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Abstract—Detecting Out-of-Distribution (OOD) samples in real
world visual applications like classification or object detection has
become a necessary precondition in today’s deployment of Deep
Learning systems. Many techniques have been proposed, of which
Energy based OOD methods have proved to be promising and
achieved impressive performance. We propose semantic driven
energy based method, which is an end-to-end trainable system
and easy to optimize. We distinguish in-distribution samples from
out-distribution samples with an energy score coupled with a
representation score. We achieve it by minimizing the energy for
in-distribution samples and simultaneously learn respective class
representations that are closer and maximizing energy for out-
distribution samples and pushing their representation further
out from known class representation. Moreover, we propose a
novel loss function which we call Cluster Focal Loss(CFL) that
proved to be simple yet very effective in learning better class wise
cluster center representations. We find that, our novel approach
enhances outlier detection and achieve state-of–the-art as an
energy-based model on common benchmarks. On CIFAR-10 and
CIFAR-100 trained WideResNet, our model significantly reduces
the relative average False Positive Rate(at True Positive Rate of
95%) by 67.2% and 57.4% respectively, compared to the existing
energy based approaches. Further, we extend our framework for
object detection and achieve improved performance.

I. INTRODUCTION

Deploying reliable machine learning systems in safety-
critical applications like biometric authentication, medical
diagnosis or autonomous driving is of paramount importance.
Not only safety critical but classification and object detection
solutions deployed to mobile, e-commerce applications require
a robust model for best user experience. The inductive bias
for the above mentioned applications is generally very high
with models trained through supervised learning, as we violate
the most basic i.i.d (independent and identically distributed)
assumption, that assumes that training data and real world data
we encounter during inference are independent and identically
distributed. In reality, these applications are subjected to deal
with data that belongs to different distributions altogether.
Modern neural networks are most vulnerable when trained on
particular data distribution and inferred on samples belonging
to a distribution far from training distribution (called out-
of-distribution (OOD) samples or outliers). This vulnerability
motivates us in designing more robust and foolproof systems
for OOD detection.

Supervised learning approaches produce semantic represen-
tations that can discriminate classes labeled in the training
dataset, relying on softmax confidence. However, softmax

Fig. 1. Softmax based classifiers perform well on IN-distribution data,
however, fires false predictions(scores in red colour) for OOD data samples
with high confidence. Our proposed framework(CFL-MLSE) scores are much
more reliable and robust against such distribution, compared to softmax and
energy [22] model.
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based OOD detection approaches fail often as they can
produce high confidence scores even for OOD samples. To
overcome that, recently [22] proposed an energy based train-
ing method to output energy score to detect OOD samples.
Although effective in discriminating OOD samples, it lacks to
impart better discriminative representation to establish large
margin between in-distribution samples and out-distribution
samples.

Many approaches [11] have been proposed to improve
discriminative power of learned features. We take our
motivation from linear discriminant analysis and K-means
clustering, and propose a framework for OOD detection which
is two-fold:
• We minimize the intra-class variations to have compact

class cluster representation while keeping outliers
separated from all class clusters, to learn representations
that enhance its discriminative power to detect outliers.
Further, we propose a novel loss function called cluster
focal loss that can enhance the representations of class
wise cluster centers with maximum inter class separation.

• We couple metric learning based distance function with
the energy function to jointly minimize the score for
inliers and maximize the score for outliers, the learned
score separates inliers from outliers during inference. We
call the joint score as semantic energy score (SE score)
and propose several variants of the framework.

Our approach exceeds state-of-the-art on OOD test sets. At the
same time, the method enhances accuracy for in-distribution
test. As shown in Figure 1, when a trained model is subjected
to open world images, more often than not, we cannot entirely
rely on softmax confidence alone. It can be seen that in certain
scenarios modeling energy alone would not suffice due to
visual similarities in OOD samples compared to samples in
in-distribution. These are the tough cases that can be resolved
through our methodology by bringing semantic information to
model energy.

II. RELATED WORK

In machine learning, the techniques of Openset Recognition
(OSR) and Out-of-Distribution detection have very subtle
differences between them. Sometimes the terms are used
synonymously in literature.

Strictly speaking, the goal of open set recognition is to
accurately classify new and unknown data that belongs to
training distribution and reject data that does not belong to
this distribution. OOD methods on the other hand models
to determine if an input data sample belongs to training
distribution and not concerned about correct classification, if
data sample belongs to in-distribution. Despite differences in
approaches and subtleties in the techniques, we emphasize a
hybrid approach that can complement the short falls in each
method.

Energy based models have a long history in the fields
of physics, statistics and machine learning. [16], [33] have
shown that Energy Based Models (EBM) rather than being
specified as normalized probability, they can be specified as

negative log-likelihood probability. In doing so, one doesn’t
have to calculate normalizing constant, also called partition
function, which is intractable more often. With this EBMs
have found wide applications in many fields of machine
learning like density estimation [32], [34] for statistically
modeling to fit data, discriminative learning [8], [9] for
classification and regression, reinforcement learning [10] for
learning energy based policies for continuous states and
actions, natural language processing [3], [24] for learning
syntactic and semantic distributed vector representations and
generative modeling [6], [28], [35] for image generation.

A. Open-Set Recognition

We have various OSR methods in literature that employ
different data strategies to perform open set recognition. [26]
tries to generate examples through GANs that are visually
close to training examples and yet do not belong to any
training category. Some methods use unknown data to learn
characteristics that separate from known distribution. [5] uses
a conditional GAN based method conditioned on feature
embedding drawn from a metric space to generate samples
belonging to out-of-distribution novel classes. [15] uses GAN
to augment open data in two ways, one by generating fake data
based on open set samples, second by generating intermediate
features for open-set. Both features and images are used
to train discriminator. [4] designs novel losses to maximize
entropy for unknown inputs. They also modify magnitudes
of deep feature space to increase separation. [1] modifies
the softmax layer of the neural network. The scores in
the penultimate layer are redistributed to accommodate for
unknown class. Weibull distribution is fit to Mean Activation
Vectors(MAV) of each class. During inference, depending
on parameters of learned Weibull distribution, scores are
redistributed to recognize unknown classes. Few methods do
not require additional data. They try to learn the underlying
structure of known distribution to distinguish from unknown
distribution. [11] introduces inter-intra loss (abbreviated as ii-
loss) to bring intra classes together and separate inter classes in
their deep feature representation. We borrow inspiration from
this method to model in-distribution classes to have better inter
class separability in high dimensional feature space through
our novel cluster focal loss function. This inter class separation
maintain accuracy of inlier samples during inference.

B. Out of Distribution Detection

OOD detection methods in literature follow several
strategies to detect novel or outlier samples. Few are distance
based detection methods while some are classification based
detection methods. [17] train classifier to be less confident
on unknown distribution at the same time generating training
samples similar to unknown distribution samples. This is
classification based detection method with GANs. There are
also various detection score methods proposed like prediction
entropy [25], KL-Divergence score [13]. [14] proposed
a generalized Out-of-Distribution Image Detection(ODIN)
method to increase the gap in softmax classifier for inlier and



Fig. 2. Score distribution for Softmax, Energy [22] and our proposed
technique, for in- and out-distribution samples. Our proposed CFL-MLSE
method clearly leads to a better energy gap.

outlier samples. Interestingly, Grathwohl et al. [8] has shown
that joint energy based model training implicitly improves
calibration, robustness and OOD detection. Liu et al. [22]
prove that there exists a direct relation between output of
a network after the softmax layer and Gibbs distribution of
class specific energy values. We extend this concept to multi-
levels in the penultimate layers of the network. In doing so,
we induce sparsity of activations in channels that don’t fire
for a pattern and boost the density of activations in channels
that fire for a pattern. To the best of our knowledge, ours is a
novel attempt to introduce this concept. This would enhance
the separability between inliers and outliers.

III. METHODOLOGY

Its critically important to detect outliers in safety critical
applications, however, it is also equally important to
maintain good classification accuracy for in-distribution data
simultaneously. Hence, we propose an end-to-end trainable
loss formulation that is based on two objectives:
i.) Shape the energy surface of the network to separate inliers
from outliers through Energy based modeling.
ii.) Integrate semantics into the energy model. For better
semantic representation class wise, we employ clustering in
feature space by our novel Cluster Focal Loss.

A. Problem Formulation

The core of the energy-based model (EBM) [22] is to
provide a function E(x) = RD −→ R that maps each point x
of an input space to a single scalar referred to as energy. A
collection of energy values could be turned into a probability
density p(x) through the Gibbs distribution as follows:

p(y|x) = e−E(x,y)/T∫
y′
e−E(x,y′)/T

(1)

where T is the temperature parameter. The energy-based
model has an inherent connection with classification models in
modern machine learning. Consider a neural network classifier
f(x) : RD −→ RK, which maps an input x ∈ RD to K
real-valued numbers known as logits. These logits are used to
derive a categorical distribution using the well-known softmax
function. As derived in [22], an energy for a given input (x, y)
can be defined as E(x, y) = −fy(x) where fy(x) indicates the
yth index of f(x) i.e., the logit corresponding to the yth class
label. The free energy function E(x; f) over x ∈ RD can be
expressed in terms of denominator of the softmax activation:

E(x; f) = −T. log
k∑
i

efi(x)/T (2)

Due to limitations in the existing energy framework
indicated earlier, we propose and formulate a novel semantic
driven energy-based framework that incorporates the semantic
cluster distances through cosine similarity into the energy
scoring function.

B. Proposed Approach

1) Semantic Driven Energy-bounded Learning: As
proposed in [22], through an energy-bounded learning
objective the neural network is fine-tuned to create an energy
difference by assigning lower energies to the in-distribution
data, and higher energies to the OOD data. Additionally, we
propose to couple metric learning based distance function
with the energy function to explicitly minimize the joint
objective for in-distribution samples and maximize the score
for out-distribution samples. We refer this loss function as
semantic energy loss and train our energy-based classifier via
following objective:

min
θ

E(x,y)∼Dtrain
in

[− logFy(x)] + λ.Lsem energy (3)

where F (x) is the softmax output of the classification model
and Dtrainin is the in-distribution training data. The scalar
hyperparameter λ is used to weigh the semantic energy loss.

The overall training objective combines the standard cross-
entropy loss, along with an energy loss defined in terms of
semantic energy:

Lsem energy = E(xin,y)∼Dtrain
in

(max(0, Es(xin)−min))
2

+E(xout,y)∼Dtrain
out

(max(0,mout − Es(xout)))2
(4)

where Dtrainout is the unlabelled auxiliary OOD training data.
We use squared hinge loss with dual margin hyper-parameters
min and mout to penalize out of bound positive and negative
samples in train data to help model learn better energy gaps.

Es(x; f) = −T. log
k∑
i

eZi(x)/T (5)

Zi(x) = SIMi(x).fi(x) (6)



SIMi(x) =
f(x).Mi

‖f(x)‖‖Mi‖
(7)

where SIMi(x) is defined as cosine similarity between the
logit vector f(x) (fi(x) is logit of ith class) and Mi i.e. class
mean activation vector corresponding to the ith class label.

Comparing Eq. 2 and Eq. 5, it is clear that both equations
have similar forms and illustrate that our semantic driven
formulation fits naturally to an energy based framework.

Learning cluster representations: Firstly, in practice, the
matrix M could be initialized leveraging a pretrained softmax
based classifier. The pretrained logits serve as a good prior for
mean vector initialization. Other options can also be through
cluster based learning approaches like minimizing the ii-
loss [11] which encourages separation between classes in a
learned representation space. However, for effective cluster
representation learning we propose a novel loss function,
which we call Cluster Focal Loss(CFL).

During training, the model is first trained for a few iterations
with cross entropy loss to get a good initial estimate of cluster
means. Post that, we calculate the class wise cluster means
on train data. Once the initial estimate of the cluster center
means is estimated, we start training with CFL objective loss
and constantly update the cluster means from each mini-batch
using exponential moving average(EMA) and store it as part
of the model. Further, the versatility of the obtained matrix
M capturing the semantic information is not just confined to
training, but we propose to leverage it during inference as well,
as described in Eq. 9

Proposed Cluster Focal loss: Our motivation is to get
maximum separation between classes by learning a better
representation in large dimensional spaces. To this end, we
propose a novel loss function. Our proposed Cluster Focal
Loss is an intuitive, simple and yet effective loss function
that works well with any softmax based learning objective.
Our loss objective is inspired from the focal loss [20]. In
contrast to improving classification accuracy where Focal Loss
is usually applied on, we observe that learning better class wise
cluster representation also depends on two key factors. One,
the need to mitigate the ill-effects of large class imbalances
that are usually encountered during training. Second, the need
to differentiate between hard and easy examples, so we can
down-weight easy ones and focus on the hard ones. Our
method is simple, we calculate scaled semantic similarity of
logits wrt. cluster centres. We define the formulation of our
novel loss function as:

CFL(S(x)) = −α(1− S(x))γ log(S(x)) (8)

where γ ≥ 0 is the tunable focusing parameter. A weighting
factor α ∈ [0,1] is introduced for each class based on cross-
validation or set to a scalar value for simplicity. S(x) is the
softmax applied on scaled semantic similarity vector, where
for each ith class the similarity value is SIMi(x) as defined
in Eq. 7. The effectiveness of training with our proposed
loss functions is summarized in Table I, where the model

In-dataset Method FPR95 AUROC AUPR
CIFAR-10 Softmax 51.04 90.90 97.92

ODIN [19] 35.71 91.09 97.62
Mahalanobis [18] 37.08 93.27 98.49
OE [12] 8.53 98.3 99.63
Energy [22] 4.92 98.76 99.72
Ours 1.61 99.51 99.89

CIFAR-100 Softmax 80.41 75.53 93.93
ODIN [19] 74.64 77.43 94.23
Mahalanobis [18] 54.04 84.12 95.88
OE [12] 58.10 85.19 96.40
Energy [22] 29.14 94.32 98.74
Ours 12.41 97.18 99.37

TABLE I
COMPARISON OF OOD DETECTION METHODS (AVERAGED OVER 5 OOD

DATASETS). BOLD REPRESENTS SUPERIOR RESULTS.

particularly trained with proposed CFL (refer to our method
in Table I) yields superior results, against prior state-of-the-
art methods. To the best of our knowledge, ours is the first
attempt to introduce a focal loss based method for learning
class wise cluster centers.

Multi Layer energy training: We study the behaviour
of energy training on multiple layers simultaneously end-
to-end. We chose to include the final three layers of the
final resnet block to train with our proposed semantic energy
formulation. We run multiple experiments to demonstrate
that the energy surface of few final layers of the network
can be easily modeled for better OOD detection without
loss in in-distribution accuracy. We observe that it becomes
harder to model lower layers as it deteriorates accuracy of
the model. We propose multiple layer energy training. We
employ accumulated multiple layer vanilla energy along with
CFL based semantic energy formulation for final layer to
build the total energy score. We have benchmarked our CFL
loss against other popular cluster methods like ii-loss [11]
(refer to the results in Table IV). SE in the table indicates
semantic energy based formulation. MLSE indicates Multi-
Layer Semantic Energy formulation. SE and MLSE employ
ii-loss to learn cluster center representation. CFL-MLSE(our
proposed method in Tables I, II, III) indicates CFL based
Multi-Layer semantic energy formulation.

2) At Inference: Semantic Energy score as OOD Score:
Our proposed semantic energy (SE score) serves as a scoring
function that is able to distinguish between in- and out-of-
distribution in a more discriminative way compared to the
vanilla energy framework [22]. Inspired from [22], we propose
semantic driven energy-based inference using the function
Es(x; f) in Eq. 5 for OOD detection:

Gs(x; τ, f) =

{
0 if − Es(x; f) ≤ τ
1 if − Es(x; f) > τ

(9)

where τ is the semantic energy threshold. For benchmarking
purposes, we choose the threshold using in-distribution data
so that a high fraction of inputs are correctly classified by the
OOD detector Gs(x) The proposed SE score can be easily
calculated via the logsumexp operator.



OOD Testset Method FPR95 AUROC AUPR
Softmax 59.28 88.5 97.16

ODIN [19] 49.12 84.97 95.28
TEXTURES Mahalanobis [18] 15.0 97.33 99.41

OE [12] 12.94 97.73 99.52
Energy [22] 2.79 99.05 99.75

Ours 0.67 99.73 99.94
Softmax 48.49 91.89 98.27

ODIN [19] 33.55 91.96 98.0
SVHN Mahalanobis [18] 12.89 97.62 99.47

OE [12] 4.36 98.63 99.74
Energy [22] 9.31 98.06 99.59

Ours 2.23 99.52 99.90
Softmax 59.48 88.2 97.1

ODIN [19] 57.40 84.49 95.82
PLACES365 Mahalanobis [18] 68.57 84.61 96.2

OE [12] 19.07 96.16 99.06
Energy [22] 9.07 97.87 99.51

Ours 3.25 99.15 99.82
Softmax 52.15 91.37 98.12

ODIN [19] 26.62 94.57 98.77
LSUN Mahalanobis [18] 42.62 93.23 98.6

OE [12] 5.59 98.94 99.79
Energy [22] 2.54 99.22 99.83

Ours 1.59 99.37 99.85
Softmax 56.03 89.83 97.74

ODIN [19] 32.05 93.50 98.54
iSUN Mahalanobis [18] 44.18 92.66 98.45

OE [12] 6.32 98.85 99.77
Energy [22] 0.87 99.63 99.93

Ours 0.32 99.77 99.95

TABLE II
DETAILED COMPARISON OF SEVERAL OOD DETECTION METHODS, ON

INDIVIDUAL OOD DATASETS. WIDERESNET IS TRAINED ON CIFAR-10
AS IN-DISTRIBUTION DATASET AND TESTED ON STANDARD OOD

DATASETS.

IV. EXPERIMENTS AND RESULTS

In this section, we benchmark our approach in comparison
with state-of-the-art on image classification task. We
demonstrate the effectiveness of our approach on a wide range
of OOD evaluation benchmarks.

A. Setup

Dataset: We use CIFAR-10 and CIFAR-100 as our in-
distribution datasets, ImageNet1 as outlier dataset for training.
We use the standard split for each dataset. Like the train data
setup in prior work [22], we also remove all images from
ImageNet that have overlap with CIFAR-10 and CIFAR-100.
For instance, there are 61K and 267K images in ImageNet data
belonging to categories common in CIFAR-10 and CIFAR-
100 respectively, and thus removed from the train set. For
OOD testing, we use 5 common OOD datasets: SVHN [27],
Places365 [39], Texture [2], LSUN [37] and iSUN [36] for
testing.

Evaluation Metrics: We compare our approach with the
state-of-the-art approaches on three diverse metrics: (1) FPR95
- the false positive rate of OOD samples when true positive
rate of in-distribution samples is 95% (lower the better); (2)
AUROC - area under the receiver operating curve (higher

1Note that previous work has used 80 Million TinyImages as the outlier
dataset for training, which has now been withdrawn from the community.
Thus, we have used ImageNet for all our experiments.

Fig. 3. UMAP (first row) and t-SNE (second row) representation for Softmax,
Energy [22] and our CFL-MLSE for CIFAR-10 classes and OOD samples.

the better); (3) AUPR - area under the precision-recall curve
(higher the better).

B. Results

Training Details: For a fair comparison we chose the
network architecture as WideResNet [38] architecture with
32x32 resolution as used in previous approaches to train all the
image classification models. In our experiments, the weight
λ of Lsem energy is 0.1 and temperature parameter T = 1
In consistent with the training settings as in [22], the batch
size is 128 for in-distribution data and 256 for unlabeled
OOD training data. In this paper, we use PyTorch [29] for
implementation of our models.

1) Qualitative Results: Firstly, we showcase qualitative
results of our approach. In Figure 2, we compare the
score distribution for in-distribution (CIFAR-10) and out-
distribution samples for Softmax approach, vanilla Energy [22]
and our proposed CFL based Multi-layer Semantic Energy
approach(CFL-MLSE). We observe that Softmax scores are
heavily overlapping for in-distribution and out-of-distribution
samples, leading to a large number of mis-classifications in
OOD samples. Our semantic energy approach significantly
reduces the overlap in scores between in- and out-samples as
compared to Softmax and vanilla energy formulation. Thus,
demonstrating the effectiveness in accurately separating OOD
samples from in-distribution samples.

Next, in Figure 3, we compare the 2-dimensional UMAP
[31] and t-SNE [23] representations of learned features for in-
(CIFAR-10) and out-samples from the penultimate layer of
WideResNet. We observe that Softmax produces overlapping
clusters where OOD samples lie in and around the in-
class clusters. On the other hand, our CFL-MLSE approach
produces semantic preserving distinctive clusters where OOD
samples are far off from the in-class clusters.

Furthermore, we present more subjective results on out-of-
distribution data samples. In Figure 4, for the images enclosed
in green coloured box, our proposed CFL-MLSE predicts
much lower absolute scores for outlier images. On the other
hand, predictions in terms of softmax probability and absolute
Energy score [22] are much higher leading to false positives.



OOD Testset Method FPR95 AUROC AUPR
Softmax 83.29 73.34 92.89

ODIN [19] 79.27 73.45 92.75
TEXTURES Mahalanobis [18] 39.39 90.57 97.74

OE [12] 61.11 84.56 96.19
Energy [22] 4.83 98.66 99.71

Ours 4.40 98.82 99.75
Softmax 84.49 71.44 92.93

ODIN [19] 84.66 67.26 91.38
SVHN Mahalanobis [18] 57.52 86.01 96.68

OE [12] 65.91 86.66 97.09
Energy [22] 19.81 96.33 99.23

Ours 7.88 98.09 99.56
Softmax 82.84 73.78 93.29

ODIN [19] 87.88 71.63 92.56
PLACES365 Mahalanobis [18] 88.83 67.87 90.71

OE [12] 57.92 85.78 96.56
Energy [22] 12.12 97.7 99.52

Ours 11.6 97.81 99.54
Softmax 82.42 75.38 94.06

ODIN [19] 71.96 81.82 95.65
LSUN Mahalanobis [18] 21.23 96.0 99.13

OE [12] 69.36 79.71 94.92
Energy [22] 58.32 88.24 97.3

Ours 21.4 94.85 98.78
Softmax 82.8 75.46 94.06

ODIN [19] 68.51 82.69 95.80
iSUN Mahalanobis [18] 26.10 94.58 98.72

OE [12] 72.39 78.61 94.58
Energy [22] 50.63 70.70 97.95

Ours 16.75 96.35 99.22

TABLE III
DETAILED COMPARISON OF SEVERAL OOD DETECTION METHODS, ON

INDIVIDUAL OOD DATASETS. WIDERESNET IS TRAINED ON CIFAR-100
AS IN-DISTRIBUTION DATASET AND TESTED ON STANDARD OOD

DATASETS.

Thus, CFL-MLSE score serves as a suitable method for OOD
detection task. However, the red coloured box represents a set
of images for which all the three methods failed in detecting
them as out-of-distribution as all the scores are relatively high.
For instance, a bird is predicted as a plane. A plausible reason
could be attributed to close resemblance of visual cues in the
image leading to this confusion.

Figure 2 and Figure 3 show that our CFL based Multi Layer
Semantic Energy approach helps in significantly lowering the
OOD mis-classification rate while preserving the semantics of
in-distribution classes.

2) Quantitative Results: In this section, we quantitatively
benchmark our approaches against the current state-of-the-
art energy based approaches and against several other OOD
detection methods including the standard Softmax approach.
We benchmark our approach CFL-MLSE where WideResNet
is trained as well as tested with semantic energy.

We showcase the results on 3 evaluation metrics: FPR95,
AUROC and AUPR, in Table I. The table shows the averaged
results on 5 OOD test datasets with CIFAR-10 and CIFAR-
100 as the in-distribution datasets. Our CFL based Multi-Layer
Semantic Energy framework (CFL-MLSE described in Section
III) outperforms achieving relative average FPR95 reduction
by 67.2% on CIFAR-10 and 57.4% on CIFAR-100

Table II and Table III showcases our benchmarked results
against state-of-the-art OOD methods on 5 individual testsets.

Fig. 4. Green Box contains a set of images where CFL-MLSE predicts lower,
and thus better absolute scores for detecting outlier samples compared to
Softmax probability and Energy score [22]. Red Box contains a set of images
where all the methods failed for OOD-detection.

Our approach significantly reduces the relative FPR95 by
18.9% on CIFAR-10 and by 46.1% on CIFAR-100 over
state-of-the-art energy based model on OOD detection while
marginally improving AUROC and AUPR on both the datasets.

V. ABLATION ANALYSIS

A. OOD analysis for classification models

We conduct ablation studies for further understanding and
thorough analysis of our proposed approach. To demonstrate
the impact of our methodology on detecting outliers and
improving in-distribution accuracy, we provide our ablation
study with incremental setups adding our novel features one
by one to each as described below. First, we explain our
Semantic Energy (SE) setup. Second, we describe an improved
framework called Multi Layer Semantic Energy (MLSE).
Third, we present CFL based MLSE framework.



In-dataset Method FPR95 AUROC AUPR
CIFAR-10 SE 3.99 98.90 99.77

MLSE 3.03 99.13 99.82
CFL-MLSE 1.61 99.51 99.89

CIFAR-100 SE 15.72 96.07 99.04
MLSE 13.29 96.32 99.0
CFL-MLSE 12.41 97.18 99.37

TABLE IV
ABLATION RESULTS OF OUR PROPOSED OOD DETECTION APPROACHES

(AVERAGED OVER 5 OOD DATASETS). BOLD REPRESENTS SUPERIOR
RESULTS. OUR PROPOSED APPROACHES: SE (SEMANTIC DRIVEN ENERGY)

MLSE (MULTI LAYER WITH SE FRAMEWORK) CFL-MLSE (CLUSTER
FOCAL LOSS WITH MLSE FRAMEWORK) TRAINED ON WIDERESNET.

1) Semantic Energy (SE) framework −We study the
effectiveness of our approach when the model is trained with
ii-loss and our SE loss. Moreover, we also update the mean
cluster vector for each mini-batch via EMA during training.
This implies that, as the model learns through a semantic
energy-bounded objective by assigning lower energies to the
in-distribution data, and higher energies to the OOD data, the
distribution of matrix M also gets updated for cluster distance
calculation.

2) Multi Layer Semantic Energy (MLSE) framework −We
propose a multiple layer training setting, which we refer to
as MLSE. The idea is to explore the effect of considering
an aggregated energy score through training multiple layers
as an energy based model. To begin with, we incorporate ii-
loss [11] for learning the cluster representation. Next, unlike
the SE framework, where only the final layer is leveraged, here
multiple layers contribute to energy bounded learning. To be
more specific, MLSE and SE have no difference in architecture
i.e. both have exactly the same number of model parameters,
yet MLSE exceeds SE in performance comprehensively as
shown in Table IV.

3) CFL based Multi Layer Semantic Energy (CFL-MLSE)
framework −Unlike the SE and MLSE frameworks, in this
experiment we introduce our proposed CFL to learn the
semantics of class wise cluster centres. To understand the
efficacy of CFL, we then train our model end-to-end using
the MLSE formulation with ii-loss replaced by our CFL
for modeling cluster representation. This training framework
involves both our major contribution, and thus we have
showcased performance of this model in Tables I, II and III.

The quantitative results of our ablation are provided in Table
IV. For all the methods described, the models have the same
size and exactly the same number of parameters. It can be
observed that all the three proposed methods discussed above
perform better than prior art. MLSE has an edge over SE
in terms of FPR95 reduction, which can be attributed to the
multi-levels involved in it’s energy scoring function.

We further analyze the effect of our proposed CFL training
on one of our best performing models. Not only does CFL-
MLSE enhances the performance objectively (as shown in
Table IV) but CFL efficacy is also evident from the qualitative
analysis as illustrated in Figure 5. This thorough ablation
justifies the superiority of our method.

Fig. 5. Ablation study of our proposed approaches: SE, MLSE, CFL-MLSE
model. It can be observed that CFL(in CFL-MLSE method) further helps to
create a greater gap in energy scores between IN-distribution and OOD data,
and also forms better clusters.

B. Energy based OOD for Object Detection

We extend our semantic driven energy based approach from
classification to object detector models. We choose to work on
a two stage object detector architecture model, to check the
effectiveness of our approach on an out-of-distribution dataset.
Specifically, we use Faster R-CNN [30] in our experiments.

In our experiments, we use Pascal VOC 2007 [7] as IN-
distribution dataset. We train the classifier branch with our
proposed SE, CFL-SE method. We do not incorporate Multi-
Layer based variants of our framework due to feasibility
reasons in the Faster R-CNN architecture. For OOD train
data, we do not explicitly provide out-of-distribution labels
as openset dataset. Instead, we leverage the negative class
labels obtained from the proposal target layer [30] during
the training and use them as out-of-distribution samples.
Without disturbing the regression branch, we train only the
classification head with our energy bounded learning approach
for 50k iterations with a learning rate of 10−4 and no weight
updates for rest of the network. We keep exactly the same
setting to train for vanilla energy [22] setup as well.

For evaluation, we use MS COCO testset [21] and remove
the images having overlap with VOC2007 classes. We consider
classification and overlapping thresholds of 0.5 and 0.3
respectively for predictions. We benchmark the softmax based
pretrained F-RCNN model [30], vanilla energy [22] and our
proposed semantic driven energy based model. We keep
the same evaluation setup across all the models for a fair
comparison. We showcase our results in Table V. It is
observed that both our model’s performance exceeds the
prior methods, with good reduction in FPR95 for out-of-

Testset Experiment FPR95 AUROC AUPR
Softmax 87.42 76.30 82.12

MS COCO Energy [22] 91.63 73.82 77.27
(OUT-distribution) SE (Ours) 83.57 78.87 82.69

CFL-SE(Ours) 73.88 79.59 79.69

TABLE V
COMPARISON OF OOD PERFORMANCE FOR OBJECT DETECTION TASK.

F-RCNN IS TRAINED AND TESTED ON PASCAL VOC TRAIN-TEST
DATASET AS IN-DISTRIBUTION DATASET. MS COCO TESTSET IS USED AS

OUT-OF-DISTRIBUTION DATASET FOR BENCHMARKING.



distribution object detection setting, while maintaining similar
numbers on the IN-distribution Pascal VOC testset. Hence,
outperforming state-of-the-art energy [22] based OOD model
as object detector.

VI. CONCLUSION

In this paper, we proposed a novel and effective semantic
driven energy based approach for out-of-distribution (OOD)
detection. Our method significantly improves OOD detection
on prior state-of-the-art methods. Along with separating in-
distribution and out-of-distribution samples, our approach
preserves class semantics, thereby improving or maintaining
in-distribution accuracy and outperforming the current energy-
based approaches and other methods in OOD detection.
We also introduce novel Cluster Focal Loss that is majorly
focused on learning better representation of class wise cluster
centres with maximum inter class separation. This work is
largely focused on image classification and two stage object
detectors. Future work involves exploring the effectiveness of
our approach in video understanding like video classification.
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