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Abstract—Real-world electricity consumption prediction may
involve different tasks, e.g., prediction for different time steps
ahead or different geo-locations. These tasks are often solved
independently without utilizing some common problem-solving
knowledge that could be extracted and shared among these tasks
to augment the performance of solving each task. In this work,
we propose a multi-task optimization (MTO) based co-training
(MTO-CT) framework, where the models for solving different
tasks are co-trained via an MTO paradigm in which solving each
task may benefit from the knowledge gained from when solving
some other tasks to help its solving process. MTO-CT leverages
long short-term memory (LSTM) based model as the predictor
where the knowledge is represented via connection weights and
biases. In MTO-CT, an inter-task knowledge transfer module is
designed to transfer knowledge between different tasks, where the
most helpful source tasks are selected by using the probability
matching and stochastic universal selection, and evolutionary
operations like mutation and crossover are performed for reusing
the knowledge from selected source tasks in a target task. We
use electricity consumption data from five states in Australia to
design two sets of tasks at different scales: a) one-step ahead
prediction for each state (five tasks) and b) 6-step, 12-step, 18-
step, and 24-step ahead prediction for each state (20 tasks).
The performance of MTO-CT is evaluated on solving each of
these two sets of tasks in comparison to solving each task in
the set independently without knowledge sharing under the same
settings, which demonstrates the superiority of MTO-CT in terms
of prediction accuracy.

Index Terms—Multi-task optimization, inter-task knowledge
transfer, source task selection, long short-term memory, mutation,
crossover.

I. INTRODUCTION

Multi-task optimization (MTO) [1]–[3], a recently emerging
research area in the field of optimization, mainly focuses on
investigating how to solve multiple optimization problems
at the same time so that the processes of solving relevant
problems may help each other via knowledge transfer to
boost the overall performance of solving all problems. MTO
assumes some useful common knowledge exists for solving
related tasks so that the helpful information acquired from
addressing one task may be used to help solve another task if
these two tasks have certain relatedness [4]. Given its superior
performance, MTO has been successfully applied to solve
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the benchmark optimization problems [5]–[7] and real-world
applications [8]–[10]. The research challenges arising from
MTO include how to find the helpful source tasks for a target
task and how the knowledge from selected source tasks can
be extracted, transferred, and reused in a target task.

Evolutionary MTO (EMTO) [11], [12] leverages evolution-
ary algorithms (EAs) [13] as the optimizer, aiming to unleash
the potential of the implicit parallelism featured in EAs for
solving MTO problems, where multiple optimization problems
are addressed within a unified search space and knowledge
is typically represented in the form of promising solutions
and transferred via certain evolutionary operations such as
crossover and mutation. The development of EMTO includes
multifactorial evolutionary algorithm (MFEA) [11] that is
one of the most representative EMTO built on the genetic
algorithm (GA), multitasking coevolutionary particle swarm
optimization (MT-CPSO) that employs multiple swarms for
solving multiple tasks [14], an adaptive evolutionary multi-
task optimization (AEMTO) framework that can adaptively
choose the source tasks with probabilities for each target task
working with differential evolution (DE) [15], an evolutionary
multitasking-based constrained multi-objective optimization
(EMCMO) framework developed to solve constrained multi-
objective optimization problems by incorporating GA [6], etc.,
from which different EAs are involved and their advantages
are adopted to exchange knowledge among different tasks.

EMTO has been applied to address regression and classi-
fication problems [16], [17]. A co-evolutionary multitasking
learning (MTL) approach was proposed in [18] to solve a
tropical cyclone wind-intensity prediction problem, where a
multi-step ahead prediction problem is formulated as multiple
one-step ahead prediction tasks with knowledge represented
as a certain part of the neural network. A binary version of an
existing multitasking multi-swarm optimization was proposed
in [8] to find the optimal feature subspace for each base learner
in an ensemble classification model. In [19], an evolutionary
multitasking (EMT) ensemble learning model was proposed
to solve the hyperspectral image classification problem by
modeling feature selection (FS) as an MTO problem. An EMT-
based FS method named PSO-EMT was proposed in [20]
for solving the high-dimensional classification problem. PSO-
EMT mainly focuses on converting a high-dimensional FS
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problem into several low-dimensional FS tasks and solving
these tasks while enabling knowledge transfer between them.

In this paper, we propose a multi-task optimization based
co-training (MTO-CT) framework which trains multiple pre-
diction models simultaneously, where an inter-task knowledge
transfer module is designed to transfer and reuse knowledge
(represented as model parameters) between these training
tasks to facilitate solving them. The long short-term memory
(LSTM) [21] based model is employed as the predictor and
optimized by a gradient descent (GD) based optimization
method for all tasks. The predictor for each task has the
same structure. In the inter-task knowledge transfer module,
to decide which source tasks to be selected and the amount
of knowledge within them to be transferred to help solve
the target task, probability-based source task selection [15]
is applied, where probability matching (PM) [22] is used to
calculate the selection probabilities of all source tasks w.r.t.
the current target task, and then stochastic universal selection
(SUS) [23] is applied to select the most helpful ones from
all sources tasks. Evolutionary operations are then applied to
reuse the knowledge from the selected source tasks in the
target task. Since this paper is to verify the superiority of MTO
in addressing multiple tasks simultaneously, the proposed
MTO-CT is compared with the single-task prediction (STP)
model without knowledge transfer, i.e., solving each task in a
standalone way, under the same settings.

We use electricity consumption data from five states in
Australia, i.e., VIC, NSW, SA, QLD, and TAS, to create two
sets of tasks at different scales: a) one-step ahead prediction
over five states (five tasks) and b) 6-step, 12-step, 18-step,
and 24-step ahead prediction for each state (20 tasks), where
electricity consumption data in different states share some
common patterns. Also, in the multi-step ahead prediction
problem, the next-step prediction depends on the knowledge
of the previously predicted steps, which is an implicit form
of common knowledge across different prediction tasks and
makes it reasonable to regard prediction at different steps
ahead as related tasks. In comparison to STP, the results on
these two sets of tasks verify the superiority of MTO-CT.

The rest of this paper is organized as follows. Section II
describes the problem formulated and the background knowl-
edge. The proposed method and its implementation are pre-
sented in Section III. Section IV reports and discusses exper-
iments. Conclusions and some planned future work are given
in Section V.

II. PROBLEM DEFINITION AND BACKGROUND

This section will firstly introduce the problem defined. Then
the background of LSTM is presented.

A. Problem Definition

Suppose there are m time series X = {x1, ..., xm}, xi =
{xi,1, ..., xi,li}, i ∈ {1, . . . ,m}, where li is the length of
the ith time series. For any time series i ∈ {1, . . . ,m},
there are p different prediction purposes (e.g., different steps
ahead prediction). An MTO-CT problem is defined as solving

n = mp prediction tasks at the same time. Given a predictor
h(·), any prediction task j ∈ {1, . . . , n} can be defined by
hj(x̃j ;Pj)→ ŷj , where Pj denotes the parameter set of hj(·)
and (X̃,Y) = {(x̃1, y1), (x̃2, y2), ..., (x̃n, yn)} represents the
training set for all n task.

Since the target task j may benefit from addressing a source
task k ∈ {1, . . . , n}, k 6= j via knowledge transfer, knowledge
from the source task (i.e., Pk ∈ {P1,P2...,Pn},Pk 6= Pj)
can be used to help boosting the prediction performance of
the jth task. During the update of Pj , knowledge from some
selected source tasks based on certain probabilities according
to their historical helpfulness is extracted, transferred, and
reused to generate Pnew

j for the jth target task to help
improving its prediction performance.

B. Long Short-Term Memory
Long short-term memory (LSTM), as a special kind of

recurrent neural network (RNN), was proposed in 1997 [21]
to overcome the shortcomings of recurrent backpropagation
for learning to store information over extended time intervals.
LSTM is explicitly designed to avoid the long-term depen-
dency problem and remember information for long periods
of time. Similar to the general RNNs, LSTM has a chain of
repeating cells of an NN. The structure of an LSTM with one
cell is illustrated as Fig. 1, from which we can see there are
a cell state (Ct−1) and three gates, i.e., forget gate (ft), input
gate (it), and output gate (Ot).

( )g  ( )g  tanh ( )g 

tanh

tX

1tC 

1tH 

tC

tH
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tf ti

tC tO
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
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Fig. 1. The structure of long short-term memory.

Given the inputs of current timestamp Xt, the hidden state
and the cell state of the previous timestamp Ht−1 and Ct−1,
three gates ft, it, and Ot, and the next cell state Ct can be
obtained as follows:

ft = g(Wf [Ht−1, Xt] + bf ])

it = g(Wi[Ht−1, Xt] + bi])

C̃t = tanh(Wc[Ht−1, Xt] + bc])

Ot = g(Wo[Ht−1, Xt] + bo]) (1)

Ct = Ct−1ft + itC̃t

Ht = Ot tanh(Ct)



In (1), g(·) in three gates is sigmoid function. With the cur-
rent hidden state Ht, the prediction value ŷt can be calculated
according to:

ŷt = g(WyHt + by) (2)

The activation function g(·) in (2) is sigmoid function in
regression problems. The weights Wf ,Wi,Wc,Wo,Wy and
biases bf , bi, bc, bo, by over different cells are same. To obtain
the optimal prediction result is to obtain the optimal weights
and biases.

min
1

NT

T∑
t=1

N∑
s=1

L(yt,s, ŷt,s) (3)

The parameter set P = {Wf ,Wi,Wc,Wo,Wy, bf , bi, bc,
bo, by} can be learned via any suitable optimization method
using the loss function in (3), where the real values are denoted
as yt = {yt,1, yt,2, ..., yt,N}, ŷt = {ŷt,1, ŷt,2, ..., ŷt,N} are the
predicted values, L(·) is the evaluation method, N represents
the number of samples, and T denotes the number of steps to
be predicted.

III. THE PROPOSED METHOD

We will first describe the proposed MTO-CT framework
and then elaborate its inter-task knowledge transfer module
responsible for selecting the most helpful source tasks in a
probabilistic manner, adapting task selection probabilities, and
reusing the knowledge from the selected source tasks to assist
in the target task. We will also introduce an implementation
of the MTO-CT framework.

A. Framework

The proposed MTO-CT framework is illustrated in Fig. 2,
where Fig. 2(a) shows the diagram of the co-training process
with n different tasks and Fig. 2(b) describes the individual
training process for each task j, j ∈ {1, . . . , n}. As shown
in Fig. 2(a), all tasks are solved iteratively. In each iteration,
each task is addressed independently with GD-based training
before inter-task knowledge transfer is applied. After that, as
illustrated in Fig. 2(b), if the knowledge transfer condition
satisfies, e.g., for the jth task, the inter-task knowledge transfer
will be applied. It first makes the adaptive source task selec-
tion, which consists of calculating the selection probabilities
of n− 1 source tasks according to their historical helpfulness
in improving the performance of the jth task and selecting
the candidates from these source tasks to extract knowledge.
EA-based knowledge reusing mainly uses the operations in
the EA to create the knowledge to be transferred and reused.
The newly generated knowledge is utilized via updating Pj .
Finally, the effectiveness of the selected source tasks is quan-
tified and used to update their selection probabilities for the
next iteration. Notably, the MTO-CT framework can be treated
as a special instance of the AEMTO framework [15], where
training instead of general optimization is incorporated.

Training 
task 1

Training 
task 2

Training 
task n

Inter-task Knowledge Transfer

...

(a)

Knowledge 

transfer

N

Y

GD-based 

training

EA-based 

knowledge reuse

Adaptive source 

task selection

j

Update the source 

task selection 

probabilities for j

Inter-task 

Knowledge Transfer

(b)

Fig. 2. The illustration of MTO-CT framework: (a) the overall diagram and
(b) the individual training process for each task j, j ∈ {1, . . . , n}.

B. Inter-task Knowledge Transfer

The inter-task knowledge transfer module consists of choos-
ing the most helpful source tasks to help a target task based
on their selection probabilities, transferring and reusing the
extracted knowledge from the selected source tasks in the
target task, and updating the selection probability of each
source based on their helping performance.

1) Source Task Selection: For any task j, j ∈ {1, . . . , n},
it has n− 1 source tasks. In the inter-task knowledge transfer
module in Fig. 2(b), the first step is to decide which source
task(s) to be selected from the n − 1 candidates. The source
tasks that are more historically helpful may provide more
useful knowledge. We calculate the probability of any source
task i according to its historical success rate in helping the
target task j iteration by iteration. We use qj = {qij |i =
1, ..., n, i 6= j} obtained from (6) to denote the estimated
helpfulness of each source task to the jth target task. With
the obtained probabilities, the next step is to select ns source
tasks from all n− 1 candidates. We use SUS [15], [23] with
the source task probabilities qj to select ns source tasks for
the target task j, j ∈ {1, . . . , n}.

2) Knowledge Transfer and Reuse: After selecting ns
source tasks via SUS, it is important to determine the amount
of knowledge to be extracted from each of them and trans-
ferred to the target task j, j ∈ {1, . . . , n}, given that the
source task with larger probability may provide more helpful



knowledge to help solving the target task. We use the mutation
operation used in differential evolution (DE) [24] to generate
a mutant Pnew

j based on ns selected source tasks. In this
work, we set ns = 3 and adopt a popular DE mutation
strategy “DE/rand/1” to produce a mutant as follows:

Pnew
j = Pj1 + F · (Pj2 − Pj3) (4)

where j1, j2, j3 ∈ [1, n], j1 6= j2 6= j3 6= j denote three
integers yielded via SUS. F ∈ [0, 1] is a positive real-valued
control parameter for scaling the difference vector.

To reuse the knowledge from the selected source tasks in the
target task j, we apply the binomial crossover operation used
in DE to the generated mutant and the target Pj to generate
a new candidate solution as follows:

Pnew,d
j =

{
Pnew,d
j if randd[0, 1] ≤ CR
Pd
j otherwise

(5)

where d ∈ {1, . . . , D} and D denotes the number of elements
in Pj , j ∈ {1, . . . , n} and CR ∈ [0, 1] denotes the real-valued
crossover rate. Pnew

j and Pj will then compete for survival.
3) Source Task Selection Probability Update: The selection

probability of each source task is initialized to a very small
positive value. In each iteration, after reusing the knowledge
from the ith source task in the jth target task, the correspond-
ing helpfulness in the current iteration is measured via the
reward rij , which is then applied to update qij according to:

qij = αqij + (1− α)rij (6)

rij in this work is calculated by the successful rate of the ith

task helping the jth task, i.e., rij = nsij/(na
i
j + ε), where

naij and nsij denote the total number of times for the ith task
selected to help the jth task over a certain period of time and
the times that this help leads to the newly generated candidate
solution to replace the target one. ε is a quite small positive
value to avoid the issue of division by zero.

C. Implementation

We implement the MTO-CT framework by using an LSTM-
based prediction model for solving each of n tasks. Given
only a single time series is considered in this work, we adopt
a less typical way to formulate the LSTM-based prediction
task. Specifically, the input is defined as the time series values
in a time window of nf consecutive timestamps and the output
is defined as the time series values for 1, . . . , Tj steps ahead
immediately following this window. Each LSTM cell has a
single hidden layer and takes as inputs all nf time series
values in the window as well as the hidden and cell states,
where the first cell outputs the one-step ahead prediction, the
second cell outputs the two-step ahead prediction and so on
till the required Tj-step ahead prediction for the jth task is
generated. As such, the total number of LSTM cells used is
equivalent to Tj . The number of hidden neurons in a cell
is set to nh. This is different from a more typical way to
formulating the LSTM-based prediction task in a “many-to-
many” manner, where each LSTM cell is fed in with only

Algorithm 1: Implementation of MTO-CT

Input: (X̃,Y) = {(x̃1, y1), (x̃2, y2), ..., (x̃n, yn)}, MaxIter,
CR = 0.5, F = 0.2, ns = 3, rij = 0, nsij = 0,
naij = 0, qij = 0.005, j ∈ {1, . . . , n},
j ∈ {1, . . . , n}, i 6= j, T = {T1, T2, ..., Tn},
α = 0.3, N,D,#Iter = 0

1 for j → 1 : n do
2 Initialize the parameter set Pj from the standard normal

distribution
3 end
4 while #Iter < MaxIter do
5 for j → 1 : n do
6 Evaluate the parameter set Pj on the jth task

using (7), denoted as Lj

// Inter-task knowledge transfer starts
7 for i→ 1 : n & i 6= j do
8 Calculate each source task selection probability

according to (6) to obtain the updated qij
9 end

10 Perform SUS operation [23] to select ns source
tasks, i.e., j1, j2, ..., jns , k ∈ {1, . . . , ns}, jk ∈
{1, . . . , n}, jk 6= j

11 Perform mutation operation according to (4) with
the selected source tasks j1, j2, ..., jns to obtain
the Pnew

j

12 for d→ 1 : D do
13 Perform crossover operation with (5) to update

Pnew,d
j

14 end
15 Evaluate the newly generated Pnew

j with (7) to
obtain the performance Lnew

j

16 if Lnew
j < Lj then

17 Pnew
j → Pj

18 Lnew
j → Lj

19 ns
jk
j = ns

jk
j + 1

20 end
21 na

jk
j = na

jk
j + 1, k ∈ {1, . . . , ns}, jk ∈ {1, . . . , n}

// Inter-task knowledge transfer ends
22 Update the parameter set Pj with Adam

algorithm [25]
23 end
24 #Iter = #Iter + 1
25 end

Output: P∗
1 ,P∗

2 , ...,P∗
n, ŷ1, ŷ2, ..., ŷn

one time series value at a certain timestamp. For each LSTM-
based model, the parameters to be optimized (trained) include
{W j

f ,W
j
i ,W

j
c ,W

j
o ,W

j
y , b

j
f , b

j
i , b

j
c, b

j
o, b

j
y} encoded via Pj of

dimension size D.

Each prediction task j, j ∈ {1, . . . , n} is addressed by an
adaptive moment estimation (Adam) [26], which is a first-
order GD-based optimization method with the adaptive esti-
mates of lower-order moments [25]. The inter-task knowledge
transfer module is performed to explore if the information
extracted from ns source tasks can further boost the prediction
accuracy of the target task j.

We employ the root mean square error (RMSE) to define the



loss function in (3) for any task j, j ∈ {1, . . . , n} as follows:

min

√√√√ 1

NTj

Tj∑
t=1

N∑
s=1

(yt,sj − ŷ
t,s
j )2 (7)

where Tj , j ∈ {1, . . . , n} denotes the time steps ahead to be
predicted in the jth task, ŷj denotes the predicted result w.r.t.
the ground truth yj , where ŷj = {ŷ

1
j , ŷ

2
j , ..., ŷ

Tj

j }, ŷ
t
j ∈ <1×N

and ŷtj = {y
t,1
j , yt,2j , ..., yt,Nj }, t ∈ {1, . . . , Tj}.

In each iteration, Pj is replaced by Pnew
j via the inter-

task knowledge transfer when Pj has worse performance than
Pnew
j in terms of (7). This repeats until the maximum number

of iterations (MaxIter) is reached. The implementation of
MTO-CT is detailed in Algorithm 1.

IV. RESULTS

We will first present the data information and experimental
settings. Then the prediction performance on these two dif-
ferent sets of tasks are presented and compared with STP to
demonstrate the superiority of MTO-CT.

A. Data Description and Experimental Settings

The data is downloaded from Australian Energy Market
Operator (AEMO)1. It includes electricity consumption data
collected at 30-minute intervals from 01 November 2020 to
30 November 2021 for five states (VIC, NSW, SA, QLD,
TAS) in Australia. We create two sets of tasks at different
scales: (1) Set A: one-step ahead prediction across five states
(five prediction tasks); (2) Set B: multi-step ahead (e.g., 6, 12,
18, 24) prediction for each of these five states (20 prediction
tasks). For both sets, the time windows used as inputs are set
as 24 (i.e., using the first 12 hours to predict the next step,
next several steps, or the rest of the same day). For each of
the tasks, there are 395 samples in total, where training and
testing samples occupy 80% (316) and 20% (79), respectively.
For each state, the data is normalized to [0, 1] using the min-
max normalization.

The aim of this paper is to investigate if MTO can help im-
prove the prediction accuracy when having multiple prediction
tasks to be addressed simultaneously. We compare the results
of MTO-CT with that of STP, which addresses every single
task independently without inter-task knowledge transfer. The
number of hidden neurons in LSTM is nh = 10. In GD-based
optimization method, i.e., Adam in this paper, learning rate
is lr = 0.001, β1 = 0.9, β2 = 0.999, ε = 1e − 8. To guar-
antee the comparison under the same number of evaluations,
MaxIter = 20000 in STP and MaxIter = 10000 in MTO-CT
considering the inter-task knowledge transfer operation in each
iteration. All tasks are independently run ten times.

B. Results

The performance of MTO-CT is comprehensively studied
by comparing it with STP over two sets of tasks, i.e., five and
20 tasks. The training and testing performance (RMSE) of

1http://www.nemweb.com.au/REPORTS/Archive/HistDemand/

TABLE I
THE TASK REPRESENTATIONS BY THE NUMBERS.

States VIC NSW SA QLD TAS

Set A one-step 1 2 3 4 5

Set B

6-step 1 2 3 4 5

12-step 6 7 8 9 10

18-step 11 12 13 14 15

24-step 16 17 18 19 20

these two sets of tasks over MTO-CT and STP is summarized
and discussed, where the results is based on the normalized
data. Wilcoxon signed-rank test at the 0.05 level is performed
to estimate the significance of the difference between MTO-
CT and STP. The better performance over the statistical test
is labeled in bold. We use ’+’, ’=’, and ’-’ to indicate that
the respective model has better, same, and worse performance
than the other(s). To better understand what the task number
represents in the following results, Table. I gives the task
representations with numbers.

TABLE II
AVERAGE RMSE OVER TRAINING AND TESTING SETS FOR ONE-STEP

AHEAD PREDICTION OVER FIVE STATES (’+’, ’=’, ’-’ : BETTER, SAME,
WORSE).

Training RMSE Testing RMSE

Tasks STP MTO-CT STP MTO-CT

1 0.05885 0.05747 0.07012 0.06824

2 0.0528 0.04966 0.0592 0.05427

3 0.05237 0.05141 0.05283 0.0502

4 0.06332 0.05859 0.0588 0.05563

5 0.05721 0.05457 0.05918 0.05632

+/=/- 0/0/5 5/0/0 0/0/5 5/0/0

C. Results of Set A

Table. II reports the training and testing performance eval-
uated by mean RMSE over ten independent runs for MTO-
CT and STP (without inter-task knowledge transfer), where
the best mean RMSE for each task is labeled bold if it is
significantly better with the statistical test. The result is based
on one-step ahead prediction over VIC, NSW, SA, QLD, and
TAS, respectively. By comparing the mean RMSE of MTO-
CT and STP, it is obvious that MTO-CT outperforms both
training and testing sets over all tasks from the labeled bold
values and the total number of tasks it wins. This shows that
the helpful knowledge reuse of the selected source tasks leads
to significant improvement in the performance of the target
task so that the accuracy of all tasks can be enhanced, which
also demonstrates the effectiveness of inter-task knowledge
transfer in MTO-CT.

Fig. 3 illustrates the training and testing RMSE distribution
of ten independent runs over each task for STP and MTO-
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Fig. 3. Box plots of training and testing RMSE on five tasks under STP and
MTO-CT over ten independent runs.

CT. Fig. 3(a) and Fig. 3(b) show that STP and MTO-CT have
slight difference over the training performance from the view
of distribution, but we still can see that the training RMSE
on MTO-CT is better than STP. Even though MTO-CT has
more outliers, fewer results deviate from the average value for
each of the tasks. Similarly, comparing Fig. 3(c) and Fig. 3(d),
the results on STP have more differences, resulting in higher
average RMSE on each task, verified by the results in Table. II.

D. Results of Set B

Table. III shows the average RMSE across ten independent
runs over training and testing sets for STP and MTO-CT.
The results are from 20 tasks that include 6-step, 12-step,
18-step, and 24-step ahead prediction over five states (the
representations of the task numbers can be found in Table. I).
From Table. III, we can see some tasks over MTO-CT have
worse training performance than STP such as tasks 8 (12-
step ahead prediction in SA), 9 (12-step ahead prediction in
QLD), 14 (18-step ahead prediction in QLD), 17 (24-step
ahead prediction in NSW), and 18 (24-step ahead prediction
in SA). MTO-CT and STP have the same significant level
on task 3 (6-step ahead prediction in SA) on the training set
from the result of the statistical test, even though the average
RMSE is slightly different. Among all 20 tasks, MTO-CT
outperforms STP on 14 tasks on the training set. For the
testing set, MTO-CT leads to better performance on 17 tasks
than STP, where tasks 6 (12-step ahead prediction in VIC),
9, and 18 have worse performance (higher mean RMSE) with
MTO-CT. The result of addressing 20 tasks simultaneously
with inter-task knowledge transfer further demonstrates the
superiority of MTO-CT, given that it outperforms STP on 14
and 17 tasks for training and testing sets, respectively.

TABLE III
AVERAGE RMSE OVER TRAINING AND TESTING SETS FOR FIVE STATES
ACROSS 6-STEP, 12-STEP, 18-STEP, AND 24-STEP AHEAD PREDICTION

(’+’, ’=’, ’-’ : BETTER, SAME, WORSE).

Training RMSE Testing RMSE

Tasks STP MTO-CT STP MTO-CT

1 0.09486 0.09179 0.10158 0.09783

2 0.0903 0.0879 0.09211 0.09006

3 0.08879 0.08655 0.08504 0.08016

4 0.09737 0.09588 0.09111 0.08963

5 0.07772 0.07625 0.08044 0.07921

6 0.12331 0.12401 0.12088 0.12204

7 0.11972 0.11756 0.12252 0.11975

8 0.11451 0.11472 0.11011 0.10907

9 0.13277 0.13398 0.12709 0.1276

10 0.09543 0.09385 0.09304 0.09074

11 0.12747 0.12587 0.1283 0.12392

12 0.12901 0.12548 0.13309 0.12913

13 0.12717 0.12657 0.12319 0.12159

14 0.13083 0.13175 0.12711 0.12697

15 0.10001 0.09781 0.09744 0.09531

16 0.1185 0.1177 0.11515 0.11377

17 0.11527 0.1154 0.11907 0.119

18 0.11751 0.12034 0.11562 0.11859

19 0.13719 0.13468 0.13418 0.13309

20 0.10684 0.10257 0.10331 0.10123

+/=/- 5/1/14 14/1/5 3/0/17 17/0/3

Fig. 4 illustrates the distribution of the training and testing
RMSE on 20 tasks under STP and MTO-CT. For most of the
tasks, Fig. 4(a) and Fig. 4(b) show similar distribution over
ten runs, except for task 18, which is significantly different
and also has worse performance on MTO-CT. For the testing
RMSE as presented in Fig. 4(c) and Fig. 4(d), task 18 on
MTO-CT cannot compete with STP as well. However, for
most of the rest, MTO-CT outperforms STP, further verified by
Table. III. Therefore, knowledge transfer among tasks in MTO-
CT leads to better prediction performance for most tasks.

V. CONCLUSIONS AND FUTURE WORK

We proposed an MTO-CT framework to solve multiple
prediction tasks simultaneously, where an inter-task knowledge
transfer module is designed to transfer and share knowledge
among different tasks so that the overall performance of solv-
ing each task can be improved. MTO-CT employs an LSTM
based model as the predictor and represents the knowledge
as the connection weights and biases in LSTM. The inter-
task knowledge transfer module is responsible for selecting the
source tasks (w.r.t. a target task) from which the knowledge is
extracted, extracting the knowledge, and reusing the extracted
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Fig. 4. Box plots of training and testing RMSE on 20 tasks under STP and
MTO-CT over ten independent runs.

knowledge in the target task. The performance of MTO-CT
is tested on two sets of tasks at different scales, i.e., five
tasks and 20 tasks. The superiority of MTO-CT in terms of
prediction accuracy is demonstrated in comparison to STP
which solves each task in a standalone way without inter-
task knowledge transfer. Our future work includes enriching
the input by incorporating additional time series data like
temperature, evaluating the performance of MTO-CT for co-
training more LSTM variants or other types of prediction
models [27], and applying MTO-CT to other applications that
we worked on previously like graph matching [28], feature
extraction [29] service composition [30].
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