capacity networks achieve better results than prior works
in a wide range of experiments. A potential explanation
for the improved performance is that Capacity networks
are better able to leverage the compositional nature of MIL
problems. Moreover, Capacity networks are interpretable by
design. Prior encoder-decoder architectures are end-to-end
black boxes. In contrast, Capacity network generate multi-
ple meaningful intermediate results that can easily be inter-
preted. The improved interpretability allows to evaluate if
the trained models are right for the right reasons. Moreover,
a quantitative evaluation of the intermediate results is pos-
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(a) Parallel and sequential encoder-decoder networks (b) Capacity networks

Figure 1: High-level illustration of parallel and sequential encoder-decoders (1a) and the newly proposed Capacity networks
(1b) applied to an instance of a popular MNIST-based multiple instance regression problem called ’unique sum’ (Murphy
et al. 2019; Kalra et al. 2020). The input consists of a set of MNIST images (in this example the three images , , and )
and the output equals to the sum of uniquely appearing MNIST images. Both encoder-decoder architectures generate a set
embedding Z which is decoded to obtain the output and, hence, serves as interface between encoder and decoder. In contrast,
Capacity networks apply a decoder three times to generate three intermediate results, each of which modeling the added value
of instance xi with respect to all already observed instances x1, . . . , xi−1. We use red, yellow, and green to illustrate that the
encoder network is applied three times.

sible. Furthermore, the intermediate results allow to inject
semantically meaningful prior knowledge into the training
process via regularization terms. To summarize, our contri-
butions are as follows:

1. We propose Capacity networks that implement an alter-
native information aggregation strategy for multiple in-
stance learning. Our key idea is to generate an inter-
pretable, scalar-valued intermediate result for each in-
stance that represents its added value with respect to all
already observed instances and to sum all generated in-
termediate results to obtain the final prediction.

2. We show that Capacity networks are more effective than
prior encoder-decoder architectures at learning challeng-
ing set functions. Moreover, we show that Capacity net-
works perform better for large sets, for varying set sizes,
with smaller amounts of training data, and in a real-world
sentiment analysis dataset.

3. We demonstrate the interpretability of Capacity net-
works, which enable a quantitative evaluation of the net-
work internals and the implementation of a semantically
meaningful regularization.

Capacity Networks
In the following, we discuss an iterative decomposition of
Choquet capacities, which motivate the fundamental archi-
tecture of Capacity networks.

Iterative Decomposition of Choquet Capacities
Let G = {x1, . . . , xm} be a set of instances. A set func-
tion µ : P(G) → [0,∞) is called (Choquet) capacity (Cho-
quet 1954; Sugeno 1974) if µ(∅) = 0 and µ(A) ≤ µ(B)
for A ⊆ B ⊆ G. Unlike measures such as the Lebesgue
measure, capacities are not additive, which is essential to
model non-additive aggregation effects, i.e. problems where
µ(A ∪ B) = µ(A) + µ(B),∀A,B ∈ G with A ∩ B = ∅
does not hold in general. A capacity µ is called superad-

ditive if µ(A ∪ B) ≥ µ(A) + µ(B) and subadditive if
µ(A ∪B) ≤ µ(A) + µ(B), for A ∩B = ∅, A,B ∈ P(G).

Given a capacity µ, it is natural to ask how large the
individual contribution of a single instance xi is to a set
X = {x1, . . . , xn}, xi /∈ X . More formally: Given X ⊂
G, xi /∈ X , how large is µ(X ∪ {xi})− µ(X)? In the addi-
tive case (like in measures), the difference always equals to
µ({xi}). However, in the non-additive case, the added value
of xi to X depends on X . The motivation to identify the in-
dividual contribution of an instance to a set utility naturally
leads to the following sequential decomposition:

µ(X) = [µ(∅ ∪ {x1})− µ(∅)]
+ [µ({x1} ∪ {x2})− µ({x1})]
+ . . .

+ [µ((X)− µ(X \ {xn})].

(1)

Each row in Equation 1 represents the added value of a
single instance with respect to all previous instances. Equa-
tion 1 can be summarized as

µ(X) =

|X|∑
i=1

νi, with νi = µ(Ci−1∪{xi})−µ(Ci−1), (2)

where Ci−1 = {x1, . . . , xi−1}, and C0 = ∅. The first
summand ν1 = µ(C0 ∪ {x1}) − µ(C0) equals µ({x1})).
In other words, ν1 represents the intrinsic value of x1. Sim-
ilarly, we obtain µ({x1, x2}) − µ({x1}) for ν2 which can
be interpreted as estimating the added value of x2 with re-
spect to x1. Finally, νn equals to the added value of the last
instance xn with respect to all other instances x1, . . . , xn−1.
The decomposition requires an ordering of the instances in
X . Otherwise, it is unclear which instance should be con-
sidered first, second, etc. To this end, any arbitrary total or-
dering can be used. The input in Figure 1, X = { , , }),



can, for instance, be decomposed as

µ(X) = µ({ })
+ [µ({ , })− µ({ })]
+ [µ({ , , })− µ({ , })].

(3)

According to this decomposition and the ’unique sum’
task described in Figure 1, we first compute the individual
contribution of image (which is 8), then we compute the
contribution of the next image with respect to the already
considered image (which is 5), and finally compute the
contribution of last image with respect to and (which
is 0, since class ’8’ has already appeared once).

Network Architecture
Inspired by the sequential decomposition of capacities, we
now define a new family of neural networks for multiple in-
stance learning. Key idea is to introduce an inductive bias
such that neural networks mimic the discussed sequential
decomposition of capacities. To this end, we propose to de-
sign networks such that they generate an intermediate re-
sult yi after reading instance xi which models the added
value of instance xi to the set of all already seen instances
{x1, . . . , xi−1}. As in Equation 2, the output of the network
for a set X can be obtained by simply computing the sum
of all intermediate results. In terms of encoder and decoder
functions, we define Capacity networks as

zi = encoder(xi, zi−1) (4)
yi = abs(decoder(zi)) (5)

Y =

|X|∑
i=1

yi, (6)

where z0 is an initial state and abs(.) denotes the absolute
value of the decoder output. We compute abs(.) to model
the fact that each νi ≥ 0, since µ(Ci−1 ∪ {xi}) ≥ µ(Ci−1)
due to the monotonicity of µ. In principal, this additional in-
ductive bias is not essential for the networks architecture and
can be removed if monotonicity should not be enforced. Fur-
thermore, we do not explicitly model subtrahend and min-
uend explicitly but estimate the difference directly. Again,
this is a non-essential design choice that can be modified in
future work.

Capacity networks are closely connected the sequential
decomposition of capacities presented in Equation 2. Each
application of the decoder in Equation 5 corresponds to one
νi in Equation 2, which represents the added value of the i-th
instance with respect to all already observed instances. Sim-
ilar to the sequential decomposition of capacities in Equa-
tion 2, Capacity networks require a sequential ordering of
the inputs. Otherwise, it is not possible to model the added
value of an instance with respect to already seen instances.
Any sequential network such as RNNs, LSTMs, and GRUs
can be used as basis to implement the proposed inductive
bias. Hence, we do not present a specific neural networks but
rather a new family of neural networks. Capacity networks

are not guaranteed to be permutation invariant. This is, how-
ever, not necessarily a limitation of the presented idea. Se-
quential approaches have been demonstrated to show strong
performance for MIL in prior works. Furthermore, several
methods exist to mitigate or completely remove the permu-
tation sensitivity of permutation sensitive networks as de-
scribed in the next section. Permutation sensitivity can even
be viewed as advantage since our networks can also be used
if the output depends on the order of the input instances (e.g.
in ordered sets or sequences).

A key distinction between prior encoder-decoder architec-
tures and the newly presented idea is that encoder-decoders
do not produce intermediate results, whereas Capacity net-
works generate n intermediate results, each of which mod-
eling the added value of a specific instance. Another way
to describe this distinction is to note that standard encoder-
decoders only produce a single latent set embedding which
is fed only once into a decoder to produce a scalar-valued
output. In contrast, Capacity networks apply a decoder sev-
eral times (once for each produced latent state zi) to pro-
duce many latent scalar-valued intermediate results. As a
consequence, encoder-decoders aggregate information from
different instances in an uninterpretable high-dimensional
feature space, whereas Capacity networks aggregate inter-
pretable scalar-valued intermediate results. The inductive
bias to generate scalar-valued intermediate results can also
be viewed as introducing multiple information bottlenecks
into the network architectures since the Capacity networks
need to compress the feature representation to a meaningful,
one-dimensional value multiple times.

Related Work
Capacities and Choquet integration have already inspired
other works in machine learning before. Beliakov (2008)
fit values of the discrete Choquet integral with linear pro-
gramming techniques. Tehrani et al. (2012) use the Choquet
integral to model monotone nonlinear aggregations for bi-
nary classification. Tehrani, Cheng, and Hullermeier (2012)
use the Choquet integral in a pairwise preference learning
scenario. Dias et al. (2018) replace pooling layers in convo-
lutional neural networks with Choquet integration. In con-
trast to our work, they consider a classification setup and do
not consider multiple instance learning. Karczmarek, Kier-
sztyn, and Pedrycz (2018) and Karczmarek, Kiersztyn, and
Pedrycz (2019) use the Choquet integral to build an ensem-
ble of classifiers for face recognition. Similarly, Anderson
et al. (2018) and Scott et al. (2017) build an ensemble of
CNNs.

Many works on multiple instance classification (Di-
etterich, Lathrop, and Lozano-Pérez 1997; Maron and
Lozano-Perez 1998) and regression (Ray and Page 2001;
Herbrich, Minka, and Graepel 2006) make strong task-
specific assumption (Carbonneau et al. 2018). For instance,
Dietterich, Lathrop, and Lozano-Pérez (1997) assume that
the label of a set is positive if at least one instance in the
set is positive (commonly known as the standard MIL as-
sumption (Carbonneau et al. 2018)). Similarly, Ray and Page
(2001) assume that the target variable depends only on a
single primary instance. TrueSkill (Herbrich, Minka, and



Graepel 2006) assumes additivity. These independence as-
sumptions simplify the problem substantially, since mod-
els do not have to consider interdependencies between in-
stances. In contrast, we consider more challenging non-
additive problems. Prior neural approaches for MIL such
as Zaheer et al. (2017); Ilse, Tomczak, and Welling (2018);
Murphy et al. (2019); Kalra et al. (2020) implement differ-
ent variants of the encoder-decoder strategy. The approaches
can be grouped into two groups, depending on whether the
encoder network reads all input instances in parallel or se-
quentially (see Figure 1a).

Parallel architectures usually use a permutation invariant
pooling operation such as sum, mean, or max to generate a
set embedding (Lee et al. 2019). Zaheer et al. (2017) show
that permutation invariant architectures can be described in
a fairly simple framework consisting of a network φ that
maps instance into a latent feature space, a sum pooling op-
eration, and a decoder network ρ. In this case, the encoder
can be written as encoder(X) =

∑
x∈X φ(x) = Z and the

decoder is simply decoder(Z) = ρ(Z). Even though us-
ing a sum is sufficiently expressive from a theoretical point
of view, Soelch et al. (2019) show that the networks can
be highly sensitive to the choice of the aggregation func-
tion in practice. Similarly, PointNets (Qi et al. 2017) and
PointNetST (Segol and Lipman 2020) are universal approx-
imations of invariant and equivariant set functions, respec-
tively. Soelch et al. (2019) propose a trainable recurrent
aggregation function based on the read-process-write ar-
chitecture (Vinyals, Bengio, and Kudlur 2016). Similarly,
Ilse, Tomczak, and Welling (2018) and Yang et al. (2020)
use an attention-based weighted aggregation. The encoder
can be written as encoder(X) =

∑
x∈X ai · φ(xi) where

ai = exph(xi)∑|X|
j=1 exph(xj)

and h is an implementation-specific

function to transform the input features. Lee et al. (2019)
present the self-attention-based (Vaswani et al. 2017) Set
Transformer and describe how their architecture fits into the
encoder-decoder design pattern. Similarly, Deep Message
Passing on Sets (Shi, Oliva, and Niethammer 2020) can also
model interactions between different instances.

Sequential architectures generate the embedding Z with
a sequential encoder network. For instance, Vinyals, Ben-
gio, and Kudlur (2016) compute attention weights based on
the hidden state of an LSTM and the input instances. Hence,
the encoder can be formulated as encoder(X) =

∑
aixi,

where ai are the last layer’s attention weights. Since se-
quential encoder-decoders consume one instance at each
timestep t (Cho et al. 2014; Luong, Pham, and Manning
2015), the output may change when the input is permuted
(Vinyals, Bengio, and Kudlur 2016). Several approaches ex-
ist to use permutation-sensitive models as basis for creating
permutation-invariant models. A very simple yet effective
approach is to order the objects in the input set according
to an arbitrary total ordering π before they are fed into the
permutation-sensitive model (Niepert, Ahmed, and Kutzkov
2016). Zhang, Hare, and Prügel-Bennett (2020) present a
pooling method for sets of feature vectors which can be
used to construct permutation-equivariant models. Janossy
pooling (Murphy et al. 2019) aggregates the outputs of per-

UC US WTri US+S TriC Sent
RNN 0.56 0.91 1.73 6.76 4.09 1.98
LSTM 0.22 0.43 0.87 2.68 1.01 1.58
GRU 0.21 0.47 0.86 2.44 3.02 0.74

C-RNN (ours) 0.22 0.43 0.57 2.57 3.17 0.70
C-LSTM (ours) 0.25 0.27 0.59 1.61 1.02 0.67
C-GRU (ours) 0.18 0.25 0.48 1.63 2.13 0.71

DeepSet 0.51 0.27 2.90 2.19 2.03 0.79
Attention 0.73 0.51 1.01 2.44 3.12 1.98
Set Trans. 0.30 1.91 8.72 14.74 1.22 0.92
Set Trans. L 0.28 1.72 3.01 12.61 1.19 0.91

Table 1: Mean squared errors of three different runs for
different architectures in the multiple instance learning
datasets. Median results and standard deviation can be found
in the supplementary material.

mutation sensitive models to obtain a permutation-invariant
model or an approximation thereof. Meng et al. (2019) ex-
tend Janossy pooling and use an LSTM to construct a hierar-
chical feature aggregation network for set-of-sets problems.
Zhang, Prügel-Bennett, and Hare (2019) learn how to or-
der the instances in sets before they are fed into an LSTM.
Similarly, Mena et al. (2018) learn to reconstruct scrambled
objects with Gumbel-Sinkhorn networks. Neural networks
with external memories (Das, Giles, and Sun 1992; Schmid-
huber 1992, 1993) such as RNNSearch (Bahdanau, Cho,
and Bengio 2015), Memory Networks (Weston, Chopra, and
Bordes 2015), and Neural Turing Machines (Graves, Wayne,
and Danihelka 2014) are alternative permutation sensitive
approaches. Similarly, AMRL (Beck et al. 2020) is an per-
mutation invariant external memory for reinforcement learn-
ing. Unlike the intermediate results in Capacity networks,
the external memory is an uninterpretable accumulator of
knowledge.

Effectiveness Evaluation
In the following, we evaluate the effectiveness of Capac-
ity networks and compare it with their non-capacity coun-
terparts and other prior architectures. To this end, we im-
plement three Capacity networks based on RNNs, LSTMs
(Hochreiter and Schmidhuber 1997), and GRUs (Cho et al.
2014). We refer to the resulting Capacity networks as
C-RNN, C-LSTM, and C-GRU, respectively. Capacity net-
works have the same number of trainable parameters as their
non-capacity counterparts. Following Zaheer et al. (2017),
we use 3 fully connected layers for decoder and encoder.
In all experiments, we feed the instances in random order
into the networks. Additionally, we use a DeepSet (Zaheer
et al. 2017), two Set Tranformers (Lee et al. 2019) with dif-
ferent sizes1 and an attention-based network (Luong, Pham,
and Manning 2015) as additional reference models. Mean
squared error (MSE) is used as loss and evaluation metric. In
all experiments, we report the average of three runs with dif-

1We use the code provided by the authors (Lee et al. 2019) at
github.com/juho-lee/set transformer.

github.com/juho-lee/set_transformer


ferent random seeds. Adam (Kingma and Ba 2015) is used as
optimizer as it has been used by prior works (Murphy et al.
2019) and shows good performance across several tasks and
setups (Schmidt, Schneider, and Hennig 2020). We perform
the same hyperparameter optimization for all models. Addi-
tional details can be found in the supplementary material.

Datasets
We follow prior works (Zaheer et al. 2017; Ilse, Tomczak,
and Welling 2018; Murphy et al. 2019; Kalra et al. 2020) and
generate input sets Xi and corresponding labels Yi based
on the MNIST (LeCun et al. 1998) dataset. Similar to Mur-
phy et al. (2019) and Kalra et al. (2020), we generate sets
with 10 instances and use 100k input sets for training, and
10k sets for validation and test. We generate five challenging
datasets:

In the subadditive MNIST-based Unique Sum (US) task
(Murphy et al. 2019), the goal is to learn the set function
fUS(X) =

∑9
c=0 c ·1X(c), where 1X(c) denotes the indica-

tor function. In principle, the mapping from MNIST classes
to indexes c is arbitrary. We map each class to the index cor-
responding to its numerical value, i.e. class ’1’ is mapped
to index c = 1, etc. Weighted Triangular (WTri) mod-
els superadditive effects according to fWTri(X) =

∑9
c=0 c ·

TcountX(c), where countX(c) denotes the number of times
MNIST image class c appears in set X and Tm is the m-
th triangular number, i.e. Tm = m·(m+1)

2 . Unique Sum +
Synergy Bonus (US+S) combines both subadditive and su-
peradditive effects in a single dataset by computing the label
according to

fUS+S(X) =

9∑
c=0

c · 1X(c) +
∑

i=0,j=1
i<j

10 · 1{ci,cj} ∈ P, (7)

where 1{ci,cj} ∈ P indicates whether set {ci, cj} with
MNIST classes ci and cj appear in a randomly generated set
of pairs P .

In addition to tasks based on MNIST, we also gen-
erate two datasets based on Fashion-MNIST (Xiao, Ra-
sul, and Vollgraf 2017). In Unique Count (UC), the task
is to count the number of uniquely appearing Fashion-
MNIST classes. Triangular Count (TriC) goes beyond
simply counting and computes the set labels according to
fTriC(X) =

∑9
c=0 TcountX(c).

In addition to previously used tasks, we also perform
experiments on a real-world Sentiment Analysis (Sent)
dataset (Pappas and Popescu-Belis 2017). The dataset is
based on work by McAuley, Leskovec, and Jurafsky (2012)
and available online2. A set in this dataset represents a doc-
ument containing multiple sentences. The goal is to pre-
dict the overall sentiment of the documents. We use 300-
dimensional feature representation to encode each sentence
with a standard library3 and use the overall sentiment as de-
scribed in Pappas and Popescu-Belis (2017) as label.

2Available at https://www.idiap.ch/paper/hatdoc.
3Available at github.com/UKPLab/sentence-transformers.
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Figure 2: Mean squared error for all architectures and differ-
ent set sizes in the WTri dataset.

Results
We report the results for all datasets and all architectures
in Table 1 and make several key observations. First, Capac-
ity networks achieve overall the best results. C-LSTM and
C-GRU perform better than C-RNN, indicating that Capacity
networks benefit from a more complex hidden state update
approach. Second, and more importantly, Capacity networks
perform in almost all cases better than their directly com-
parable non-capacity counterparts (i.e. RNNs, LSTMs, and
GRUs). These results provide clear evidence that the intro-
duced inductive bias has a systematic positive effect on the
network performance. Third, datasets US and WTri are eas-
ier to learn than US+S and TriC. More difficult tasks (US+S)
and more difficult images (TriC) can be explanations for this.
Hence, using these datasets in future works will contribute
to a better evaluation of neural MIL works. Furthermore, we
find that permutation invariant networks do not have a sys-
tematic advantage over permutation sensitive models albeit
the set functions to learn are permutation invariant. This is
an surprising additional insight that can be investigated fur-
ther in future work.

Experiments with Larger Set Sizes
In Figure 2, we report the performance of all architectures
for the WTri task with larger set sizes. These experiments
are more challenging and go beyond the scope of prior works
such as Murphy et al. (2019) and Kalra et al. (2020) which
only consider sets up to 10 instances. Again, we observe
that Capacity networks achieve smaller errors that their non-
capacity counterpart (dashed vs. solid lines). It should be
noted that we use a log scale for the MSE, which means
that the performance improvement when using Capacity net-
works is not approximately constant, but increases substan-
tially with increasing set sizes. We also report the perfor-
mance of other prior architectures and can confirm that they
usually perform worse for larger set sizes.

https://www.idiap.ch/paper/hatdoc
github.com/UKPLab/sentence-transformers


US WTri US+S

30k 50k 70k 30k 50k 70k 30k 50k 70k

RNN 1.42 1.01 1.04 11.68 5.91 3.02 63.87 8.27 7.88
C-RNN (ours) -0.45 -0.46 -0.54 -6.21 -3.78 -2.11 -53.98 -3.67 -4.81

LSTM 0.84 0.60 0.42 5.05 2.41 1.27 5.71 3.55 2.58
C-LSTM (ours) -0.14 -0.24 -0.12 -0.73 -0.80 -0.45 +0.43 -0.80 -0.85
GRU 0.76 0.50 0.40 4.18 1.95 1.01 6.19 4.01 2.82
C-GRU (ours) ±0.00 -0.07 +0.05 -0.45 -0.59 -0.35 -0.86 -1.12 -0.88

Table 2: MSE of three Capacity networks and their non-capacity counterparts for different training set sizes. Green and red
numbers indicate lower and higher relative MSE with respect to the non-Capacity counterparts, respectively. Best results are
highlighted in bold face. Absolute values and results for other architectures can be found in the supplementary material.
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Figure 3: Mean squared error for 5 different random permu-
tations of the instances in the US dataset.

Training with Smaller Amounts of Training Data
In Table 2, we report the performance for different amounts
of training data. Similar to the previous experiments, we ob-
serve that Capacity networks perform better than their non-
capacity counterparts in almost all cases (indicated by green
negative numbers). Absolute numbers and results of other
models can be found in the supplementary material.

Permutation Sensitivity Evaluation
We perform additional experiments to evaluate how sensi-
tive the sequential architectures are with respect to the order
of the input instances. In Figure 3, we plot the results of five
different runs with randomly permuted instances. The exper-
iments show that the permutation sensitivity of all models is
rather low, except for the RNN. In addition to the results in
Table 1, the results show that permutation sensitivity seems
to be a minor important issue in these datasets. Moreover,
we find that Capacity networks can further reduce the per-
mutation sensitivity for all three base architectures.

Interpretability Experiments
In the following, we demonstrate the improved interpretabil-
ity of Capacity networks and further advantages of Capacity
networks that are related to the improved interpretability.

Input
∑

Expected 7.00 8.00 6.00 0.00 0.00 21.00

C-RNN 6.97 7.99 6.01 0.01 0.00 20.98
∆ 0.03 0.01 0.01 0.01 0.00 0.06

C-LSTM 6.83 7.88 6.03 0.12 0.17 21.03
∆ 0.17 0.12 0.03 0.12 0.17 0.61

C-GRU 6.58 7.47 6.11 0.44 0.40 21.00
∆ 0.42 0.53 0.11 0.44 0.40 1.90

Table 3: Example for improved interpretability in the Unique
Sum dataset with 5 instances per set. We show MNIST im-
ages (first row), expected intermediate results (second row),
predicted intermediate results, and distance to the expected
values (∆ rows).

Improved Interpretability
To evaluate the interpretability of the intermediate results,
we extract the intermediate values generated by Capacity
networks from the trained models and show which interme-
diate values are expected. Table 3 illustrates the improved in-
terpretability of Capacity networks in the US dataset. It can
be seen that the networks learned the underlying set func-
tions reasonably well. In this example, the C-RNN generates
very good intermediate results while the intermediate results
generated by the C-GRU are less precise - an insight that
cannot be gained by investigating the set-level predictions
alone.

Multiplication-based Problem
In general, Capacities and Capacity networks can be ap-
plied to any (monotone) non-additive problem, which also
includes non-additive problems that have less obvious added
values such as multiplication-based problems. To illustrate
this, we created a multiplication-based dataset according to
fMult(X) =

∏n
i=1 ci, where ci indicates the class index of

instance i and define the empty set to have a utility of 1. Ta-
ble 4 shows an illustration of the learned intermediate results
to demonstrate that the Capacity networks are able to learn
added values as expected.



Input
∑

Expected 6.00 24.00 90.00 120.00

C-RNN 5.69 24.49 89.27 119.45
C-LSTM 5.34 25.03 90.34 120.71
C-GRU 2.85 26.21 88.37 117.68

Table 4: Intermediate results in a multiplication-based
dataset. In this example, the second added value needs to
be 24, since this is the amount that needs to be added to 6 to
obtain 6 · 5 = 30.

US WTri US+S TriC
C-RNN 0.29 0.14 0.40 1.32
C-LSTM 1.50 0.09 2.00 0.57
C-GRU 2.15 0.08 0.47 0.62

Table 5: Quantitative analysis of the generated intermediate
results. We report the mean absolute distance to the expected
intermediate results.

Evaluation Beyond Input-Output Testing
Capacity networks also allow in-depth evaluation beyond
mere input-output testing. More specifically, for Capacity
networks, it is not only possible to evaluate if the model pro-
duces the correct final outputs, but also to perform a quan-
titative evaluation of the intermediate results. The results of
this evaluation can be found in Table 5. We find that the ob-
tained error for the set labels does not always reliably in-
dicate which model performs best at predicting intermedi-
ate results for individual instances. Hence, the quantitative
evaluation provides additional insights, which cannot be ob-
tained for encoder-decoder architectures.

Regularizing Latent Intermediate Results
In Figure 4, we demonstrate how prior domain knowledge
can be used in Capacity networks by adding additional regu-
larization on the generated intermediate results. To this end,
we use the Unique Count problem (Murphy et al. 2019). In
this task, we can make use of the prior knowledge that no
individual contribution can be larger than 1 by adding a reg-
ularization term to the network such that intermediate values
larger than 1 are penalized. We find that the added intermedi-
ate results regularization improves the training process and
leads to better results in fewer iterations and a better per-
formance after training. Adding this kind of regularization
is only possible because Capacity networks produce mean-
ingful intermediate results during training and is not possi-
ble for their non-Capacity counterparts and other encoder-
decoder architectures.

Conclusions
We present Capacity networks, a new family of neural net-
works to aggregate information from multiple instances. In-
spired by non-additive capacities and a sequential decom-
position thereof, Capacity networks produce a latent inter-
mediate result for each instance, which models the added
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Figure 4: Mean squared test error of two C-GRUs during
training. Red and blue lines indicate the learning curves of
a C-GRU with regularization and without regularization, re-
spectively.

value of the instance with respect to all already observed
instances. This aggregation strategy differs fundamentally
from previously used encoder-decoder architectures. Our ex-
periments show that Capacity networks systematically out-
perform their non-capacity counterparts and other prior ar-
chitectures, which do not produce intermediate results, in a
wide range of setups. Furthermore, we demonstrate the im-
proved interpretability of Capacity networks that allows a
detailed inspection of the network internals, an evaluation
beyond mere input-output testing, and incorporation of prior
knowledge via intermediate result regularization.

Future Work
It is noteworthy that inductive bias presented in this work
is not limited to MIL. Aggregating information from mul-
tiple sources is also a key problem in areas such as multi-
modal learning and geometric deep learning. Hence, explor-
ing more application areas beyond MIL for Capacity net-
works is promising. Furthermore, extending Capacity net-
works to classification problems is a promising future re-
search direction, especially if the monotonicity constrained
is not enforced. Moreover, prior works have shown that
learning to order instances can further improve network ac-
curacy (Vinyals, Bengio, and Kudlur 2016). In future re-
search, it would be interesting to see if and to which extent
this also applies to Capacity networks.
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Solving the multiple instance problem with axis-parallel
rectangles. Artificial Intelligence, 89(1-2): 31–71.
Graves, A.; Wayne, G.; and Danihelka, I. 2014. Neural Tur-
ing Machines. In arXiv preprint, 1–26.
Herbrich, R.; Minka, T.; and Graepel, T. 2006. TrueSkill:
A Bayesian Skill Rating System. In Advances in Neural
Information Processing Systems 20, 569–576.
Hochreiter, S.; and Schmidhuber, J. 1997. Long Short-Term
Memory. Neural Computation, 9(8): 1735–1780.
Ilse, M.; Tomczak, J. M.; and Welling, M. 2018. Attention-
based deep multiple instance learning. In Proceedings of the
35th International Conference on Machine Learning, 3376–
3391. ISBN 9781510867963.
Kalra, S.; Adnan, M.; Taylor, G.; and Tizhoosh, H.
2020. Learning Permutation Invariant Representations us-
ing Memory Networks. In Proceedings of the 16th European
Conference on Computer Vision.
Karczmarek, P.; Kiersztyn, A.; and Pedrycz, W. 2018. Gen-
eralized Choquet Integral for Face Recognition. Interna-
tional Journal of Fuzzy Systems, 20(3): 1047–1055.
Karczmarek, P.; Kiersztyn, A.; and Pedrycz, W. 2019. Gen-
eralizations of Aggregation Functions for Face Recognition.
In Artificial Intelligence and Soft Computing, 182–192.
Kingma, D. P.; and Ba, J. L. 2015. Adam: A method for
stochastic optimization. In Proceedings of the 3rd Interna-
tional Conference on Learning Representations, 1–15.
LeCun, Y.; Bottou, L.; Bengio, Y.; and Haffner, P. 1998.
Gradient-Based Learning Applied to Document Recogni-
tion. Proceedings of the IEEE, 86(11): 2278–2324.

Lee, J.; Lee, Y.; Kim, J.; Kosiorek, A. R.; Choi, S.; and Teh,
Y. W. 2019. Set Transformer: A Framework for Attention-
based Permutation-Invariant Neural Networks. In Pro-
ceedings of the 36th International Conference on Machine
Learning, 3744–3753.
Luong, M.-T.; Pham, H.; and Manning, C. D. 2015. Effec-
tive Approaches to Attention-based Neural Machine Trans-
lation. In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, 1412–1421.
Maron, O.; and Lozano-Perez, T. 1998. A framework for
multiple-instance learning. Advances in Neural Information
Processing Systems, 570–576.
McAuley, J.; Leskovec, J.; and Jurafsky, D. 2012. Learn-
ing attitudes and attributes from multi-aspect reviews. Pro-
ceedings of the 12th IEEE International Conference on Data
Mining, 1020–1025.
Mena, G.; Belanger, D.; Linderman, S.; and Snoek, J. 2018.
Learning Latent Permutations with Gumbel-Sinkhorn Net-
works.
Meng, C.; Yang, J.; Ribeiro, B.; and Neville, J. 2019.
HATS: A hierarchical sequence-attention framework for in-
ductive set-of-sets embeddings. Proceedings of the ACM
SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, 783–792.
Murphy, R. L.; Srinivasan, B.; Ribeiro, B.; and Rao, V. 2019.
Janossy pooling: Learning deep permutation-invariant func-
tions for variable-size inputs. In Proceedings of the 7th In-
ternational Conference on Learning Representations, 1–21.
Niepert, M.; Ahmed, M.; and Kutzkov, K. 2016. Learning
Convolutional Neural Networks for Graphs. In Proceedings
of the 33rd International Conference on Machine Learning,
2014–2023.
Pappas, N.; and Popescu-Belis, A. 2017. Explicit docu-
ment modeling through weighted multiple-instance learn-
ing. Journal of Artificial Intelligence Research, 58: 591–
626.
Qi, C. R.; Su, H.; Mo, K.; and Guibas, L. J. 2017. PointNet:
Deep learning on point sets for 3D classification and seg-
mentation. Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, 77–85.
Ray, S.; and Page, D. 2001. Multiple Instance Regression.
In Proceedings of the International Conference on Machine
Learning, 425 – 432.
Schmidhuber, J. 1992. Learning to Control Fast-weight
Memories: an Alternative to Dynamic Recurrent Networks.
Neural Computation, 4(1): 131–139.
Schmidhuber, J. 1993. A ‘Self-Referential’ Weight Matrix.
In Proceedings of the International Conference on Artificial
Neural Networks, 446–450.
Schmidt, R. M.; Schneider, F.; and Hennig, P. 2020. De-
scending through a Crowded Valley - Benchmarking Deep
Learning Optimizers. In arXiv, 1–30.
Scott, G. J.; Marcum, R. A.; Davis, C. H.; and Nivin, T. W.
2017. Fusion of Deep Convolutional Neural Networks
for Land Cover Classification of High-Resolution Imagery.
IEEE Geoscience and Remote Sensing Letters, 14(9): 1638–
1642.



Segol, N.; and Lipman, Y. 2020. On Universal Equivariant
Set Networks. In Proceedings of the 8th International Con-
ference on Learning Representations.
Shi, Y.; Oliva, J.; and Niethammer, M. 2020. Deep Message
Passing on Sets. In Proceedings of the 34th AAAI Confer-
ence on Artificial Intelligence, 5750–5757.
Soelch, M.; Akhundov, A.; van der Smagt, P.; and Bayer,
J. 2019. On Deep Set Learning and the Choice of Aggrega-
tions. In Proceeding of the 28th International Conference on
Artificial Neural Networks, 444–457. Springer International
Publishing.
Sudharshana, P. J.; Petitjean, C.; Spanhol, F.; Oliveira, L.;
Honeine, P.; Sudharshana, P. J.; Petitjean, C.; Spanhol, F.;
Oliveira, L.; and Heutte, L. 2019. Multiple Instance Learn-
ing for Histopathological Breast Cancer Images. Expert Sys-
tems with Applications, 117: 103–111.
Sugeno, M. 1974. Theory of fuzzy integrals and its applica-
tions. Ph.d. thesis, Tokyo Institute of Technology.
Tehrani, A. F.; Cheng, W.; Dembczyński, K.; and
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Supplementary Material
In the supplementary material, we provide additional in-

formation on implementation details, model sizes, and the
hyperparameter optimization. Furthermore, we provide ad-
ditional results for experiments in the main paper and gen-
erate and evaluate potential intermediate results of non-
Capacity networks.

Implementation Details

In the following, we provide additional information on the
different architectures used in the experiments. As already
described in the main paper, the architectures can be de-
scribed in terms of encoder and decoder modules. Different
conventions are used to label different parts of the networks.
In particular, the pooling operation used in parallel networks
can be viewed as part of the encoder or as additional module.
As a consequence, these networks have also been described
as encoder-pooling-decoder networks (Lee et al. 2019). In
this work, we consider the pooling layer as part of the en-
coder, since the pooling generates a joint representation of
all input instances, a task that belongs to the domain of en-
coders. Similar to Zaheer et al. (2017), we performed initial
experiments with 2 and 3 layer fully connected networks
for the encoder and decoder modules (see Appendix for
more information). However, using more complex networks
is possible and perhaps beneficial for more complex input
data. We denote the fully connected layers in the encoder
and decoder by ε (’epsilon’ for ’encoder’) and δ (’delta’ for
’decoder’), respectively. Furthermore, we note that the net-
works only use one instantiation of ε and δ. Hence, different
applications of ε and δ in the architectures share parameters
with all other applications.

All models use ReLu activation in the encoders and de-
coders. We have also performed initial experiments with
Sigmoid and Tanh activation functions. However, we ob-
served that ReLu often performs better in terms of mean
squared error and results in a more stable training process.
ReLu activations have also been used by prior works (Zaheer
et al. 2017).

In non-Capacity networks, we denote the set representa-
tion by Z, whereas in Capacity networks, we denote the rep-
resentation used to generate the intermediate outputs by zi.
All models use the same number of dimensions for internal
representation (i.e. |Z| = |zi|). Having the same number of
dimensions further improves the comparability of the mod-
els, since the performance differences between the models
cannot be explained by different hidden dimension sizes.

In the following, we describe further architecture-specific
details.

DeepSet

Z = encoder(X) =
∑
x∈X

ε(x)

Y = decoder(Z) = δ(Z)

(8)

Attention
Z = encoder(X) =

∑
x∈X

ai · ε(xi)

ai =
exph(xi)∑|X|
j=1 exph(xj)

h(x) = B · tanh(A · x+ a) + b,

A ∈ Rn×d, B ∈ R1×n, a ∈ Rn, b ∈ R
Y = decoder(Z) = δ(Z)

(9)

RNN
Z = encoder(X) = hn

hi = tanh(A · [hi−1, xi] + a),

A ∈ R2n×d, a ∈ Rd

Y = decoder(Z) = δ(Z)

(10)

where [·, ·] denotes concatenation of two vectors, d equals
the number of hidden dimensions, and h0 = ~0 is used as
initial hidden state.

LSTM
Z = encoder(X) = LSTMi

Y = decoder(Z) = δ(Z)
(11)

where LSTMi is an LSTM cell according to Hochreiter and
Schmidhuber (1997) and c0 = ~0 is used as initial cell state.

GRU
Z = encoder(X) = GRUi

Y = decoder(Z) = δ(Z)
(12)

where GRUi is a GRU cell according to Cho et al. (2014)
and c0 = ~0 is used as initial cell state.

C-RNN
zi = encoder(xi) = hi

hi = tanh(A · [hi−1, xi] + a),

A ∈ R2n×d, a ∈ Rd, h0 = ~0

yi = decoder(zi) = δ(zi)

Y =

|X|∑
i=0

yi

(13)

C-LSTM
zi = encoder(xi) = LSTMi

yi = decoder(zi) = δ(zi)

Y =

|X|∑
i=0

yi

(14)

C-GRU
zi = encoder(xi) = GRUi

yi = decoder(zi) = δ(zi)

Y =

|X|∑
i=0

yi

(15)

Furthermore, we refer to Lee et al. (2019) and to http:
//github.com/juho-lee/set transformer for a detailed descrip-
tion and implementation of the Set Transformer architecture.

http://github.com/juho-lee/set_transformer
http://github.com/juho-lee/set_transformer


Model Sizes
Table 6 shows the number of trainable parameters for each
model. Most important, all sequential models (i.e. RNN,
LSTM, and GRU) and their Capacity Network counterparts
(i.e. C-RNN, C-LSTM, and C-GRU) have the same number
of parameters. Hence, the performance differences observed
in the experiments cannot be explained by different model
sizes.

Architecture Parameters
DeepSet 13,601
Attention 17,794
Set Trans. 15,809
Set Trans. L 34,753

RNN 15,681
LSTM 22,049
GRU 19,937

C-RNN (ours) 15,681
C-LSTM (ours) 22,049
C-GRU (ours) 19,937

Table 6: Number of trainable parameters for instance em-
bedding size of 64 and latent representation dimension of
32.

Hyperparameter Optimization
We performed a hyperparameter search for the following pa-
rameters and ranges: learning rate ∈ {0.01, 0.001, 0.0001},
number of hidden dimensions ∈ {8, 16, 32}, number of fully
connected layers for encoders and decoders ∈ {2, 3}. In to-
tal, we performed 486 experiments for 10 architectures and
3 datasets. Table 10 shows the results of the hyperparam-
eter optimization. It can be seen that all architectures per-
form better with 3 instead of 2 fully connected layers for
the encoder and decoder sub-networks. Moreover, 32 dimen-
sional latent representations work best for most networks.
The only exception are C-GRUs, for which 16 dimensions
work equally well. Furthermore, a learning rate of 0.001
leads to best results for all networks. Learning rates of 0.01
and 0.0001 lead to good results in only 2 out of 30 setups.
To sum, we find a common trend for all networks and use
a learning rate of 0.001, 32 hidden dimensions, and 3 fully
connected layers in all experiments. Furthermore, we per-
formed experiments with different batch sizes in the range
of 100, 500, 1000, and 2000 and found that a batch size of
1000 works well in general.

Dataset Statistics
In this section, we report statistics of the generated datasets.
Table 7 shows mean, median, variance, and standard devia-
tion of several datasets. Figure 5 illustrates the distribution
of set utilities for the datasets US, WTri, and US+S.

Additional Experimental Results for Table 1
Table 8 and Table 9 provide further details for the experi-
ments in Table 1. We report median and standard deviation

Dataset Set Size Mean Med Variance StDev
US 10 29.34 30 39.88 6.32
WTri 10 65.19 62 407.16 20.18
US+S 10 49.80 50 169.87 13.03
TriC 10 14.50 14 4.02 2.00

WTri 20 175.42 170.0 1869.67 43.24
WTri 30 330.77 323.0 4885.71 69.9
WTri 40 530.93 521.0 9805.65 99.02

US var. 28.58 29 60.73 7.79
WTri var. 66.84 62 1068.33 32.69
US+S var. 50.56 50 292.40 17.10
TriC var. 32.11 29 108.26 10.40

Table 7: Mean, median (Med), variance, and standard devia-
tion (StDev) of generated datasets with fixed and varying set
sizes.

to allow a better interpretation of the reported results.

US WTri US+S TriC
RNN 0.91 1.65 7.04 4.09
LSTM 0.41 0.87 2.80 1.01
GRU 0.48 0.89 2.56 3.98

C-RNN (ours) 0.44 0.61 2.61 4.08
C-LSTM (ours) 0.27 0.56 1.62 1.01
C-GRU (ours) 0.27 0.48 1.93 1.26

DeepSet 0.24 2.87 2.43 1.02
Attention 0.53 0.94 3.01 4.08
Set Trans. 1.93 8.39 15.15 1.21
Set Trans. L 1.66 2.80 11.31 1.19

Table 8: Median of the results in Table 1.

US WTri US+S TriC
RNN 0.10 0.21 0.64 0.00
LSTM 0.03 0.21 0.18 0.01
GRU 0.04 0.24 0.29 1.44

C-RNN (ours) 0.03 0.07 0.21 1.30
C-LSTM (ours) 0.01 0.13 0.03 0.02
C-GRU (ours) 0.06 0.08 0.49 1.39

DeepSet 0.06 0.15 0.52 1.47
Attention 0.20 0.21 0.96 1.36
Set Trans. 0.09 1.44 1.25 0.02
Set Trans. L 0.11 0.61 2.47 0.02

Table 9: Standard deviation (StDev) for the experiments in
Table 1.



US WTri US+S

Network E/D ND LR= 0.01 0.001 0.0001 0.01 0.001 0.0001 0.01 0.001 0.0001

DeepSet 2fc 8 10.53 4.90 10.45 40.09 33.65 101.69 111.83 43.50 112.10
16 6.43 2.73 3.35 19.06 22.66 52.38 52.13 16.07 29.37
32 2.35 2.19 3.10 19.80 19.15 27.72 15.31 14.14 18.34

3fc 8 13.12 3.11 3.84 7.94 11.23 26.10 157.40 - 88.05
16 0.39 0.30 3.80 2.97 5.19 15.30 5.56 - 29.25
32 0.53 0.27 0.94 3.20 3.60 11.86 8.68 2.79 7.16

Attention 2fc 8 - 7.20 9.54 - 28.08 52.37 - 40.34 78.56
16 - 0.88 2.89 - 5.43 12.72 - 6.38 37.33
32 - 0.52 1.25 - 3.76 7.95 - 3.60 11.97

3fc 8 - - - - - - - - -
16 - 0.21 1.77 - 2.16 5.93 - 3.80 44.75
32 - 0.22 0.46 - 0.98 4.12 - 1.77 28.30

C-RNN 2fc 8 - 5.63 10.49 - 36.61 54.72 - 83.70 90.56
16 - 1.38 4.16 - 5.42 26.88 - 18.34 63.88
32 - 0.80 1.63 - 2.60 10.22 - 6.58 15.37

3fc 8 - 4.21 8.59 - 25.26 36.73 - 74.67 91.49
16 - 0.48 2.43 - 1.93 14.38 - 13.47 53.18
32 - 0.47 0.79 - 0.57 6.48 - 2.86 11.99

C-LSTM 2fc 8 - 1.39 2.97 14.09 12.09 27.01 - 31.68 67.64
16 - 0.48 1.41 - 5.10 14.16 - 3.02 7.97
32 - 0.44 0.92 - 2.38 8.21 - 2.65 5.52

3fc 8 - 2.22 3.95 - 5.82 22.62 - 26.34 53.95
16 - 0.20 1.38 39.67 1.12 13.08 - 1.73 8.24
32 - 0.23 0.50 - 0.52 5.02 - 1.04 3.80

C-GRU 2fc 8 - 1.53 3.86 - 15.67 28.21 - 29.71 66.70
16 - 0.58 1.25 - 3.59 11.17 - 3.99 8.05
32 - 0.47 0.63 - 3.40 8.37 - 3.18 4.87

3fc 8 - 1.47 2.04 - 9.84 20.02 - 20.28 37.06
16 - 0.29 0.71 - 0.84 7.32 - 1.39 4.85
32 - 0.29 0.50 - 0.38 4.05 - 1.46 2.83

RNN 2fc 8 - 2.55 16.48 - 38.75 111.25 - 44.47 113.77
16 - 2.10 3.60 - 15.21 64.85 - 12.89 57.02
32 - 1.75 1.99 - 5.98 23.85 - 12.10 12.28

3fc 8 - - - - - - - - -
16 - 0.75 2.50 - 9.97 56.01 - 5.28 45.47
32 - 1.06 0.76 - 1.88 15.88 - 5.95 4.40

LSTM 2fc 8 - 0.83 2.34 - 12.32 44.67 - 16.23 32.87
16 - 0.60 0.77 - 3.85 17.51 - 3.87 4.98
32 - 0.57 0.94 - 3.55 9.21 - 3.09 6.78

3fc 8 - - - - 7.23 - - - -
16 - 0.44 0.50 - 2.05 15.69 - 2.25 3.22
32 - 0.31 0.57 - 0.74 5.10 - 2.27 2.98

GRU 2fc 8 - 0.71 1.43 - 11.22 26.02 - 12.66 20.74
16 - 0.61 0.74 - 4.46 13.94 - 3.23 4.37
32 - 0.52 0.60 - 2.26 8.75 - 2.82 3.19

3fc 8 - - - 50.76 - - - - -
16 - 0.48 0.53 - 2.11 7.46 - 2.49 3.19
32 - 0.38 0.54 - 0.65 4.25 - 2.57 2.67

Set Trans. 8 4.29 3.43 4.95 33.80 27.07 50.27 25.24 20.54 25.74
16 2.08 2.69 3.79 18.62 16.62 27.55 21.58 16.99 19.68
32 2.89 1.91 2.73 28.89 8.40 22.12 16.07 11.98 14.34

Set Trans. L 8 2.68 2.42 3.08 15.45 17.19 35.02 16.44 18.22 19.41
16 1.85 1.99 2.54 17.09 8.00 27.06 13.53 12.69 13.41
32 2.20 1.79 2.12 25.81 2.38 13.51 13.19 12.40 13.26

Table 10: Hyperparameter search results. We report mean squared validation error for all architectures, used encoder/de-
coder sub-networks (E/D), number of hidden dimensions (ND), and learning rate (LR) for three datasets. For Set Trans. and
Set Trans. L, we use the architecture used in prior work (Lee et al. 2019) and, hence, do not use different encoder/decoder
sub-networks. Cells without result indicate that the network did not converge to a reasonable result in this setup. We highlight
the best result in each box.
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Figure 5: Distribution of set utilities for different datasets.
Top: US, middle: WTri, bottom: US+S

Results without Enforcing Non-negative
Intermediate Results

In Table 11, we report results without enforcing non-
negative intermediate results by removing abs(.) in Equa-
tion 8. We observe that the accuracy can further improve
in several cases and that we achieve even new best results
in three datasets (US, US+S, TriC). These results indicate
that removing the monotonicity constraint can be helpful
to achieve better results. However, it should be considered
Choquet capacities always enforce monotonicity. Hence, by
removing the monotonicity constraint the proposed idea be-
comes less strongly related to Choquet capacities.

US WTri US+S TriC
C-RNN (w/o abs.) 0.40 0.79 2.12 0.98
C-LSTM (w/o abs.) 0.22 0.66 1.28 1.03
C-GRU (w/o abs.) 0.21 0.75 1.05 1.02

Table 11: Results without absolute value computation.

Additional Results for Varying Set Sizes
To evaluate the sensitivity of the models to varying set
sizes, we generated a dataset with 6, 8, 10, 12, and 14 in-
stances. In addition to Table 12, we report the median of the
mean squared error for experiments with varying set sizes
in Table 13. The results confirm previously made observa-
tions that Capacity networks perform better than their non-
Capacity counterparts in these experiments.

US WTri US+S TriC
RNN 1.31 3.55 9.12 107.51
LSTM 0.42 2.14 2.76 2.16
GRU 0.43 1.01 2.45 105.26

C-RNN 0.36 0.98 2.92 38.07
C-LSTM 0.25 0.77 1.56 1.89
C-GRU 0.29 0.40 1.75 1.57

Table 12: Mean squared errors for varying set sizes.

US WTri US+S TriC
RNN 1.20 4.06 9.51 107.51
LSTM 0.40 1.59 2.77 2.11
GRU 0.40 0.98 2.56 105.26

C-RNN 0.39 1.03 3.01 3.44
C-LSTM 0.26 0.69 1.52 1.82
C-GRU 0.28 0.40 1.78 1.49

Table 13: Median for experiments with varying set sizes.

Additional Results for Experiments with
Varying Amounts of Training Data

Table 14 contains results for parallel architectures for the ex-
periments with varying amounts of training data. In contrast



US WTri US+S

30k 50k 70k 30k 50k 70k 30k 50k 70k

DeepSet 1.54 9.84 0.35 10.85 6.20 4.24 111.38 6.03 55.68
Attention 1.88 0.42 0.35 5.56 2.70 2.18 65.61 4.42 2.24
Set Trans. 4.61 3.30 2.50 34.03 19.08 12.53 27.07 20.39 17.28
Set Trans. L 3.50 2.62 1.95 20.81 13.47 9.36 18.63 17.17 14.97

RNN 1.42 1.01 1.04 11.68 5.91 3.02 63.87 8.27 7.88
LSTM 0.84 0.60 0.42 5.05 2.41 1.27 5.71 3.55 2.58
GRU 0.76 0.50 0.40 4.18 1.95 1.01 6.19 4.01 2.82

C-RNN 0.98 0.55 0.50 5.47 2.14 0.91 9.89 4.60 3.07
C-LSTM 0.70 0.37 0.29 4.33 1.60 0.82 6.14 2.75 1.73
C-GRU 0.76 0.42 0.45 3.73 1.37 0.66 5.33 2.89 1.94

Table 14: Mean squared error of three architecture vs. each architecture equipped with our newly proposed inductive bias on
three datasets with different non-additive utility functions for four different training set sizes.

to the main paper, in which we focused on the difference
between Capacity networks and their non-Capacity counter-
parts by showing relative values, we new report absolute val-
ues.

Quantitative Results for Figure 3
In Table 15, we report the quantitative results for the illus-
tration in Figure 3.

RNN C-RNN LSTM C-LSTM GRU C-GRU

Median 0.88 0.39 0.34 0.23 0.35 0.28
Mean 0.82 0.38 0.34 0.22 0.34 0.28
StDev 0.13 0.06 0.03 0.03 0.05 0.04

Table 15: Median, mean, and standard deviation (StDev) for
the results in Figure 3.

Additional Improved Interpretability
Illustrations

Table 16 provides more insights on learned intermediate re-
sults similar to Table 3. Specifically, we provide two more
examples for the WTri and the US+S dataset. Similar to the
results in Table 3, it can be observed that Capacity networks
learn reasonable intermediate results without any instance-
level supervision.

Evaluating Intermediate Results of
Non-Capacity Networks

In principle, it is possible to obtain results similar to
the intermediate results generated by Capacity networks
by applying non-Capacity networks to subsets of the in-
put. To this end, we train the networks as described pre-
viously an apply the decoder of the networks to the
subsets {x1}, {x1, x2}, .... The added valued of xi can
then be computed according to decoder({x1, . . . , xi}) −
decoder({x1, . . . , xi−1}). However, unlike Capacity net-
works, the decoder of non-Capacity networks has never been

Input
∑

Expected 2.00 4.00 3.00 6.00 6.00 21.00

C-RNN 1.99 4.00 2.98 5.95 5.65 20.57
∆ 0.01 0.00 0.02 0.05 0.35 0.43

C-LSTM 2.02 3.97 3.04 6.00 6.21 21.24
∆ 0.02 0.03 0.04 0.00 0.21 0.30

C-GRU 2.03 3.97 2.92 5.95 6.38 21.25
∆ 0.03 0.03 0.08 0.05 0.38 0.57

Input
∑

Expected 7.00 9.00 12.00 0.00 5.00 33.00

C-RNN 6.86 8.97 11.92 0.11 5.03 32.89
∆ 0.14 0.03 0.08 0.11 0.03 0.39

C-LSTM 6.09 8.50 12.27 0.57 5.70 33.13
∆ 0.91 0.50 0.27 0.57 0.70 2.95

C-GRU 6.81 8.59 11.91 0.24 5.01 32.56
∆ 0.19 0.41 0.09 0.24 0.01 0.94

Table 16: Illustration of improved interpretability in the
WTri (top) and US+S (bottom) dataset. We show the MNIST
input instances (first row), the expected intermediate results
(second row), the predicted intermediate results, and the dif-
ference to the expected value (∆ rows).

trained to generate good intermediate results during train-
ing. Hence, it is unlikely that this strategy performs well.
To demonstrate this, we apply the idea to the WTri and TriC
datasets and compute the mean absolute error of the obtained
intermediate results with respect to the expected intermedi-
ate results. Table 18 shows that non-Capacity indeed gener-
ate very poor intermediate results, specifically in the WTri
dataset, compared to Capacity networks.

Accuracy Results for Table 2
In Table 17, we report the accuracy results for the RNN
and the C-RNN architecture. The results show that not only



US WTri US+S

30k 50k 70k 30k 50k 70k 30k 50k 70k

RNN 60.61 68.93 73.22 17.01 29.06 40.13 46.70 54.52 53.71
C-RNN 71.42 92.31 96.13 33.04 71.37 74.30 30.67 58.74 76.51

Table 17: Additional accuracy results for Table 2.

RNN C-RNN LSTM C-LSTM GRU C-GRU

WTri 12.45 0.12 17.56 0.11 13.25 0.09
TriC 3.84 1.10 3.47 0.81 11.75 1.15

Table 18: Mean absolute error of intermediate results.

the mean squared error improves substantially, but also the
achieved accuracy if the task is understood as classification
problem. It is likely that better results can be achieved if a
classification loss such as the cross-entropy loss are used if
the accuracy should be maximized.
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