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Abstract—Hyperdimensional computing (HDC) is an emerging
computing paradigm that represents, manipulates, and commu-
nicates data using very long random vectors (aka hypervectors).
Among different hardware platforms capable of executing HDC
algorithms, in-memory computing (IMC) systems have been
recently proved to be one of the most energy-efficient options,
due to hypervector manipulations in the memory itself that
reduces data movement. Although implementations of HDC on
single IMC cores have been made, their parallelization is still
unresolved due to the communication challenges that these novel
architectures impose and that traditional Networks-on-Chip and
Networks-in-Package were not designed for. To cope with this
difficulty, we propose the use of wireless on-chip communication
technology in unique ways. We are particularly interested in
physically distributing a large number of IMC cores performing
similarity search across a chip, and maintaining the classification
accuracy when each of which is queried with a slightly different
version of a bundled hypervector. To achieve it, we introduce a
novel over-the-air computing that consists of defining different
binary decision regions in the receivers so as to compute
the logical majority operation (i.e., bundling, or superposition)
required in HDC. It introduces moderate overheads of a single
antenna and receiver per IMC core. By doing so, we achieve a
joint broadcast distribution and computation with a performance
and efficiency unattainable with wired interconnects, which in
turn enables massive parallelization of the architecture. It is
demonstrated that the proposed approach allows to both bundle
at least three hypervectors and scale similarity search to 64 IMC
cores seamlessly, while incurring an average bit error ratio of
0.01 without any impact in the accuracy of a generic HDC-based
classifier working with 512-bit vectors.

I. INTRODUCTION

Hyperdimensional computing (HDC) is an emerging com-
putational framework and is based on the observation that key
aspects of human memory, perception and cognition can be
explained by the mathematical properties of hyperdimensional
spaces comprising high-dimensional vectors known as hyper-
vectors [1]. Hypervectors are defined as d-dimensional (where
d ≥ 1, 000) (pseudo)random vectors with independent and
identically distributed components. When the dimensionality
is in the thousands, a large number of quasi-orthogonal hyper-
vectors exist. This allows HDC to combine such hypervectors
into new hypervectors using well-defined vector operations,
such that the resulting hypervector is unique and with the same
dimension. A number of powerful computational models are
built on the rich algebra of hypervectors [2]–[5].

HDC has been employed in a range of applications such
as cognitive computing [6]–[8], robotics [9], distributed com-

puting [10]–[12], communications [13]–[18], and in various
aspects of machine learning. It has shown significant promise
in machine learning applications that especially demand few-
shot learning [19]–[23], in-sensor adaptive learning [24], [25],
multimodal learning [26], [27], and always-on smart sens-
ing [28]. By its very nature, HDC is extremely robust in
the presence of failures, defects, variations, and noise, all of
which are synonymous to ultra-low energy computation. It
has been shown that HDC degrades very gracefully in the
presence of various faults compared to baseline classifiers:
HDC tolerates intermittent errors [29], permanent hard errors
(in memory [30] and logic [31]), and spatio-temporal vari-
ations [32] in emerging technologies as well as noise and
interference in the communication channels [15], [18]. These
demonstrate robust operations of HDC under low signal-to-
noise ratio and high variability conditions.

What these different HDC algorithms have in common is
to operate on very large vectors, and therefore, are in need
of architectures that handle such operations efficiently. For
instance, HDC involves similarity searches across a set of
stationary hypervectors in an associative memory, which are
generally implemented in the form of dot-products. Due to
this, in-memory computing (IMC) is a natural fit to HDC
algorithms [32]. An IMC core departs from the von Neumann
architectures which move data from a processing unit to a
memory unit and vice versa by exploiting the possibility
of performing operations (dot products, in our case) within
the memory device itself [33]. This improves both the time
complexity and the energy consumption of the architecture.

IMC systems have been proposed recently to execute HDC
tasks using hypervectors as wide as 10,000-bit [32]. As further
elaborated in Section II, IMC cores are capable of computing
similarity searches through dot-products with unprecedented
energy-efficiency, e.g., over 100× energy saving compared
to a digital accelerator [32]. However, the scaling of such
architecture remains unclear due to the associated challenges.
On the one hand, scaling up the architecture requires sharing
a very large IMC core across many hypervectors—e.g., there
will be a need to continually store and search over thousands
hypervectors for representing novel classes in the incremental
learning regime [19]—which poses a problem in terms of
array impedances and programming complexity [34]. On the
other hand, scaling out requires deploying multiple IMC
cores to execute similarity searches in parallel. This implies
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distribution and broadcasting hypervectors across a potentially
large number of modules, which puts a large pressure on the
system interconnect.

This paper focuses on the scaling out of IMC-based HDC
systems and the interconnect challenge that comes with it. In
highly parallel many-core systems, Networks-on-Chip (NoC)
and Networks-in-Package (NiP) are typically used to intercon-
nect the different processing elements and ensure a correct
data orchestration. However, parallelizing several similarity
searches for HDC is demanding, especially when it imposes
all-to-one followed by one-to-all traffic patterns, a scenario
for which conventional NoCs and NiPs suffer to provide a
competitive performance. Hence, the interconnect becomes
a bottleneck, severely limiting the scalability of the HDC
architecture.

To address the scalability problem of IMC-based HDC ar-
chitectures, in this paper we propose to use wireless communi-
cations technology. Wireless Network-on-Chip (WNoC) have
shown promise in alleviating the bottlenecks that traditional
NoC and NiP face, especially for collective traffic patterns
and large-scale interconnection demands that are common in
HDC [35]–[39]. To that end, WNoCs provide native broadcast
capabilities. These properties are put in use for the proposed
architecture, sketched in Fig. 1, with a novel approach that
aims to answer the following question: Given Q as a set of
hypervectors that are superposed Over-The-Air (OTA), how
could different physically distributed on-chip receivers reliably
preform similarity search while each receiving a slightly
different version of Q? To address it, we leverage the full
electromagnetic knowledge of the chip package and engineer
constellations to enable wireless OTA computations leading
to a lightweight all-to-all concurrent communications at the
chip scale. The resulting WNoC will be uniquely suited to
the communication requirements of HDC operations while
opportunistically bypassing the main limitations of wireless
technology: the impact of relatively low aggregate bandwidth
and high error rate are minimal thanks to the OTA approach
and the inherent resilience of HDC algorithms to noise.

This paper makes the following three novel contributions.
(i) For the first time, we use a wireless interconnect solution
for HDC platform that allows scaling-out similarly search
across multiple independent on-chip receiver modules. (ii) For
the first time too, we enable more than one simultaneous
transmitter to make use of OTA computation on a chip. (iii)
We leverage a pre-characterization of the chip package to
optimize OTA from multiple transmitters to multiple receivers.
The proposed architecture is designed and evaluated at the
electromagnetic level, demonstrating that it can support up
to 64 receivers with 3 transmitters with an average bit error
ratio (BER) of 0.01 and the maximum BER of 0.1, which do
not have any impact in the accuracy of a generic HDC-based
classifier operating with 512-bit hypervectors.

The rest of the paper is organized as follows. In Sec. II,
we provide background on the topics of HDC, IMC, and
wireless communications at the chip scale. In Sec. III, we mo-
tivate the problem by illustrating the scale-out of IMC-based

Fig. 1: Overview of the proposed many-core wireless-enabled
IMC platform. Orange encoders map to our wireless TX, while
green IMCs map to our wireless-augmented IMCs. Bit-wise
majority operation maps to the wireless OTA computation.

HDC architectures and then propose the wireless solution. In
Sec. IV, we depict the simulation methodology encompassing
electromagnetic simulation, signal processing, and HDC-based
learning. In Sec. V, we show the main results of the analysis.
The paper is concluded in Sec. VI.

II. BACKGROUND

A. Hyperdimensional Computing

Here we focus on a variant of HDC models by making
use of pseudo-random binary vectors of thousands of dimen-
sions [1]. When using these binary hypervectors, it is easy to
find nearly unlimited non-coincident quasi-orthogonal vectors
with normalized Hamming distance close to 0.5. We call these
random hypervectors atomic hypervectors. In classification
tasks, one can further create an encoder to operate on these
atomic hypervectors by binding, bundling (i.e., superposition),
and permutation operations to obtain a composite hypervector
describing an object or event of interest. The composite hyper-
vectors, generated from various examples of the same class,
can be further bundled together to create a single prototype
hypervector representing a class. Particularly, the bundling
operation for binary hypervectors is implemented as a logical
bit-wise majority operation. The prototype hypervectors are
stored in the associative memory.

In the inference stage, the query hypervectors of unknown
objects/events are generated by following the same procedure
as in the training stage. A query hypervector is later compared
to the prototype hypervectors in the associative memory. Then,
the chosen label is the one assigned to the prototype hyper-
vector that has the highest similarity to the query vector. The
robustness to failure is given by the spreading of information
across thousands of dimensions. See [22] for more details.



B. In-memory Computing

IMC is a non von Neumann architecture that leverages the
memory unit to perform in-place computational tasks, reducing
the amount of data movement and therefore cutting down the
latency and energy consumption associated with in-package
communication [33]. That is, instead of fetching the data
from the memory to the processing unit in order to carry
out computations and store the results back to the memory,
in IMC systems the operation is directly carried out in the
computational memory, which requires less communication.

The latency produced by memory accesses is problematic
in computing systems in general, but it can be more or
less harmful depending on the particular application being
executed, as it can limit the overall performance of the system.
When this happens, and the memory accesses become the
bottleneck, the term memory wall is commonly used, referring
to the disparity between the processing speed and the ability
of the memory to provide data to, or receive data from, the
processing units. Several memory and architecture concepts
have been designed and manufactured in the recent years to
overcome these problems, such as high-bandwidth memory
[40], 2.5D and 3D monolithic integration [41], interposers
or hybrid memory cube [42]. However, from a complete
architectural point of view, these are ad-hoc solutions that
are not expected to solve the problem from the root, as the
fundamental problem of moving large quantities of data from
memory and back remains. Instead, the novel approach of IMC
is being developed and appears as a promising candidate to
overcome these challenges [33].

Resistance-based IMC cores, and more specifically those
based on phase-change memory (PCM) devices, have recently
shown promising results [43]. In a resistance-based IMC
core, we can encode certain values as conductances of PCM
devices placed in a mesh-like array. Then, by Ohm’s law
and Kirschhoff’s law, a matrix-vector multiplication (MVM),
essential to execute any machine learning algorithm, is as
simple as tuning conductances to match the matrix values,
inputting the vector as voltages from one side and finally
reading the output currents from a perpendicular side.

Although IMC architectures are capable of executing vari-
ous HDC operations [32], we are particularly interested in the
similarity search in the associative memory. As shown in Fig.
2, since the prototype hypervectors Pi will be programmed
in an IMC core, the similarity search through the dot product
can be implemented as a MVM with the query hypervector Q
as input vector. This allows performing a dot-product in O(1)
time complexity.

C. Wireless Network-on-Chip

NoCs are currently the de facto standard interconnects in
modern multiprocessors due to their low latency and high
throughput capabilities in systems with a few dozen processing
cores. However, NoCs face significant challenges when scal-
ing the architectures or when facing specific communication
patterns such as broadcast or reductions. This has led to

Fig. 2: Similarity search example in an IMC core. Since the
prototype hypervector of the third column is the most similar
one to the query vector Q, it will output more current than
the others and its associated label will be chosen.

the point where systems are starting to be communication-
bounded instead of computation-bounded. WNoCs have been
introduced, among other alternatives, to overcome these issues.
WNoCs are the result of augmenting cores or groups of cores
with RF transceivers and antennas allowing them to commu-
nicate wirelessly through the chip package with all cores that
are within range [44]–[46]. Even though this technology is
still under development, proof-of-concept designs have been
successfully implemented and tested [47].

Among the key advantages of WNoCs, one can find a
natural support to broadcast communications, reduced latency,
and an adaptive network topology [36], [39], [48], [49].
Hence, WNoCs can be especially advantageous if they are
used to serve specific communication patterns that are very
challenging to tackle using conventional NoCs [46]. This is
of relevance in this work, as HDC algorithms being executed
over IMC platforms make an intensive use of broadcast and
reduction patterns, leading to important bottlenecks when
scaled over traditional NoC/NiP platforms. In this case, the key
strength of WNoCs lies on its use for broadcast communica-
tion, while it is in principle less suited to all-to-one reduction
patterns. However, as we detail next, thanks to the proposed
OTA computing solution, WNoCs become a perfect candidate
to enabling the scalability of IMC-based HDC architectures.

III. TOWARDS WIRELESS-ENABLED SCALE-OUT
HDC ARCHITECTURES

Although HDC has a great potential and IMC systems are
used to execute it efficiently, the scaling of such systems, as
essential as it is to satisfy the insatiable appetite of machine
learning for computational resources, is still a pending matter.
In architectural terms, IMC-based HDC systems can be scaled
by either increasing the size of the IMC cores (scale-up) or
by placing more cores in the system (scale-out).

On the one hand, scaling-up becomes complex as the
required in-memory wire length blows up exponentially with
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(a) Logical view. (b) Wireless-enabled realization with OTA computing.

Fig. 3: Proposed scale-out approach of a HDC platform involving M encoders generating queries q1 · · · qM , the computation
of a composite query Q via bit-wise majority, and N IMC cores performing similarity search over multiple copies of Q. In
the wireless case, the IMC cores receive different versions of Q (Q′, Q′′, Q′′′) that are decoded minimizing the distance to Q.

the array size, leading to issues related to wire resistance
and parasitic effects. Moreover, the complexity of weight
programming also increases with the array size [34].

On the other hand, scaling-out is a technologically viable
alternative. Fig. 3a shows a logical diagram of the desired
scaled-out IMC architecture, capable of executing a HDC-
based classifier. The M encoders at the left compute the
different query hypervectors, which will be bundled later on
through the majority operation. Each encoder can encode data
from e.g., different sensory modalities [26], [27], or streaming
channels [18]. This is highly desirable since by doing a
bundling of M queries, we virtually increase the throughput by
a factor of M . That is, we compress all the queries information
in a single one instead of having M independent transmissions
and redundant bundling at the similarity search cores. The N
IMC cores, at the right of Fig. 3a, are in charge of compar-
ing the composite query hypervector with all the prototype
hypervectors they have stored, enabling the aforementioned
scaling-out. By following this modular approach, a system as
powerful as required by each application could be designed
by varying M and N .

Challenges of wired scale-out. Notwithstanding, scaling
out casts a significant pressure to the system interconnect.
Firstly, the interconnection between the M encoders and a
hypothetical circuit performing the bit-wise majority would
result in heavy reduction M -to-1 traffic. Should the bundling
operation be performed using a wired interconnect, we would
have to add a centralized processing core with extra circuitry,
which would not scale linearly with the number of encoders.
Secondly, the interconnection between the bundling block and
the N IMC cores follows a broadcast topology, which becomes
slow and inefficient as N grows [36].

Even in the case of full co-integration of the encoders
with specialized bundling circuitry and IMC cores, the system
would need to provision a non-scalable amount resources.
A lower cost modular alternative, proposed in other deep
learning acceleration systems [50], is to build the architecture
with specialized chiplets and to integrate them through an
interposer. In this case, however, the interposer becomes a

bottleneck in terms of bandwidth and connectivity due to I/O
pin limitations. This leads to multi-hop and serial-link schemes
that add significant energy and latency per hop, i.e., ∼1 pJ and
∼20 ns [50], with hop counts typically scaling with

√
N for

unicasts and with N for broadcasts [46].
In summary, wired scale-out of HDC platforms is challeng-

ing because: (i) the reduction (all-to-one) pattern generated by
the bundling operation not only creates a communication bot-
tleneck, but also acts as an implicit barrier; (ii) the broadcast
(one-to-all) pattern of query distribution is inherently costly in
chiplet-based systems; and (iii) both operations are sequential.
Proposed architecture. We tackle the three problems of
wired scale-out at once by augmenting a many-core HDC
platform with a WNoC. Fig. 3b shows the proposed WNoC
implementation with M encoders augmented with wireless
TXs and N IMC cores augmented with wireless RXs. The
encoders broadcast, in a concurrent fashion and using a single
channel, the different queries to be bundled. As a result of the
wave propagation, each receiver will obtain a slightly different
version of the superposition of all transmitted signals, which
will be decoded using the channel state information, which
is quasi-static and known a priori. Hence, the final majority
result is known in the RXs per each TX bit combination. That
is, we can pre-assign different decision regions that map the
received superposed symbols to their logical majority per each
RX, as illustrated in Fig. 4. See Sec. IV for more details.

In summary, the proposed architecture is built upon three
key observations:

• Given the controlled package scenario, OTA computing
can be leveraged. In particular, the majority operations
required by the bundling of hypervectors can be per-
formed over-the-air (OTA) with low error thanks to a
pre-characterization of the channel.

• The inherent broadcast nature of wireless communica-
tion allows to implement single-hop in-package transfers.
This, together with the OTA bundling, allows for a seam-
less parallelization of the similarity search over multiple
associative memories at the chip scale while completely
eliminating the communication bottleneck.



Fig. 4: Example of decision regions of over-the-air (OTA)
majority computation for three transmitters {q1, q2, q3} at two
distinct receivers. Blue/green regions map to 0/1.

• The resilience of the HDC paradigm to errors makes
it highly tolerant to poor BER conditions. Indeed, a
drawback of wireless technology in general and OTA
computing in particular is that it can suffer from relatively
high error rates, leading to inefficient designs. However,
as we show later in the paper, HDC is inherently resistant
to such conditions and allows to scale the proposed
approach to tens of IMC cores.

IV. METHODOLOGY

The main contribution of this work is the validation of
the OTA on-chip computing concept and scalability assuming
a realistic chip package. Fig. 5 summarizes the procedures
followed to evaluate the proposed approach. First, a package
has been modelled in CST Studio [51] together with its
corresponding chiplets, as also shown in Fig. 5. The operating
frequency is 60 GHz, compatible with the on-chip environment
[45]. Symbols are transmitted with an amplitude of 0 dBm
per antenna [47], and the phase is discretized in 45 degree
steps. Both time-domain and frequency-domain simulations
for a simultaneous excitation of all TXs have been performed.
The results have been post-processed to extract delay spread,
path-loss data and phase data. Next, this has been used in
MATLAB to perform a constellation search. That is, among
all the different possible symbol phases and for all TX bit-
combinations, the ones reporting the best BERs have been
chosen. Finally, the error rate figures have been used in
an HDC framework in order to characterize the impact of
the wireless channel in the overall architecture in terms of
classification accuracy.
Source coding. The way the TX encode the bits of their
queries is by varying their phases. That is, all TX symbols
will have same amplitude but different phases. We sweep a
discrete set of 8 phases in the TXs in order to characterize
the electromagnetic behaviour in each case and to find the
best separable phase combinations. That is, we consider as
RX constellation the aggregation of all the possible TX
combinations. When choosing the optimal TX phases (two
per sender, each one assigned to the binary 1 or 0), however,
we have two points to consider: first, we have to meet the
independent phase requirement. That is, we have to make sure
that each TX only uses two phases and that the phase of each

TX is independent of each other; secondly, the TX phases
affect all RXs, meaning that, when we fix the symbol phases
we fix the received constellation for all receivers. This implies
that a joint optimization considering all RXs is needed.

As an instance of the proposed approach and for illustration
purposes, let us consider three TXs. In that case, we have
a constellation with 23 = 8 symbols for each RX. In order
to map the eight symbols to their binary majority result,
four corresponding to maj(·) = 1 and four corresponding
to maj(·) = 0, decision regions are computed using the K-
means clustering algorithm with K = 2. We make sure that
each cluster contains four symbols and that the combination of
TX phases allows the mapping to the majority result. Fig. 6
shows an example of this method in three distinct RXs: on
top, we show the received signals considering all possible bit
combinations in the TXs and for all the swept phases, whereas,
on bottom, we see the chosen constellations. Further, Fig. 7
shows the chosen transmitted phases for the case under study
and how they are mapped in a particular receiver.
Error rate assessment. Once the candidate clusters are ob-
tained, we compute the BER of each constellation in each RX,
for all the different possible symbol phases, and choose the
cluster that leads to the lowest average BER across RXs. In all
cases, the BER has been evaluated considering the centroids
of each binary cluster as ideal received symbols, and using the
analytical expression of error rate of BPSK,

BERBPSK = 0.5 · erfc
(
0.5 · dc√

N0

)
, (1)

where erfc(·) is the complementary error function, dc is the
distance among centroids and N0 is the noise spectral density.
Bundling and accuracy evaluation. Once the final TX phases
have been chosen considering the best average BER, an in-
house Python HDC is used to evaluate its impact on the
accuracy. Every associative memory connected to an RX stores
100 different prototype hypervectors, i.e., 100 different classes,
each with 512-bit that suffices for the scenario considered
in this paper. Errors coming from the OTA computations are
modeled as uncorrelated bit flips over the query hypervectors.

While the baseline bundling consists on simply computing
the bit-wise logical majority result across the different TX bits,
we also consider a permuted bundling. This bundling consists
on permuting the queries in the TXs prior to applying the
majority operation to them. By permuting the hypervectors
we obtain two benefits. First, this allows the identification of
the transmitter of the detected class from the composite query.
If we make each transmitter to apply a 1-bit cyclic permutation
to its query before sending it to the wireless channel, the
detected bundled hypervectors will contain the information of
such permuted versions. Then, each receiver can expand its
prototype hypervector set with their permuted versions, each
corresponding to a different transmitter signature. The second
direct benefit of permuting the hypervectors is that it helps
increasing the quasi-orthogonality between them, which has
a direct impact in accuracy, since the TXs share a common
codebook of hypervectors.



Fig. 5: Overview of the evaluation methodology and layout of a sample architecture with 3 TXs and 64 RXs. The package is
enclosed in a metallic lid and empty spaces are filled with vacuum. h1 = 0.1 mm; h2 = 0.01 mm; l1 = 7.5 mm; s = 3.75
mm; L1 = 33 mm; L2 = 30 mm.

Fig. 6: Sweep of all possible phase combinations (top) and
chosen to minimize the error rate of the majority computation
(bottom). Blue/green symbols map to logical 0/1.

Fig. 7: Constellation and truth table with transmitted phases/
bits for a specific RX. Blue/green symbols map to logical 0/1.

V. RESULTS AND DISCUSSION

After applying the proposed methodology and the careful
optimization of the TX symbols as illustrated in Fig. 6, we
obtained the TX phases shown in Fig. 7 for our 3-TX system.
The assessment of the error rate considering the chosen TX
phases is summarized in Fig. 8, which plots the BER of each
particular receiver in the 64-RX system under study. As it
can be seen, the BER values are very much dependent on the
particular receiver, with values lower than 10-5 in a significant
amount of cases, but also with a worst-case BER of ∼0.1. In
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Fig. 8: Resulting BER values per each individual RX in the
architecture. The dashed line indicates the average value.
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Fig. 9: Architecture scalability in a 3 TXs scenario.

average, the error rate is below 0.01. Time-domain simulations,
not shown for the sake of brevity, further confirm that the OTA
computation can be done at multi-Gb/s rates.

To understand how the error rate could scale with the
number of receivers, we re-simulate the entire architecture
with a varying number of RX cores and computing the average
BER obtained in each case. As shown in Fig. 9, the average
BER generally increases with the number of receivers for
which we are optimizing the architecture. This is expected
since, when accommodating more constellations in our optimal
TX phases search, we are imposing more conditions and
hindering the joint optimization across all receivers.

Next, to evaluate the performance of the proposed archi-
tecture, we execute a typical HDC-based classification task
by introducing the wireless error figures in the HDC chain.



Fig. 10: Impact on the accuracy of a classification task when
increasing the error rate of the encoder-to-search interconnect.
TABLE I: Accuracy results in an IMC for the analyzed
bundling techniques, a variable number of TXs, both for
an ideal channel (no errors) and for a channel with BER
equivalent, in average, to that obtained with 64 RXs.

Baseline
Bundling

Number of bundled hypervectors
Channel 1 3 5 7 9 11

Ideal 1 0.966 0.902 0.803 0.704 0.543
Wireless 1 0.966 0.9 0.801 0.699 0.537

Permuted
Bundling

Number of bundled hypervectors
Channel 1 3 5 7 9 11

Ideal 1 1 1 1 0.995 0.978
Wireless 1 1 1 1 0.994 0.963

First, we illustrate the impact of errors on the classification by
performing a generic classification task test over 100 prototype
hypervectors of 512 bits, with increasing error rates. As Fig. 10
depicts, the class accuracy remains above 99% even when we
apply bit flips equivalent to a BER of 0.26. This means that
the noise robustness provided by the HDC properties relaxes
the error link conditions, ensuring a correct behaviour under
the worst-case wireless scenarios, as we show next.

Fig. 11a and Fig. 11b show the similarity search result
for the baseline bundling and permuted bundling cases, re-
spectively, after comparing the composite query hypervector
against a set of 100 prototype hypervectors. The figures
show how a single query has capacity enough to successfully
accommodate several queries via bundling (blue line), and
that the error introduced by the wireless OTA computation
reduces the similarity but does not introduce any classification
errors (green line). Table I shows the numerical results of the
final class accuracy for the executed task, comparing an ideal
channel without errors with our wireless channel with a sizable
BER. The effect of the wireless channel is practically irrelevant
in terms of accuracy, as predicted by Fig. 10. Moreover,
the permuted bundling significantly improves the baseline
bundling, confirming that the proposed approach supports the
aggregation of a dozen hypervectors over the air and the
parallelization of similarity search over tens of IMCs.

VI. CONCLUSION

In this work, we introduced an OTA on-chip computing con-
cept capable of overcoming the scalability bottleneck present
in wired NoC architectures when scaling out IMC-based HDC
systems. By using a WNoC communication layer, a number
of encoders is able to concurrently brodacast HDC queries

(a) Baseline bundling

(b) Permuted bundling

Fig. 11: Similarity results comparison for different forms
of bundling and number of bundled hypervectors. We show
bundling of one, three, five and seven hypervectors.

towards all the IMC cores within the architecture. Then, a
pre-characterization of the propagation environment allows to
map the received constellations to the computed composite
query, in each core, based on a decision region strategy.
Through a proper correspondence between the TX phases, the
received constellation and the decision region, we have shown
that the opportunistic calculation of the bit-wise majority of
the transmitted HDC queries is possible with low error. We
demonstrated the concept and shown its scalability up to 11
TXs and 64 RXs, obtaining the BER of the OTA approach
and later employing it to evaluate the impact of the WNoC
errors in a HDC classification task. Overall, we conclude that
the quality of the WNoC links are solid enough to have a
negligible impact on the application accuracy, mostly thanks
to the great error robustness of HDC.
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