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Abstract—Many practical decision-making problems in eco-
nomics and healthcare seek to estimate the average treatment
effect (ATE) from observational data. The Double/Debiased
Machine Learning (DML) is one of the prevalent methods to
estimate ATE in the observational study. However, the DML
estimators can suffer an error-compounding issue and even give
an extreme estimate when the propensity scores are misspecified
or very close to 0 or 1. Previous studies have overcome this
issue through some empirical tricks such as propensity score
trimming, yet none of the existing literature solves this problem
from a theoretical standpoint. In this paper, we propose a Robust
Causal Learning (RCL) method to offset the deficiencies of the
DML estimators. Theoretically, the RCL estimators i) are as
consistent and doubly robust as the DML estimators, and ii)
can get rid of the error-compounding issue. Empirically, the
comprehensive experiments show that i) the RCL estimators give
more stable estimations of the causal parameters than the DML
estimators, and ii) the RCL estimators outperform the traditional
estimators and their variants when applying different machine
learning models on both simulation and benchmark datasets.

Index Terms—treatment effect estimation, causal inference,
economics, healthcare

I. INTRODUCTION

Causal inference is ubiquitous for decision-making prob-
lems in various areas such as Healthcare [1]–[3] and Eco-
nomics [4]–[6]. At the core of causal machine learning,
estimating the average treatment effect (ATE) from observa-
tional data is challenging because some features (covariates)
can influence both treatment and outcome in most practical
circumstances. For example, factors such as regions and races
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(covariates) can affect both the vaccination (treatment) as-
signment and the post-vaccination infection rate (outcome).
To obtain a clean ATE, one can conduct the Randomized
Controlled Trials (RCTs). RCTs are regarded as the gold
standard to evaluate ATE, whereas conducting RCTs is often
expensive and time-consuming. As a result, more and more
researchers tend to estimate ATE from observational data.

In the observational study, classical causal learning methods
concerning ATE estimations mainly include regression adjust-
ment methods and re-weighting methods (see more details
in [7]). Regression adjustment methods require an estimated
feature-outcome relation (aka the outcome model) and directly
average the predicted potential outcomes over the whole
population to estimate ATE, so the associated estimator is
called the direct regression (DR) estimator. The conundrum
of the DR estimator is that it overlooks the probabilistic
impact of the covariates on the treatment assignment (i.e., the
propensity score) and hence often results in biased estimations
of ATE unless the outcome model is estimated accurately.
Re-weighting methods mimic the principle of RCTs to make
the re-weighted instances look like they receive alternative
treatment. The Inverse Probability Weighting (IPW) is one of
the prevalent re-weighting strategies. It involves the propensity
scores rather than the outcome model. Nevertheless, the IPW
estimator is sensitive to the estimation of propensity scores
and even leads to high variance estimates. Such occasion often
occurs when the estimated propensity scores are close to 0 or
1. This is called an error-compounding issue.

The Debiased Machine Learning (DML) method, which is
exploited by [6] based on [8], offsets the shortcomings of
classical causal learning methods. The DML method combines
the two classical approaches to ensure that the corresponding
estimator is accurate as long as either the outcome model or
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the propensity score, but not necessarily both, is correctly
specified (see [9], [10], [11], [12], [13] and the references
therein). This notable merit is well known as the “doubly
robust” property. However, the DML estimator can still suffer
the error-compounding issue since the inverse term of the
propensity score is still present. Inevitably, propensity scores
usually fail to be correctly specified in practice, especially
when the distribution of the treated group is substantially
different from that of the controlled group (see, for example,
[14]–[18]). This observation motivates us to go beyond the
DML estimator and construct estimators that are more robust
to the misspecification of the estimated propensity scores.

In this paper, we propose a Robust Causal Learning (RCL)
method to establish the RCL estimators of the ATE. The
contributions are summarized as follows:

1. Our RCL estimators robustly ease the error-
compounding issue exhibited by the DML estimator
since the propensity scores in the RCL estimators are
no longer in an inverse form.

2. The RCL estimators inherit the consistency and doubly
robust property of the DML estimator.

3. The RCL methodology to construct an ATE estimator
can also be applied to establish other prevalent treatment
effect estimators.

4. Extensive experiments show that the proposed RCL
method achieves superior performance than DR, IPW,
DML, and their variants across various combinations of
machine learning regressors and classifiers.

The rest of the paper is organized as follows. Section II
introduces the problem setup and the background of orthog-
onal scores. Section III presents the main theoretical results,
including the RCL score in Theorem 1 and the RCL estimator
in Corollary 2. Section IV reports extensive experimental
results on simulation datasets and benchmark datasets. Due
to the space limit, we defer all proof details and the code for
reproducing our experiments to the full paper version.

II. PRELIMINARIES

A. The Problem Setup
In this paper, we consider the potential outcome frame-

work [19], [20] to study ATE. Let Z be the covariates (aka
confounders), and D be the treatment variable which can
take values from {d1, . . . , dn}. We denote Y as the outcome
variable (aka the response), and Y i represents the potential
outcome under the treatment di. If the observed treatment
is di, then the factual outcome Y F equals Y i. We denote
{wm = (ym, dm, zm)}Nm=1 as observed N realizations of the
i.i.d. random variables {Wm = (Ym, Dm,Zm)}Nm=1. Given the
true causal parameter θi := E[Y i], the target quantity ATE
between treatment di and treatment dj is defined as

θi,j = θi − θj . (1)

Identifying the ATE θi,j under the potential outcome frame-
work requires some fundamental assumptions to ensure that
θi and θj are identifiable. Thus, we impose the following
assumptions as stated in existing causal inference works.

Assumption 1 (Stable Unit Treatment Value Assumption
(SUTVA)). The potential outcomes for any individual do not
vary regardless of the treatment status of other individuals.

Assumption 2 (Ignorability). Given the covariates Z, the po-
tential outcome Y i is independent to the treatment assignment
D, i.e., (Y 1, · · · , Y n) ⊥⊥ D | Z ∀i.

Assumption 3 (Positivity). Treatment assignment is not de-
terministic regardless of the values covariates Z take, i.e.,
0 < P{D = di | Z = z} < 1 ∀ i and ∀ z.

Assumption 4 (Consistency). If an individual receives treat-
ment di, his factual outcome Y F is equal to the potential
outcome under treatment di, i.e., Y F = Y i if D = di.

These assumptions guarantee that the ATE can be inferred
if we specify the relation E [Y | D,Z], which is equivalent to
estimating gi(Z) for each i ∈ {1, . . . , n} in the generalized
propensity score model setting1 [21], [22] (2):

Y i = gi(Z) + ξi, E
[
ξi | D,Z

]
= 0 a.s.,

1{D=di} = πi(Z) + νi, E
[
νi | Z

]
= 0 a.s..

(2)

Here, gi(·) and πi(·) are true nuisance parameters. ξi and
νi are the noise terms. πi(Z) = E

[
1{D=di} | Z

]
is known

as the generalized propensity score (GPS) with multi-valued
treatment variables. Finally, the true causal parameter θi for
i ∈ {1, . . . , n} can be computed by θi := E

[
Y i
]

= E
[
gi(Z)

]
and the true ATE can be computed by θi,j = θi − θj .

B. Non-Orthogonal Scores and Orthogonal Scores

We aim to estimate the true causal parameters θi given
N i.i.d. samples {Wm = (Zm, Dm, Ym)}Nm=1. According
to [6], the standard procedure to obtain the estimated causal
parameter θ̂i is: 1) getting the estimated nuisance parameters
ρ̂, e.g., ρ̂ = (ĝi, π̂i); 2) constructing a score that satisfies the
moment condition (Definition 1); 3) establishing the estimator
of θi, which is solved from the moment condition (3).

Definition 1 (Moment Condition). Let W = (Z, D, Y ) and θ

be the true causal parameter with ϑ being a causal parameter
that lies in the causal parameter set. Denoting the nuisance
parameters as % and the true nuisance parameters as ρ, we
say a score ψ(W,ϑ, %) satisfies the moment condition if

E [ψ(W,ϑ, %)|ϑ=θ, %=ρ] = 0. (3)

The moment condition guarantees that the estimator derived
from the score is unbiased if the nuisance parameters equal the
true ones. Here, we give the scores which satisfy the moment
condition of two classical causal learning methods (DR and
IPW) introduced before.

Example 1 (The Score and Estimator for DR). Let % = gi and
ρ = gi. In the DR method, the score ψiDR(W,ϑ, %) satisfying
the moment condition and the associated estimator θ̂iDR are

ψiDR(W,ϑ, %) = ϑ− g
i(Z); θ̂iDR =

1

N

N∑
m=1

ĝi(Zm).

1This model setting allows D to be multi-valued. It can be reduced to the
“iteractive model” in [6] once the treatment D takes binary values.



Example 2 (The Score and Estimator for IPW). Let % = ai and
ρ = πi. In the IPW method, the score ψiIPW (W,ϑ, %) satisfying
the moment condition and the associated estimator θ̂iIPW are

ψiIPW (W,ϑ, %) = ϑ−
Y 1{D=di}

ai(Z)
; θ̂iIPW =

1

N

N∑
m=1

Ym1{Dm=di}

π̂i(Zm)
.

Generally, the estimators established from the scores in
Example 1 might be invalid unless ĝi and π̂i estimate gi

and πi well. To obtain robust estimators, [6] suggest that
we should construct scores which satisfy the Orthogonal
Condition (Definition 2) apart from the moment condition.

Definition 2 (Orthogonal Condition). Suppose that the nui-
sance parameters and the true nuisance parameters are
γ-dimensional tuples, i.e., % = (h1, · · · ,hγ) and ρ =

(h1, · · · , hγ). Given S ⊆ Zγ≥0, we say a score ψ(W,ϑ, %)

satisfies the orthogonal condition if

E [Dαψ(W,ϑ, %) |ϑ=θ, %=ρ| Z] = 0 ∀α ∈ S. (4)

S can be any subset of Zγ≥0. Throughout the paper, for some
positive integer k, we define S as

S = {α ∈ Zγ≥0 | ‖α‖1 ≤ k} (5)

and Dαψ(W,ϑ, %) = ∂α1
h1
∂α2
h2
· · · ∂αγhγ

ψ(W,ϑ,h1, · · · ,hγ).

The orthogonal condition ensures that the established esti-
mators can still be valid even though some nuisance param-
eters are misspecified (see [6], [10], [23] for more details).
Below we demonstrate how to utilize Dαψ(W,ϑ, %) to justify
that the scores in Examples 1 and 2 violate the orthogonal
condition. Suppose k in (5) is 1.

D(1)ψiDR(W,ϑ, %) = ∂giψ
i
DR(W,ϑ, %) = −1;

D(1)ψiIPW (W,ϑ, %) = ∂aiψ
i
IPW (W,ϑ, %) =

Y 1{D=di}

ai(Z)2
;

E
[
D(1)ψiDR(W,ϑ, %) |ϑ=θi, %=gi | Z

]
= −1 6= 0;

E
[
D(1)ψiIPW (W,ϑ, %) |ϑ=θi, %=πi | Z

]
= E

[
Y 1{D=di}

πi(Z)2
| Z
]
6= 0.

The above calculations show that ψiDR(W,ϑ, %) and
ψiIPW (W,ϑ, %) do not satisfy the orthogonal condition.
The scores are usually termed as the non-orthogonal scores.
As a consequence, their associated estimators are not “doubly
robust”. To obtain a doubly robust estimator, [6] propose the
DML method to construct the DML score.

Example 3 (The Score and Estimator for DML). Let % =
(gi, ai) and ρ = (gi, πi). In the DML method, the score
ψiDML(W,ϑ, %) that satisfies both the moment condition and
orthogonal condition and the associated estimator θ̂iDML are

ψiDML(W,ϑ, %) = ϑ− g
i(Z)−

1{D=di}

ai(Z)
(Y − g

i(Z));

θ̂iDML =
1

N

N∑
m=1

ĝi(Zm) +
1

N

N∑
m=1

1{Dm=di}(Ym − ĝi(Zm))

π̂i(Zm)
.

We can prove that ψiDML(W,ϑ, %) satisfies the orthogonal
condition when k = 1 in (5) (see [6] for detailed derivations)
following similar calculation processes for DR and IPW.

ψiDML(W,ϑ, %) is therefore termed as the orthogonal score.
The orthogonal condition assures that the DML estimator
is doubly robust, i.e., the estimator is locally unbiased and
consistent as long as either gi or πi is correctly specified.
Despite the doubly robust property, the DML estimator still
suffers an error-compounding issue once the encompassed
inverse propensity score is slightly misspecified for some data
points. In real applications, one seldom encounters a situation
that propensity scores are correctly estimated for all indi-
viduals. This dilemma motivates us to construct scores such
that 1) the scores are orthogonal scores, i.e., they satisfy the
moment condition (Definition 1) and the orthogonal condition
(Definition 2); 2) the estimators established from the scores
can stabilize the estimation error due to the misspecifications
on propensity scores.

In the upcoming section, we will introduce a novel method,
the Robust Causal Learning (RCL) method, to overcome the
difficulties encountered by DR, IPW, and DML methods.

III. THE PROPOSED METHOD

This section shows our main theoretical results. First, Sec-
tion III-A demonstrates the RCL scores. Then Section III-B
presents the detailed construction of the RCL estimators with
an algorithm that describes how to obtain an estimate of θi

from observational data using the proposed RCL method.

A. Construction of The RCL Score

In this paper, we construct an orthogonal score, the RCL
score, to derive an estimator of θi along the lines of orthogonal
machine learning works (e.g., [6], [23]). The relevant result is
stated in Theorem 1.

Theorem 1 (RCL score). Suppose % and ρ are 2-dimensional
tuples such that % = (gi, ai) and ρ = (gi, πi). Let r, k
be integers s.t. 1 ≤ k ≤ r. Assume the local moments
E
[
(νi)r | Z

]
6= 0 and

∣∣E [(νi)q | Z]∣∣ < ∞ a.s. ∀ 1 ≤ q ≤ r.
Under the assumptions on nuisance parameters and noise
terms stated in [6] and [23], the RCL score ψiRCL(W,ϑ, %) that
satisfies the moment condition and the orthogonal condition
is

ψiRCL(W,ϑ, %) = ϑ− g
i(Z)− (Y i − g

i(Z))A(D,Z; ai). (6)

Given an integer r and an integer k, we have

A(D,Z; ai) = b̄r
[
1{D=di} − ai(Z)

]r
+

1{k 6=1}

[
k−1∑
q=1

bq
([

1{D=di} − ai(Z)
]q − E

[
(νi)q | Z

])]
,

(7a)

where b̄r = 1

E[(νi)r|Z]
and the coefficient bq is computed by

descending order for q ∈ {k − 1, . . . , 1}:

bq = −b̄r

(
r

q

)
E
[
(νi)r−q | Z

]
−
k−1−q∑
u=1

bq+u

(
q + u

q

)
E
[
(νi)u | Z

]
.

(7b)

From (7a), we can observe that ai(·), the nuisance parameter
of the propensity score, is no longer in an inverse form
for the RCL score. As a consequence, the established RCL



estimators from (6) can avoid the error-compounding issue.
Simultaneously, the RCL scores are orthogonal scores, so the
RCL estimators are as doubly robust as the DML estimator.

B. Establishment of the RCL estimators
In this part, we will go into detail about the establishment of

the RCL estimators. To begin with, we can solve the estimator
θ̃i from (3) using the emprical version of the moment condition
for the RCL score (6):

θ̃i =
1

N

N∑
m=1

gi(Zm) (8a)

+
1

N

N∑
m=1

(Y im − gi(Zm))A(Dm,Zm;πi). (8b)

Equation (8a) is referred to as the DR estimator when the true
nuisance parameter gi is replaced by the estimated one ĝi.
Equation (8b) can then be divided into two parts:

(8b) =
1

N

∑
m∈I

(Y im − gi(Zm))A(Dm,Zm;πi) (9a)

+
1

N

∑
m∈I c

(Y im − gi(Zm))A(Dm,Zm;πi), (9b)

where I is the sample set in which the units are all treated
with di while I c is the sample set in which the units are
not treated with di. It is obvious that (8a) and (9a) can be
directly calculated from observational data, whereas (9b) that
contains the counterfactual outcomes is unavailable to compute
in a direct manner. Instead of pursuing the unobservable
counterfactuals, we realize that given i ∈ {1, . . . , n},

E
[
(Y i − gi(Z))A(D,Z;πi) | D = dj

]
= E

[
E
[
ξiA(D,Z;πi) | D = dj ,Z

]
| D = dj

]
= E

[
A(dj ,Z;πi)E

[
ξi | D = dj ,Z

]
| D = dj

]
= 0

holds for ∀j ∈ {1, . . . , n}. Thus, the sample mean of (Y i −
gi(Z)) equals zero regardless the samples come from I or
I c. This observation allows us to replace the sample mean of
the counterfactuals in (9b) with that of the factual ones. To be
specific, we first define the set A such that

A = {Y im − gi(Zm) | m ∈ I }. (10)

Then, a replaced estimator of (9b) is obtained as follows:
1) For the mth unit in the set I c, pick an element ξim from

A and multiply it by A(Dm,Zm;πi). Repeat the process
until we go through all the individuals in the set I c;

2) Compute 1
N

∑
m∈I c

ξimA(Dm,Zm;πi);

3) Repeat above steps R times to eliminate the randomness
brought by the random picking procedure and return the

substitute estimator 1
R

R∑
u=1

[
1
N

∑
m∈I c

ξim,uA(Dm,Zm;πi)

]
.

Consequently, (9b) can be inferred indirectly from observa-
tional data. With (8a) and (9a), the RCL estimator of θi is
finally established in Corollary 2.

Corollary 2 (RCL estimator). Let R ∈ Z+, (ĝi, π̂i) be the
estimates of (gi, πi), Â be A by replacing gi with ĝi in (10),

Algorithm 1 Algorithm of obtaining an estimate of θi using
(11a)-(11c).

1: Input: Observational dataset {(ym, dm, zm)}Nm=1 = I ∪
I c, and I ∩I c = ∅.

2: Train gi and πi using the observed data to obtain the
estimated nuisance parameters ĝi and π̂i.

3: For each i ∈ {1, . . . , n}: i) relabel the observed data point
(y, d, z) as (y, d̃, z) such that d̃ = 1 if d = di and d̃ = 0

if d 6= di; ii) compute d̃ − π̂i(z) for each observation and
obtain the local moment E

[
(νi)q | Z

]
in (7a) for each q

with the mean of all (d̃− π̂i(z))q.
4: Compute (11a)-(11b) using the observational data.
5: Compute y− ĝi(z) for each observation in I and store the

computed values in Ârlz such that Ârlz = {ym − ĝi(zm) |
m ∈ I }.

6: For the mth individual in I c, compute A(dm, zm; π̂i).
7: Repeat a random picking procedure R times: picking an

element ξ̂i;rlzm,u randomly in the uth repeat for the mth indi-

vidual. Then compute 1
R

R∑
u=1

[
1
N

∑
m∈I c

ξ̂i;rlzm,u A(dm, zm; π̂i)

]
as an estimate of (11c).

8: Return: Use the values in Step 4 and 7 to get the estimate
of (11a)-(11c).

and ξ̂im,u be the element that is randomly selected from the
set Â in the uth of R repeated selections. The RCL estimator
θ̂iRCL is given by

θ̂iRCL =
1

N

N∑
m=1

ĝi(Zm)︸ ︷︷ ︸
(a)

+
1

N

∑
m∈I

(Y im − ĝi(Zm))A(Dm,Zm; π̂i)︸ ︷︷ ︸
(b)

+
1

R

R∑
u=1

[
1

N

∑
m∈I c

ξ̂im,uA(Dm,Zm; π̂i)

]
︸ ︷︷ ︸

(c)

.

(11)

The proposed RCL estimator θ̂iRCL is a consistent estimator
of θi if (ĝi, π̂i) satisfy the assumptions stated in [23] and
[6]. Due to the space limit, the proofs of Theorem 1 and the
consistency of θ̂iRCL can be seen in the full paper version. We
also outline the procedures of estimating θi from observational
data using the proposed RCL method in Algorithm 1. Note that
if the whole dataset is split into the training set and the test
set, Step 2 will be only conducted on the training set, while
Step 3 - Step 8 can be performed to obtain the estimates of
θ̂iRCL on both the training set and the test set. The running
complexity of our algorithm is at most O(NR).

IV. NUMERICAL STUDIES

In this section, we compare the performances of our RCL
estimators with the DML estimator and the DR estimator
through simulation and empirical experiments. In both exper-
iments, we consider three types of regressors: Lasso, Random
Forests (RF), and Multi-layer Perceptron (MLP); and three
types of classifiers: Logistic Regression (LR), RF, and MLP.



We combine the regression model A and the classification
model B to estimate gi and πi respectively, and denote
the combination as A+B, e.g., Lasso+LR. In the empirical
experiments, we consider two additional state-of-the-art neural
network models in causal inference: TARNet [24] and Drag-
onnet [25]. All the experiments are run on Dell 3640 with
Intel(R) Xeon(R) W-1290P CPU at 3.70GHz, and a set of
NVIDIA GeForce RTX 2080Ti GPU.

For all the experiments throughout the paper, we use the
following two metrics to evaluate the performance:

εATE =
1

M

M∑
m=1

εATE;m ; (12a)

σATE =

√√√√ 1

M − 1

M∑
m=1

[εATE;m − εATE ]2. (12b)

Here, εATE;m is the weighted relative error of the mth exper-

iment such that εATE;m =

∑
i6=j

1≤i,j≤n

|θ̂i,j;m−θi,j;m|

∑
i6=j

1≤i,j≤n

|θi,j;m| with θi,j;m and

θ̂i,j;m being the true ATE and the estimated ATE between the
treatment di and the treatment dj of the mth experiment. n is
the number of treatments and M is the number of experiments.

A. Numerical Studies on Simulation Datasets

We first introduce the data generating process (DGP) for the
simulation experiments. Given the covariates Z = (Z1, ..., Zp)

T

which follow a standard multivariate Gaussian distribution, the
treatment variable D has the treatment space {d1, d2, d3} with
the corresponding probability

πi(Z) = P{D = di|Z} =

exp

(
bp·rcc∑
u=1

βiuZu

)
3∑
j=1

exp

(
bp·rcc∑
u=1

βjuZu

) , (13)

where the values of coefficients βiu are randomly picked from
the uniform distribution U(−0.1, 0.1). rc is the confounding
ratio ranging from 0 to 1, and the number of covariates in Z

used to generate D is p · rc and bp · rcc ∈ N. For example,
if p = 10 and rc = 0.56, then p · rc = 5.6 and bp · rcc = 5.
We generate the potential outcome Y i for treatment indices
i ∈ {1, 2, 3} as

Y i = g(di,Z) + ξi = e
√
di
(
aTi Z + 1

)2

+ ξi, (14)

where ai is a p × 1 constant vector whose elements are
randomly chosen from U(0.1, 0.5). We also set d1 = 0.1,
d2 = 0.5, d3 = 1, ξ1 ∼N(0, 9), ξ2 ∼N(0, 4) and ξ3 ∼N(0, 1).
Next, we generate N i.i.d. observations based on the DGP.
Suppose the realized covariates of the mth individual are zm,
then the actual treatment dm will be dk, where k is determined
by k = arg max

u∈{1,2,3}
πu(zm). Under the actual treatment dk, the

observed factual outcome ym will correspondingly be yk.
For the simulation experiments, we compute the DR, DML

and our RCL estimators with different values of r and k (see

Theorem 1), which is denoted by RCLr,k. We then use εATE
in (12a) with n = 3 and M = 100 to evaluate the performance
of different estimators for each combination of the regres-
sor gi and the classifier πi (denoted as regressor+classifier).
We split every dataset by the ratio 56%/14%/30% as train-
ing/validation/test sets.

a) Consistency of RCL estimators: In this part, we set
rc = 1, p = 5, and let the number of observations N vary
in {1, 2, 4, 8, 16} × 10000. We check the consistency of RCL
estimators through simulations and report εATE in Fig. 1.
The result indicates that the error reduces when the sample
size increases for our RCL estimators. Besides, we also find
that when gi is fitted well ∀i (e.g., when the regressor is
chosen as Lasso or RF), RCL2,2 performs better than DR,
DML and other RCL estimators. On the other hand, when
gi is not fitted well for some i, e.g., when the regressor is
chosen as MLP, the DML and the RCL estimator with k = 1
can significantly correct the bias thanks to the doubly robust
property. In this case, despite similar performances produced
by RCL2,1 estimator and the DML estimator, RCL2,1 still has
a smaller εATE .
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Fig. 1. Plots of εATE versus the varying N : DR vs DML vs RCL.

b) Varying rc and p: In the following experiments, we
mainly compare RCL2,2 with DR, and RCL2,1 with DML
since the above simulation experiments indicate that RCL2,2

and DR perform similarly, and RCL2,1 has similar trends to
DML. We set N = 10000 and plot εATE produced by each
model combination A+B versus i) different rc with p = 100

in Fig. 2 and Fig. 3; ii) different p with rc = 1 in Fig.
4 and Fig. 5. From all the four figures, we observe that
the DML estimator is sensitive to the change of rc and p,
especially when the classifier is MLP. As analyzed before,
if the estimation error of πi(z) is non-negligible for some
z, the term 1

π̂i(·) of the DML estimator often gives extreme
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Fig. 3. Plots of εATE versus the varying rc: DML vs RCL2,1.

values especially when π̂i(z) is small, leading to pronounced
estimation errors of the ATE. Indeed, any ATE estimators that
involve the inverse propensity score term might face this error-
compounding issue. By contrast, our RCL estimators are less
volatile to the variation of rc and p regardless of the choice
of classifiers. For example, in Fig. 5, we notice that when the
classifier is MLP, the error of DML rises dramatically as p

increases, while RCL2,1 performs more steadily. In addition,
our RCL2,2 estimator overall has a smaller εATE than the DR
estimator no matter how rc or p varies.

B. Numerical Studies on Benchmark Datasets

a) Models: Similar to the simulation experiments, we
choose Lasso, RF, and MLP as the regressors while LR, RF,
and MLP as the classifiers. Additionally, two prevalent neural
network models, TARNet and Dragonnet, are also considered
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Fig. 5. Plots of εATE versus the varying p: DML vs RCL2,1.

for learning the nuisance parameters. According to [25], these
two neural network structures can incorporate the estimations
of both gi and πi using the representation learning technique.

b) Settings: We implement the above methods on two
widely adopted benchmark datasets for causal inference, i.e.,
IHDP and Twins, and then compare RCL estimators with
DR, IPW, DML, and their variants AIPW and DML-trim
estimators. Mathematically, both the AIPW estimator and the
DML-trim estimator are the same as the DML estimator.
However, empirically, AIPW and DML-trim are less prone to
suffer the extreme values. To be precise, AIPW decomposes
the estimator into two parts that both contain the IPW term
(see [26]), while DML-trim trims estimated propensity scores
at the cutoff points of 0.01 and 0.99 (see [6]).

We take the RCL2,1 and RCL2,2 as the representatives of the
general RCL estimators because for the real datasets with a



TABLE I
THE PERFORMANCE COMPARISONS (εATE ± σATE ) ON THE TEST SETS OF 1000 IHDP EXPERIMENTS. SMALLER εATE IS BETTER.

Model/Estimator DR RCL2,2 RDR IPW AIPW DML DML-trim RCL2,1 RDML

LASSO+LR 0.096±0.640 0.092±0.577 -3.6% 1.517±4.686 0.106±0.300 0.106±0.300 0.106±0.300 0.105±0.652 -0.9%

LASSO+RF 0.096±0.640 0.092±0.564 -3.9% ∞ 0.109±0.280 ∞ 0.111±0.291 0.103±0.631 -6.1%

LASSO+MLP 0.096±0.640 0.093±0.593 -3.1% 4.481±9.856 0.224±0.440 0.224±0.440 0.193±0.324 0.103±0.590 -47%

RF+LR 0.098±0.553 0.093±0.440 -4.8% 1.517±4.686 0.129±0.725 0.129±0.725 0.129±0.725 0.129±1.075 0.0%

RF+RF 0.098±0.553 0.094±0.458 -3.8% ∞ 0.126±0.638 ∞ 0.128±0.641 0.125±1.012 -1.2%

RF+MLP 0.098±0.553 0.095±0.507 -3.0% 4.481±9.856 0.240±0.757 0.240±0.757 0.211±0.714 0.121±0.884 -43%

MLP+LR 0.080±0.230 0.079±0.229 -1.7% 1.517±4.686 0.141±0.242 0.141±0.242 0.141±0.242 0.105±0.194 -26%

MLP+RF 0.080±0.230 0.079±0.233 -1.4% ∞ 0.141±0.245 ∞ 0.142±0.254 0.104±0.192 -26%

MLP+MLP 0.080±0.230 0.079±0.230 -1.6% 4.481±9.856 0.389±1.118 0.389±1.118 0.340±0.951 0.112±0.236 -67%

TARNet 0.054±0.094 0.053±0.092 -1.7% 1.276±4.183 0.089±0.163 0.089±0.162 0.089±0.162 0.083±0.198 -6.8%

Dragonnet 0.056±0.092 0.056±0.095 -0.9% 1.716±4.814 0.141±0.219 0.141±0.219 0.135±0.176 0.082±0.106 -39%

TABLE II
THE PERFORMANCE COMPARISONS (εATE ± σATE ) ON THE TEST SETS OF 100 TWINS EXPERIMENTS. SMALLER εATE IS BETTER.

Model/Estimator DR RCL2,2 RDR IPW AIPW DML DML-trim RCL2,1 RDML

LASSO+LR 0.667±0.437 0.646±0.358 -3.2% 0.997±1.028 0.863±0.868 0.863±0.868 0.863±0.868 0.861±0.861 -0.3%

LASSO+RF 0.667±0.437 0.640±0.346 -4.0% 1.068±1.067 0.913±1.032 0.913±1.032 0.913±1.032 0.851±0.858 -6.8%

LASSO+MLP 0.667±0.437 0.652±0.362 -2.2% 2.717±2.535 0.941±0.970 0.941±0.970 0.925±0.951 0.883±0.851 -4.5%

RF+LR 0.604±0.533 0.576±0.461 -4.6% 0.997±1.028 0.783±0.863 0.783±0.863 0.783±0.863 0.774±0.842 -1.0%

RF+RF 0.604±0.533 0.574±0.444 -5.1% 1.068±1.067 0.898±1.048 0.898±1.048 0.898±1.048 0.809±0.861 -10%

RF+MLP 0.604±0.533 0.582±0.467 -3.7% 2.717±2.535 0.879±0.940 0.879±0.940 0.863±0.925 0.816±0.829 -5.5%

MLP+LR 0.660±0.643 0.624±0.562 -5.4% 0.997±1.028 0.822±0.831 0.822±0.831 0.822±0.831 0.817±0.828 -0.6%

MLP+RF 0.660±0.643 0.619±0.548 -6.3% 1.068±1.067 0.940±1.006 0.940±1.006 0.940±1.006 0.845±0.827 -10%

MLP+MLP 0.660±0.643 0.630±0.563 -4.6% 2.717±2.535 0.905±0.955 0.905±0.955 0.899±0.954 0.850±0.833 -5.5%

TARNet 0.656±0.600 0.621±0.510 -5.3% 2.469±2.984 0.938±1.303 0.938±1.303 0.938±1.303 0.865±1.043 -7.8%

Dragonnet 0.677±0.635 0.642±0.561 -5.2% 1.669±1.651 0.795±0.741 0.795±0.741 0.795±0.741 0.790±0.774 -0.6%

relatively small sample size and a large dimension of features,
the second-moment estimation of νi is more reliable compared
to the higher-moment estimations. We use grid search to
adjust the hyperparameters for those general machine learning
models. For TARNet and Dragonnet, we use the same network
structures (layers, units, regularization, batch size, learning
rate, and stopping criterion) as suggested in [24] and [25].

c) IHDP: It is a widely used benchmark dataset for
causal inference introduced by [27]. IHDP dataset is con-
structed based on the randomized controlled experiment con-
ducted by Infant Health and Development Program. The
collected 25-dimensional confounders from the 747 samples
are associated with the properties of infants and their mothers,
such as birth weight and mother’s age. Our aim is to study
the treatment effect of the specialist visits (binary treatment)
on the cognitive scores (continuous-valued outcome). By re-
moving a subset of the treated group, the selection bias in the
IHDP dataset occurs. There are 1000 IHDP datasets given in
[27]. Each dataset is split by the ratio of 63%/27%/10% as
training/validation/test sets, which keeps consistent with [24].

d) Twins: Twins dataset is introduced by [28] and it
collects twin births in the USA between 1989 and 1991. The
treatment D = 1 indicates the heavier twin while D = 0

indicates the lighter twin; the outcome Y is a binary variable
defined as the mortality in the first year; the covariates Z

include 30 features relevant to the parents, the pregnancy and
the birth. Similar to [29], we only select twins that have the
same gender and both weigh less than 2kg. Finally, we have
11440 pairs of twins whose mortality rates are 17.7% for lighter
twin and 16.1% for heavier twin. To simulate an observational
dataset with selection bias, we selectively choose one of the
two twins as the observed sample based on the covariates
of mth individual: Dm|Zm ∼ Bernoulli(Sigmoid(wTZm + b)),
where wT ∼ U30((−0.01, 0.01)30) and b ∼ N(0, 0.01). We
repeat this process 100 times, and each of the generated
100 Twins datasets is split by the ratio of 64%/16%/20% as
training/validation/test sets, which keeps consistent with [29].

e) Analysis: In Table I and Table II, we report the
performance of every model combination, measured by
εATE (±σATE), for IHDP and Twins experiments, respectively.
The smaller εATE , the better. The metric RDR = RCL2,2/DR−1



(RDML = RCL2,1/min(IPW, AIPW, DML, DML-trim) − 1) is
used to evaluate the reduction ratio in εATE of RCL2,2 relative
to DR (RCL2,1 relative to the best estimator among IPW,
AIPW, DML, and DML-trim). The negative RDR (RDML)
indicates that the RCL estimator has a smaller εATE than the
DR (IPW, AIPW, DML, and DML-trim) estimator.

Table I reports the experimental results on IHDP datasets.
It illustrates that although the DR estimator produces rea-
sonable estimates, the RCL2,2 estimator has a more minor
εATE than the DR estimator, with the error reduced relatively
by 0.9% − 4.8%. Simultaneously, RCL2,2 achieves the best
performance among all the estimators across all the model
combinations. We also notice that even though the AIPW and
DML-trim avoid extreme values encountered by DML (e.g.,
when the classifier is chosen as RF, the inverse propensity
score is estimated with an infinity value for some data points),
the RCL2,1 estimator is still at most 67% better than the best
of IPW, DML, and DML-trim estimators. More importantly,
when the variance of inverse propensity scores is large (e.g.,
when the classifier is MLP), the improvement of RCL2,1 to
DML becomes more substantial.

Table II presents the experimental results on Twins datasets.
It can be observed that the RCL2,2 estimator has a significantly
smaller εATE compared with other estimators for all model
combinations, and it can reduce the estimation error relatively
by 2.2% − 6.3% compared with the DR method. Besides,
the RCL2,1 estimator can reduce the estimation error by
0.3%− 10% relative to the best of IPW, DML, and DML-trim
estimators. It is also noticeable that when πi is well specified
(e.g., the case on using Dragonnet in Table II), our RCL2,1

estimator still outperforms the DML estimator even though the
error εATE produced by the DML estimator is small enough.

C. Numerical Studies on Credit dataset

Causal inference benchmark datasets are typically generated
by a parametric data generating process. Though the ground
truth of treatment effects are accessable in this way, such semi-
synthetic datasets fail to resemble the original real data sets.

In summary, DML is recognized as a better method than
DR and IPW because when the DR (IPW) estimator has a
notable bias due to the misspecification on gi (πi), the DML
estimator can reduce the bias if πi (gi) is well estimated.
However, the advantages of DML are not easy to achieve
in practice. First, the DML estimator, which incorporates
the inverse propensity score term, may give a very large
estimation or even infinite value of the ATE, reflecting that
the DML estimator is volatile to the estimation of propensity
scores. Second, if gi is approximated well enough, DML
will not assuredly perform better than DR due to the high
variance of the IPW term. By contrast, our RCL estimators
are more practical since i) they can stabilize the error caused
by the misspecification on propensity scores; ii) if gi is well
approximated, the RCL2,2 estimator will outperform the DR
estimator owing to the RCL scores are orthogonal scores; iii)
if gi is not well approximated, but πi is correctly specified,
the RCL estimator with k = 1 performs better than the DML

estimator with smaller estimation errors and slighter volatility
to the estimated propensity scores.

V. CONCLUSION

This paper constructs the RCL scores and establishes the
RCL estimators for the ATE estimation. Theoretically, we
prove that the RCL scores are orthogonal scores and the RCL
estimators are consistent. Numerically, the comprehensive
experiments have shown that our estimators outperform the
commonly used estimators such as DR, IPW, AIPW, DML,
and DML-trim estimators. In addition, the proposed RCL
estimators have the same merit, i.e., the doubly robust property,
as the DML estimator. However, unlike the DML estimator,
the RCL estimators are more stable to the estimation error due
to the misspecification on propensity scores than the DML
estimator and its variants. In the future research, we will i)
investigate the optimal values of (r, k) in Theorem 1; and
ii) provide interpretability for deep learning models in causal
inference using the RCL method.
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VII. APPENDICES

A. proofs

We present the theoretical proofs of Theorems and Corol-
laries given in the paper.

Proof of Theorem 1.
Given the nuisance parameters % = (gi, ai) and the true
nuisance parameters ρ = (gi, πi), we find out the RCL score
ψi(W,ϑ, %) w.r.t. the nuisance parameters % = (gi, ai) which
can be used to construct the estimators of the causal parameter
θi := E

[
gi(Z)

]
. We try an ansatz of ψi(W,ϑ, %) such that

ψi(W,ϑ, %) = ϑ− g
i(Z)− (Y i − g

i(Z))A(D,Z; ai), (15)

where

A(D,Z; ai) = b̄r
[
1{D=di} − ai(Z)

]r
+

k−1∑
q=1

bq
([
1{D=di} − ai(Z)

]q − E
[
(νi)q | Z

])
.

(16)



Here, the coefficients b1, · · · , bk−1, b̄r depend on Z and νi

only. Using the ansatz, we notice that ψi(W,ϑ, %) satisfies
the moment condition, i.e., E

[
ψi(W,ϑ, %) |ϑ=θi, %=ρ

]
= 0.

Indeed, we have

E
[
ψi(W,ϑ, %) |ϑ=θi, %=ρ

]
=E

[
θi − gi(Z)− (Y i − gi(Z))A(D,Z;πi)

]
=E

[
θi − gi(Z)

]
− E

[
(Y i − gi(Z))A(D,Z;πi)

]
=− E

[
ξi ×A(D,Z;πi)

]
=− E

[
E
[
ξi ×A(D,Z;πi) | D,Z

]]
=− E

[
A(D,Z;πi)E

[
ξi | D,Z

]]
= 0.

The second last equality comes from the fact that A(D,Z;πi)
is a function of (D,Z). The last equality comes from
the fact that (ξi ⊥⊥ D) | Z. Now, we aim to find
out the coefficients of b1, · · · , bk−1, b̄r such that the score
(15) satisfies the kth score. Indeed, we need to have
E
[
∂α1

gi
∂α2
ai ψ

i(W,ϑ, %) |ϑ=θi, %=ρ| Z
]

= 0 for all α1 and α2

which are non-negative integers such that 1 ≤ α1 + α2 ≤ k.
Since ∂α1

gi
∂α2
ai ψ

i(W,ϑ, %) = 0 when α1 ≥ 2, we only need to
solve the coefficients b1, · · · , bk−1, b̄r from

0 = E
[
∂kaiψ

i(W,ϑ, %) |ϑ=θi, %=ρ| Z
]
,

0 = E
[
∂1
gi∂

q
aiψ

i(W,ϑ, %) |ϑ=θi, %=ρ| Z
] (17a)

(17b)

∀q = 0, · · · , k − 1. However, (17a) always holds since

E
[
∂kaiψ

i(W,ϑ, %) |ϑ=θi, %=ρ| Z
]

=E
[
(Y i − gi(Z))× ∂kaiA(D,Z; ai) |ai=πi | Z

]
=E

[
E
[
(Y i − gi(Z))× ∂kaiA(D,Z; ai) |ai=πi | D,Z

]
| Z
]

=E
[
∂kaiA(D,Z; ai) |ai=πi E

[
(Y i − gi(Z)) | D,Z

]
| Z
]

=E
[
∂kaiA(D,Z; ai) |ai=πi E

[
ξi | Z

]
| D,Z

]
= 0.

Consequently, we need to find out the coefficients b1, b2, . . . ,
bk−1, b̄r from

E
[
∂1
gi∂

q
aiψ

i(W,ϑ, %) |ϑ=θi, %=ρ| Z
]

= 0 (17b)

∀q = 0, · · · , k − 1. From (17b), there are k equations and
we need to solve the k unknowns b1, · · · , bk−1, b̄r from the
k equations. Generally, the k unknowns could be solved
uniquely.

To start with, we compute ∂1
gi
∂qaiψ

i(W,ϑ, %) for q =
0, · · · , k − 1. Note that

∂1
gi∂

q
aiψ

i(W,ϑ, %) = −1 +A(D,Z; ai)

when q = 0 and

∂1
gi∂

q
aiψ

i(W,ϑ, %) = b̄r
r!(−1)q[1{D=di} − ai(Z)]r−q

(r − q)!

+

k−1∑
u=q

bu
u!(−1)q[1{D=di} − ai(Z)]u−q

(u− q)!

when 1 ≤ q ≤ k − 1. Consequently, we need to solve for
b1, · · · , bk−1 and b̄r simultaneously from

1 = E
[
A(D,Z;πi) | Z

]
(18a)

and

0 = E

[
b̄r
r!(−1)q[1{D=di} − πi(Z)]r−q

(r − q)! | Z

]

+ E

[
k−1∑
u=q

bu
u!(−1)q[1{D=di} − πi(Z)]u−q

(u− q)! | Z

]
.

(18b)

From (18a), we have

1 = b̄rE
[(

1{D=di} − π
i(Z)

)r
| Z
]

+

k−1∑
q=1

bqE
[(

1{D=di} − π
i(Z)

)q
| Z
]

−
k−1∑
q=1

bqE
[
E
[
(νi)q | Z

]
| Z
]
.

(18a*)

Since

E
[(
1{D=di} − πi(Z)

)q | Z] = E
[
(νi)q | Z

]
and

E
[
E
[
(νi)q | Z

]
| Z
]

= E
[
(νi)q | Z

]
,

we understand that

E
[(
1{D=di} − πi(Z)

)q | Z]− E
[
E
[
(νi)q | Z

]
| Z
]

= 0.

As such, (18a*) can be reduced as

b̄rE
[(

1{D=di} − π
i(Z)

)r
| Z
]

= 1

⇒ b̄rE
[
(νi)r | Z

]
= 1.

Hence, we can solve for b̄r such that

b̄r =
1

E [(νi)r | Z]
.

It remains to find out b1, · · · , bk−1 from (18b). Indeed, we can
simplify (18b) as

b̄rE
[
r!(νi)r−q

(r − q)! | Z
]

+

k−1∑
u=q

buE
[
u!(νi)u−q

(u− q)! | Z
]

= 0

⇒ b̄r

(
r

q

)
E
[
(νi)r−q | Z

]
+

k−1∑
u=q

bu

(
u

q

)
E
[
(νi)u−q | Z

]
= 0

(19)
∀1 ≤ q ≤ k − 1. Now, we solve b1, · · · , bk−1. We start with
finding out bk−1, followed by bk−2, bk−3, · · · , b1 iteratively.
When q = k − 1, (19) becomes

0 = b̄r

(
r

k − 1

)
E
[
(νi)r−k+1 | Z

]
+ bk−1

(
k − 1

k − 1

)
E
[
(νi)0 | Z

]
⇒ bk−1 = −b̄r

(
r

k − 1

)
E
[
(νi)r−k+1 | Z

]
.



Now, when q = k − 2, (19) becomes

0 = b̄r

(
r

k − 2

)
E
[
(νi)r−k+2 | Z

]
+ bk−1

(
k − 1

k − 2

)
E
[
(νi)(k−1)−(k−2) | Z

]
+ bk−2E

[
(νi)0 | Z

]
⇒ bk−2 = −bk−1

(
k − 1

k − 2

)
E
[
(νi)1 | Z

]
− b̄r

(
r

k − 2

)
E
[
(νi)r−k+2 | Z

]
.

Now, suppose bq+1, · · · , bk−1 are known and we want to find
out what bq is. We have to solve it from

0 = bqE
[
(νi)0 | Z

]
+ b̄r

(
r

q

)
E
[
(νi)r−q | Z

]
+

k−1∑
u=q+1

bu

(
u

q

)
E
[
(νi)u−q | Z

]
.

We can obtain bq from the above equation, which gives

bq = −
k−1∑
u=q+1

bu

(
u

q

)
E
[
(νi)u−q | Z

]
− b̄r

(
r

q

)
E
[
(νi)r−q | Z

]
⇒ bq = −

k−1−q∑
u=1

bq+u

(
q + u

q

)
E
[
(νi)u | Z

]
− b̄r

(
r

q

)
E
[
(νi)r−q | Z

]
.

The proof is completed.

Proof of Corollary 2. We have discussed the way to obtain
the estimator in the main paper.

To facilitate the upcoming studies, we first introduce some
notations. Recall that Y i is the potential outcome under the
treatment di. We use Y i;F as the factual outcome if an indi-
vidual receives di, and Y i;CF as the counterfactual outcome if
an individual receives alternative treatments. Hence, we have

Y i =

{
Y i;F if D = di

Y i;CF if D 6= di
.

Based on the introduced notations, we can define two residual
differences ξi;Fm and ξi;CFm for the mth individual according
to the sets I and I c that the mth individual belongs to.
Mathematically, ξi;Fm := Y i;Fm − gi(Zm) if m ∈ I and
ξi;CFm := Y i;CFm − gi(Zm) if m ∈ I c.

We give the statistical properties between ξi;Fm and ξi;CFm̄

for m, m̄. First, ξi;Fm ⊥⊥ ξi;CFm̄ | Z due to the SUTVA
assumption for m 6= m̄. Second. Regardless of the actual
treatment the individual receives, the noises in terms of di

should be identical and independently distributed for different
individuals. As a result, we should have

ξi;Fm
d
= ξi;CFm̄ | Z and ξi;Fm ⊥⊥ ξi;CFm̄ | Z.

From the above assumptions, we have E
[
(ξi;Fm )r | Z

]
=

E
[
(ξi;CFm̄ )r | Z

]
∀ r and m, m̄.

We give the statistical properties between ξi;Fm and ξi;CFm̄ .
To be precise, we study ξi;Fm and ξi;CFm̄ conditioning on Z.
The properties are summarized in Proposition 3.

Proposition 3. Given the covariates Z, the random variable
ξi;Fm and ξi;CFm̄ are independent and identically distributed,
i.e., E

[
(ξi;Fm )r | Dm,Z

]
= E

[
(ξi;CFm̄ )r | Dm̄,Z

]
and ξi;Fm ⊥⊥

ξi;CFm̄ | Z.

Proof. Using the SUTVA assumption, we have ξi;Fm ⊥⊥ ξi;CFm̄ |
Z. In addition, we have

E
[
(ξi;Fm )r | Dm,Zm

]
= E

[
(Y i;Fm − gi(Zm))r | Dm,Zm

]
=

r∑
k=0

(
r

k

)
E
[
(Y i;Fm )r | Dm,Zm

]
(−gi(Zm))r−k

?
=

r∑
k=0

(
r

k

)
E
[
(Y i;Fm )r | Zm

]
(−gi(Zm))r−k = E

[
(ξi)r | Z

]
.

?
= is due to the ignorability assumption. Similarly, we also
have

E
[
(ξi;CFm̄ )r | Dm̄ 6= di,Zm̄

]
= E

[
(ξim̄)r | Zm̄

]
= E

[
(ξi)r | Z

]
.

In the remaining sequel, we investigate the consistency of
our RCL estimators based on the basics of orthogonal machine
learning theory. To start with, we give the assumptions on the
nuisance parameters. Only the assumptions that are helpful
in studying the consistency of our RCL estimators are stated.
Other assumptions that concentrate on the conditions of the
scores, including orthogonality, identifiability, non-degeneracy,
smoothness, and the regularity of moments can be found in
[23] and references therein.

Assumption 5. Given that the nuisance parameters and the
true nuisance parameters are (ĝi, π̂i) and (gi, πi), and S =
{α = (α1, α2) ∈ Z2

≥0 : ‖α‖1 ≤ k}, we have

1) E
[ ∣∣ĝi(Z)− gi(Z)

∣∣4α1
∣∣π̂i(Z)− πi(Z)

∣∣4α2 | ĝi, π̂i
] p→ 0

∀ α ∈ S

2) N
1
2

√
E
[
|ĝi(Z)− gi(Z)|2α1 |π̂i(Z)− πi(Z)|2α2 | ĝi, π̂i

] p→
0 ∀ α ∈ {α ∈ Z2

≥0 : ‖α‖1 ≤ k + 1}\S.

For notational convenience, we rewrite our RCL estimator
θ̂iRCL and denote it as θ̂iN . Indeed, we have

θ̂iN =
1

N

N∑
m=1

ĝi(Zm)︸ ︷︷ ︸
(a)

+
1

N

∑
m∈I

(Y i;Fm − ĝi(Zm))Âim︸ ︷︷ ︸
(b)

+
1

R

R∑
u=1

[
1

N

∑
m∈I c

ξ̂i;Fm,uÂ
i
m

]
︸ ︷︷ ︸

(c)

.

(20)



Besides, we define two quantities ˆ̃
θiN and ˆ̄θiN . They are

ˆ̃
θiN =

1

N

N∑
m=1

ĝi(Zm) +
1

N

∑
m∈I

(Y i;Fm − ĝi(Zm))Âim

+
1

N

∑
m∈I c

ξ̂i;CFm Âim, (21)

ˆ̄θiN =
1

N

N∑
m=1

ĝi(Zm) +
1

N

∑
m∈I

(Y i;Fm − ĝi(Zm))Âim

+
1

N

∑
m∈I c

ξ̂i;Fm Âim. (22)

We also define

κi;FN =
1

N

∑
m∈I c

ξi;Fm Aim, κ̂
i;F
N =

1

N

∑
m∈I c

ξ̂i;Fm Âim,

κi;CFN =
1

N

∑
m∈I c

ξi;CFm Aim, κ̂
i;CF
N =

1

N

∑
m∈I c

ξ̂i;CFm Âim,

κ̂i;FR,N =
1

R

R∑
u=1

[ 1

N

∑
m∈I c

ξ̂i;Fm,uÂ
i
m

]
, κi;FR,N =

1

R

R∑
u=1

[ 1

N

∑
m∈I c

ξi;Fm,uA
i
m

]
.

Then (21) and (22) can be rewritten as

ˆ̃
θiN =

1

N

N∑
m=1

ĝi(Zm)

+
1

N

∑
m∈I

(Y i;Fm − ĝi(Zm))Âim + κ̂i;CFN , (21)

ˆ̄θiN =
1

N

N∑
m=1

ĝi(Zm)

+
1

N

∑
m∈I

(Y i;Fm − ĝi(Zm))Âim + κ̂i;FN (22)

for simplicity. In addition, we have to use two lemmas and
two propositions to study the consistency of θ̂iN . We state
them with the proofs.

Lemma 4. Given two sequences of random variables
(XN )∞N=1 and (YN )∞N=1 such that XN

d
= YN . If XN

p→ c

for some constant c, then YN
p→ c.

Proof. Let fXN (·) and fYN (·) be the density functions
of the random variables XN and YN respectively. Since
XN

d
= YN , fXN (·) = fYN (·). Hence, P {|XN − c| ≥ ε} =∫

|z−c|≥ε fXN (z)dz =
∫
|z−c|≥ε fYN (z)dz = P {|YN − c| ≥ ε}.

Consequently, XN
p→ c implies YN

p→ c.

Lemma 5. Given random variables X , Y , E, Z. If (X
d
= Y ) |

Z, (X ⊥⊥ E) | Z, (Y ⊥⊥ E) | Z, then Xh(E,Z)
d
= Y h(E,Z)

for any function h.

Proof. Define fZ(z) as the density function of Z, fX|Z(x|z) is
the conditional density function of X|Z, fY |Z(y|z) is the con-
ditional density function of Y |Z, fE|Z(e|z) is the conditional
density function of E|Z, fX,E|Z(x, e|z) is the conditional
joint density function of X,E|Z, and fY,E|Z(y, e|z) is the

conditional joint density function of Y,E|Z. For a measurable
set A, we have
P{Xh(E,Z) ∈ A}

=

∫
ΩZ

{∫∫
ΩX×ΩE

1{xh(e,z)∈A}fX,E|Z(x, e|z)dxde
}
fZ(z)dz

∗
=

∫
ΩZ

{∫∫
ΩX×ΩE

1{xh(e,z)∈A}fX|Z(x|z)fE|Z(e|z)dxde
}
fZ(z)dz

4
=

∫
ΩZ

{∫∫
ΩY ×ΩE

1{yh(e,z)∈A}fY |Z(y|z)fE|Z(e|z)dyde
}
fZ(z)dz

�
=

∫
ΩZ

{∫∫
ΩY ×ΩE

1{yh(e,z)∈A}fY,E|Z(y, e|z)dyde
}
fZ(z)dz

=P{Y h(E,Z) ∈ A}

∗ holds since (X ⊥⊥ E) | Z, 4 holds since (X
d
= Y ) | Z,

and � holds since (Y ⊥⊥ E) | Z.

Proposition 6. Suppose E
[
(ξi;Fm )2 | Z

]
and (Aim)2 exist such

that E
[
(Aim)2E

[
(ξi;Fm )2 | Z

]]
is finite for all m. We have

κi;CFN − κi;FN
p→ 0 when N →∞.

Proof. ∀ε > 0, we consider P
{∣∣∣κi;CFN − κi;FN

∣∣∣ ≥ ε}. Indeed,
we have

P
{∣∣∣κi;CFN − κi;FN

∣∣∣ ≥ ε} ≤ E
[(
κi;CFN − κi;FN

)2
]

ε2

=

1
N2E

[( ∑
m∈I c

(ξi;CFm − ξi;Fm )Aim

)2
]

ε2
.

Denoting ξi;CFm − ξi;Fm as Ξim, we have

E
[( ∑
m∈I c

(ξi;CFm − ξi;Fm )Aim
)2]

= E
[( ∑
m∈I c

ΞimA
i
m

)2]
=E
[ ∑
m,m̄∈I c

ΞimA
i
mΞim̄A

i
m̄

]
=

∑
m,m̄∈I c

E
[
ΞimA

i
mΞim̄A

i
m̄

]
+

∑
m,m̄∈I c

m 6=m̄

E
[
AimA

i
m̄E
[
ΞimΞim̄ | D,Z

]]

=
∑
m∈I c

E
[
(Aim)2E

[
(Ξim)2 | D,Z

]]
+

∑
m,m̄∈I c

m 6=m̄

E
[
AimA

i
m̄E
[
Ξim | D,Z

]
E
[
Ξim̄ | D,Z

]]

=
∑
m∈I c

E
[
(Aim)2E

[
(Ξim)2 | Z

]]
= 2

∑
m∈I c

E
[
(Aim)2E

[
(ξi;Fm )2 | Z

]]
≤2NE

[
(Ai)2E

[
(ξi;F )2 | Z

]]
.

The last equality follows from

E
[
(Ξim)2 | Z

]
= E

[
(ξi;CFm − ξi;Fm )2 | Z

]
=E
[
(ξi;CFm )2 | Z

]
− 2E

[
ξi;Fm ξi;CFm | Z

]
+ E

[
(ξi;Fm )2 | Z

]
=E
[
(ξi;CFm )2 | Z

]
− 2E

[
ξi;Fm | Z

]
E
[
ξi;CFm | Z

]
+ E

[
(ξi;Fm )2 | Z

]
=E
[
(ξi;CFm )2 | Z

]
+ E

[
(ξi;Fm )2 | Z

]
= 2E

[
(ξi;Fm )2 | Z

]
.

As a consequence, we have

P
{∣∣∣κi;CFN − κi;FN

∣∣∣ ≥ ε} ≤ 2NE
[
(Ai)2E

[
(ξi;F )2 | Z

]]
N2ε2

=
2E
[
(Ai)2E

[
(ξi;F )2 | Z

]]
Nε2

→ 0



when N → ∞. As a result, we have κi;CFN − κi;FN
p→ 0. The

proof is completed.

Proposition 7. Suppose that, conditioning on Z, ξi;Fm,u are i.i.d.
of ξi;Fm and ξi;Fm,u are i.i.d. of ξi;Fm,ū ∀u, ū ∈ {1, 2, · · · , R}. We
have

κi;FN − κi;FR,N
p→ 0 when N →∞.

Proof.
Write

κi;FR,N =
1

R

R∑
u=1

[
1

N

∑
m∈I c

ξi;Fm,uA
i
m

]

=
1

N

∑
m∈I c

(
1

R

R∑
u=1

ξi;Fm,u

)
Aim =

1

N

∑
m∈I c

E imA
i
m.

∀ε > 0, we have

P
{∣∣∣κi;FN − κi;FR,N

∣∣∣ ≥ ε} ≤ E

[(
1
N

∑
m∈I c

[
E im − ξi;Fm

]
Aim

)2
]

ε2
.

We simplify E

[(
1
N

∑
m∈I c

[
E im − ξi;Fm

]
Aim

)2
]

. Note that

E

( 1

N

∑
m∈I c

[
E i
m − ξi;Fm

]
Aim

)2


=
1

N2

∑
m,m̄∈I c

E
[(

E i
m − ξi;Fm

) (
E i
m̄ − ξ

i;F
m̄

)
Aim̄A

i
m

]
=

1

N2

∑
m∈I c

E
[(

E i
m − ξi;Fm

)2
(Aim)2

]
+

1

N2

∑
m,m̄∈I c

m6=m̄

E
[(

E i
m − ξi;Fm

) (
E i
m̄ − ξ

i;F
m̄

)
Aim̄A

i
m

]

=
1

N2

∑
m∈I c

E
[(

E i
m − ξi;Fm

)2
(Aim)2

]
+

1

N2

∑
m,m̄∈I c

m6=m̄

E
[
Aim̄A

i
mE

[(
E i
m − ξi;Fm

) (
E i
m̄ − ξ

i;F
m̄

)
| D,Z

]]

=
1

N2

∑
m∈I c

E
[(

E i
m − ξi;Fm

)2
(Aim)2

]
+

1

N2

∑
m,m̄∈I c

m6=m̄

E
[
Aim̄A

i
mE

[(
E i
m − ξi;Fm

)
| Z
]
E
[(

E i
m̄ − ξ

i;F
m̄

)
| Z
]]

=
1

N2

∑
m∈I c

E
[(

E i
m − ξi;Fm

)2
(Aim)2

]
.

The last equality in the above derivation follows from the fact
that, conditioning on Z, ξi;Fm,u are i.i.d. of ξi;Fm for any u ∈
{1, 2, · · · , R}. Indeed, we have E

[
ξi;Fm,u | Z

]
= E

[
ξi;Fu | Z

]
for any m and u ∈ {1, 2, · · · , R}. Consequently, we have

E
[(

E i
m − ξi;Fm

)
| Z
]

= E

[(
1

R

R∑
u=1

ξi;Fm,u − ξi;Fm

)
| Z

]

=
1

R

R∑
u=1

E
[
ξi;Fm,u | Z

]
− E

[
ξi;Fm | Z

]
=

1

R

R∑
u=1

E
[
ξi;Fm | Z

]
− E

[
ξi;Fm | Z

]
=E

[
ξi;Fm | Z

]
− E

[
ξi;Fm | Z

]
= 0.

In addition, we simplify the quantity E
[(

E im − ξi;Fm
)2]. Note

that E im − ξi;Fm = 1
R

R∑
u=1

[ξi;Fm,u − ξi;Fm ]. We therefore have

E

( R∑
u=1

[
ξi;Fm,u − ξi;Fm

])2


=

R∑
u,ū=1

E
[(
ξi;Fm,u − ξi;Fm

)(
ξi;Fm,ū − ξ

i;F
m

)]
=

R∑
u,ū=1

{
E
[
ξi;Fm,uξ

i;F
m,ū

]
− E

[
ξi;Fm,uξ

i;F
m

]
−E

[
ξi;Fm ξi;Fm,ū

]
+ E

[
ξi;Fm ξi;Fm

]}
=

R∑
u=1

E
[
(ξi;Fm,u)2

]
− 2R

R∑
u=1

E
[
ξi;Fm,uξ

i;F
m

]
+R2E

[
(ξi;Fm )2

]
+

R∑
u,ū=1
u6=ū

E
[
ξi;Fm,uξ

i;F
m,ū

]
=
[
R2 +R

]
E
[(
ξi;Fm

)2
]
.

We justify the last equality. The last equality follows from the
fact that, conditioning on Z, ξi;Fm,u are i.i.d. of ξi;Fm and ξi;Fm,u
are i.i.d. of ξi;Fm,ū for any u, ū ∈ {1, 2, · · · , R}. Indeed, under
the given fact, we have

E
[
ξi;Fm,uξ

i;F
m

]
= E

[
E
[
ξi;Fm,uξ

i;F
m | Z

]]
= E

[
E
[
ξi;Fm,u | Z

]
E
[
ξi;Fm | Z

]]
=E

[
E
[
E
[
ξi;Fm,u | D,Z

]
| Z
]
E
[
E
[
ξi;Fm | D,Z

]
| Z
]]

= 0

and

E
[
ξi;Fm,uξ

i;F
m,ū

]
= E

[
E
[
ξi;Fm,uξ

i;F
m,ū | Z

]]
= E

[
E
[
ξi;Fm,u | Z

]
E
[
ξi;Fm,ū | Z

]]
=E

[
E
[
E
[
ξi;Fm,u | D,Z

]
| Z
]
E
[
E
[
ξi;Fm,ū | D,Z

]
| Z
]]

= 0.

Consequently, we have

E
[(

E im − ξi;Fm
)2
]

=

(
1 +

1

R

)
E
[(
ξi;Fm

)2
]
.

Thus, we have

P
{∣∣∣κi;FN − κi;FR,N

∣∣∣ ≥ ε} ≤
1
N2

∑
m∈I c

(
1 + 1

R

)
E
[(
ξi;Fm

)2]
ε2

≤

(
1 + 1

R

)
E
[(
ξi;F

)2]
Nε2

.

(23)

We notice that no matter we set R → ∞ followed by N →
∞ or vice versa, or we fix R but let N → ∞, we see that
P
{∣∣∣κi;FN − κi;FR,N

∣∣∣ ≥ ε}→ 0.

Now, we are ready to investigate if the estimator θ̂iN
is a consistent estimator of θi. Our goal is to show that
Pρ̂
{∣∣∣θ̂iN − θi∣∣∣ ≥ ε} p→ 0. Before presenting the proof, we

notice that
(
ξ̂i;F

d
= ξ̂i;CF

)
| Z when ĝi and gi satisfie

Assumption 5. This is because that ξ̂i;F = Y i;F − ĝi(Z) =
ξi;F + gi(Z) − ĝi(Z), ξ̂i;CF = Y i;CF − ĝi(Z) = ξi;CF +
gi(Z) − ĝi(Z), (ξi;F ⊥⊥ D) | Z, (ξi;CF ⊥⊥ D) | Z, and(
ξi;F

d
= ξi;CF

)
| Z.



Proof. ∀ε > 0, we have

Pρ̂
{∣∣∣θ̂iN − θi∣∣∣ ≥ ε}

=Pρ̂
{∣∣∣θ̂iN − ˆ̄θiN + ˆ̄θiN − θi

∣∣∣ ≥ ε}
≤Pρ̂

{∣∣∣θ̂iN − ˆ̄θiN

∣∣∣ ≥ ε

2

}
+ Pρ̂

{∣∣∣ ˆ̄θiN − θi∣∣∣ ≥ ε

2

}
.

Since
(
ξi;F

d
= ξi;CF

)
| Z and

(
ξ̂i;F

d
= ξ̂i;CF

)
| Z, we

have ˆ̄θiN
d
=

ˆ̃
θiN by Lemma 5. Moreover, we know that

Pρ̂
{∣∣∣ ˆ̃θiN − θi∣∣∣ ≥ ε

2

}
p→ 0 under the assumptions given in

[23]. Together with the fact that ˆ̄θiN
d
=

ˆ̃
θiN , we have

Pρ̂
{∣∣∣ ˆ̄θiN − θi∣∣∣ ≥ ε

2

}
p→ 0 by Lemma 4. We turn to consider

the quantity Pρ̂
{∣∣∣θ̂iN − ˆ̄θiN

∣∣∣ ≥ ε
2

}
, and we aim to show that

Pρ̂
{∣∣∣θ̂iN − ˆ̄θiN

∣∣∣ ≥ ε
2

}
p→ 0. Notice that

Pρ̂
{∣∣∣θ̂iN − ˆ̄θiN

∣∣∣ ≥ ε

2

}
= Pρ̂

{∣∣∣κ̂i;FR,N − κ̂i;FN ∣∣∣ ≥ ε

2

}
≤Pρ̂

{∣∣∣κ̂i;FR,N − κi;FR,N ∣∣∣ ≥ ε

8

}
︸ ︷︷ ︸

(a)

+Pρ̂
{∣∣∣κi;FR,N − κi;FN ∣∣∣ ≥ ε

8

}
︸ ︷︷ ︸

(b)

+ Pρ̂
{∣∣∣κi;FN − κi;CFN

∣∣∣ ≥ ε

8

}
︸ ︷︷ ︸

(c)

+Pρ̂
{∣∣∣κi;CFN − κ̂i;FN

∣∣∣ ≥ ε

8

}
︸ ︷︷ ︸

(d)

.

(24)
Note that

∣∣∣κi;FR,N − κi;FN ∣∣∣ and
∣∣∣κi;FN − κi;CFN

∣∣∣ do not incorporate
any terms related to the estimated function ρ̂. From Proposi-
tion 6 and Proposition 7, we conclude that (24b) and (24c)
converge to 0 in probability respectively. It remains to show
the convergence of (24a) and (24d). Consider (24d) first. Since

∣∣∣κi;CFN − κ̂i;FN
∣∣∣ =

∣∣∣∣∣ 1

N

∑
m∈I c

ξi;CFm Aim −
1

N

∑
m∈I c

ξ̂i;Fm Âim

∣∣∣∣∣
≤

∣∣∣∣∣ 1

N

∑
m∈I c

(ξi;CFm Aim − ξi;Fm Aim)

∣∣∣∣∣︸ ︷︷ ︸
Γ1

+

∣∣∣∣∣ 1

N

∑
m∈I c

(ξi;Fm Aim − ξ̂i;Fm Aim)

∣∣∣∣∣︸ ︷︷ ︸
Γ2

+

∣∣∣∣∣ 1

N

∑
m∈I c

ξ̂i;Fm (Aim − Âim)

∣∣∣∣∣︸ ︷︷ ︸
Γ3

,

(24d) is bounded above by

Pρ̂
{

Γ1 ≥
ε

24

}
︸ ︷︷ ︸

(a)

+Pρ̂
{

Γ2 ≥
ε

24

}
︸ ︷︷ ︸

(b)

+Pρ̂
{

Γ3 ≥
ε

24

}
︸ ︷︷ ︸

(c)

.
(25)

(25a) converges to 0 in probability due to Proposition 6. We
study the quantities (25b) and (25c).

(25b) can be further bounded. If Nc is the size of I c, then

we have

Γ2 =

∣∣∣∣∣ 1

N

∑
m∈I c

(ξi;Fm Aim − ξ̂i;Fm Aim)

∣∣∣∣∣
≤

∣∣∣∣∣ 1

N

∑
m∈I c

ξi;Fm Aim −
Nc

N
Eρ̂
[
ξi;FAi

]∣∣∣∣∣︸ ︷︷ ︸
Γ2;1

+

∣∣∣∣Nc

N
Eρ̂
[
ξi;FAi

]
− Nc

N
Eρ̂
[
ξ̂i;FAi

]∣∣∣∣︸ ︷︷ ︸
Γ2;2

+

∣∣∣∣∣Nc

N
Eρ̂
[
ξ̂i;FAi

]
− 1

N

∑
m∈I c

ξ̂i;Fm Aim

∣∣∣∣∣︸ ︷︷ ︸
Γ2;3

.

We see that (25b) can be further bounded by

Pρ̂
{

Γ2;1 ≥
ε

72

}
︸ ︷︷ ︸

(a)

+Pρ̂
{

Γ2;2 ≥
ε

72

}
︸ ︷︷ ︸

(b)

+Pρ̂
{

Γ2;3 ≥
ε

72

}
︸ ︷︷ ︸

(c)

.

(26)
We investigate if (26a), (26b), and (26c) converge to 0 in
probability. We consider (26a) first. Recall the assumptions
that (ξi;F ⊥⊥ D) | Z,

(
ξi;F

d
= ξi;CF

)
| Z and (ξi;CF ⊥⊥ D) | Z,

we have 1
N

∑
m∈I c

ξi;Fm Aim
d
= 1

N

∑
m∈I c

ξi;CFm Aim by Lemma 5.

Since Γ2;1 = Nc

N

∣∣∣∣ 1
Nc

∑
m∈I c

ξi;Fm Aim − Eρ̂
[
ξi;FAi

]∣∣∣∣, we have

Pρ̂
{

Γ2;1 ≥
ε

72

}
=Pρ̂

{∣∣∣∣∣ 1

Nc

∑
m∈I c

ξi;Fm Aim − Eρ̂
[
ξi;FAi

]∣∣∣∣∣ ≥ ε

72
· N
Nc

}

≤Pρ̂

{∣∣∣∣∣ 1

Nc

∑
m∈I c

ξi;Fm Aim − Eρ̂
[
ξi;FAi

]∣∣∣∣∣ ≥ ε

72

}

≤
Eρ̂

[∣∣∣∣ 1
Nc

∑
m∈I c

ξi;Fm Aim − Eρ̂
[
ξi;FAi

]∣∣∣∣2
]

(
ε
72

)2 .

Consider Eρ̂

[∣∣∣∣ 1
Nc

∑
m∈I c

ξi;Fm Aim − Eρ̂
[
ξi;FAi

]∣∣∣∣2
]

.

Note that it equals

1

(N c)2

∑
m∈I c

Eρ̂
[∣∣ξi;Fm Aim − Eρ̂

[
ξi;FAi

]∣∣2]
+

1

(N c)
2

∑
m,m̄∈I c

m 6=m̄

Eρ̂
[
(ξi;Fm Aim − Eρ̂[ξi;FAi])(ξi;Fm̄ Aim̄ − Eρ̂[ξi;FAi])

]

=
1

(N c)
2

∑
m∈I c

Eρ̂
[(
Aim
)2 Eρ̂ [(ξi;Fm )2 | D,Z]]

+
1

(N c)
2

∑
m,m̄∈I c

m 6=m̄

Eρ̂
[
AimA

i
m̄Eρ̂

[
ξi;Fm | D,Z

]
Eρ̂
[
ξi;Fm̄ | D,Z

]]

=
1

(N c)
2

∑
m∈I c

Eρ̂
[(
Aim
)2 Eρ̂ [(ξi;Fm )2 | Z]]

=
1

N c
Eρ̂
[(
Ai
)2 Eρ̂ [(ξi;F )2 | Z]] .



Since Ai and ξi;F do not include the estimated nuisance pa-
rameters, Eρ̂

[(
Ai
)2 Eρ̂ [(ξi;F )2 | Z]] is a constant. Moreover,

note that Nc →∞ when N →∞, we have

Pρ̂
{

Γ2;1 ≥
ε

72

}
≤

722 Eρ̂
[(
Ai
)2 Eρ̂ [(ξi;F )2 | Z]]
ε2Nc

p→ 0.

Now, we consider (26b). Indeed, we have

Pρ̂
{

Γ2;2 ≥
ε

72

}
=Pρ̂

{∣∣∣Eρ̂ [ξi;FAi]− Eρ̂
[
ξ̂i;FAi

]∣∣∣ ≥ ε

72
· N
Nc

}
≤Pρ̂

{∣∣∣Eρ̂ [(ξi;F − ξ̂i;F )Ai
]∣∣∣ ≥ ε

72

}
≤

722
{
Eρ̂
[
(ξi;F − ξ̂i;F )Ai

]}2

ε2

≤
722

{
Eρ̂
[
(ξi;F − ξ̂i;F )4q

]} 1
2q
{
Eρ̂
[
(Ai)

4q
4q−1

]}2− 1
2q

ε2
p→ 0.

Here, the last inequality follows from the Hölders inequality,
while the convergence holds ∀q ∈ {1, 2, . . . , k} according to
Assumption 1.5 of [23]. Finally, we consider (26c). We can
rewrite Γ2;3 as

Γ2;3 =
Nc

N

∣∣∣∣∣Eρ̂ [ξ̂i;FAi]− 1

Nc

∑
m∈I c

ξ̂i;Fm Aim

∣∣∣∣∣ .
Now, we have

Pρ̂
{

Γ2;3 ≥
ε

72

}
≤Pρ̂

{∣∣∣∣∣Eρ̂ [ξ̂i;FAi]− 1

Nc

∑
m∈I c

ξ̂i;Fm Aim

∣∣∣∣∣ ≥ ε

72

}

≤
722 Eρ̂

[{ ∑
m∈I c

(
Eρ̂
[
ξ̂i;FAi

]
− ξ̂i;Fm Aim

)}2
]

ε2 (Nc)2

=

722 ∑
m∈I c

Eρ̂
[(

Eρ̂
[
ξ̂i;FAi

]
− ξ̂i;Fm Aim

)2
]

ε2 (Nc)2

+

722 ∑
m,m̄∈I c

m 6=m̄

Eρ̂[(ξ̂i;Fm − ξi;Fm )Aim]Eρ̂[(ξ̂i;Fm̄ − ξi;Fm̄ )Aim̄]

ε2 (Nc)2

− 2

722 ∑
m,m̄∈I c

m<m̄

Eρ̂[(ξ̂i;Fm − ξi;Fm )Aim]Eρ̂[(ξ̂i;F − ξi;F )Ai]

ε2 (Nc)2

+

722 ∑
m,m̄∈I c

m 6=m̄

{
Eρ̂
[(
ξ̂i;F − ξi;F

)
Ai
]}2

ε2 (Nc)2 .

Using Assumption 1.5 of [23], we can conclude that
Pρ̂
{

Γ2;3 ≥ ε
72

} p→ 0. Next, we come to bound (25c). Since

Nc is the size of I c and

Γ3 =

∣∣∣∣∣ 1

N

∑
m∈I c

ξ̂i;Fm Aim −
1

N

∑
m∈I c

ξ̂i;Fm Âim

∣∣∣∣∣
≤

∣∣∣∣∣ 1

N

∑
m∈I c

ξ̂i;Fm Aim −
Nc

N
Eρ̂
[
ξ̂i;FAi

]∣∣∣∣∣
+

∣∣∣∣Nc

N
Eρ̂
[
ξ̂i;FAi

]
− Nc

N
Eρ̂
[
ξ̂i;F Âi

]∣∣∣∣
+

∣∣∣∣∣Nc

N
Eρ̂
[
ξ̂i;F Âi

]
− 1

N

∑
m∈I c

ξ̂i;Fm Âim

∣∣∣∣∣
=
Nc

N

∣∣∣∣∣ 1

Nc

∑
m∈I c

ξ̂i;Fm Aim − Eρ̂
[
ξ̂i;FAi

]∣∣∣∣∣︸ ︷︷ ︸
Γ3;1

+
Nc

N

∣∣∣Eρ̂ [ξ̂i;FAi]− Eρ̂
[
ξ̂i;F Âi

]∣∣∣︸ ︷︷ ︸
Γ3;2

+
Nc

N

∣∣∣∣∣Eρ̂ [ξ̂i;F Âi]− 1

Nc

∑
m∈I c

ξ̂i;Fm Âim

∣∣∣∣∣︸ ︷︷ ︸
Γ3;3

,

we see that (25c) can be further bounded by

Pρ̂
{

Γ3;1 ≥
ε

72

}
︸ ︷︷ ︸

(a)

+Pρ̂
{

Γ3;2 ≥
ε

72

}
︸ ︷︷ ︸

(b)

+Pρ̂
{

Γ3;3 ≥
ε

72

}
︸ ︷︷ ︸

(c)

.

(27)
Similarly, we can prove that (27a) and (27c) converge to 0 in
probability when N →∞ using the arguments in proving that
(26a) and (26c) converge to 0. As a result, the quantity (24d)
converges to 0 in probability when N →∞.

Lastly, we turn to consider the quantity (24a). In fact, we
have

Pρ̂
{∣∣∣κ̂i;FR,N − κi;FR,N ∣∣∣ ≥ ε

8

}
≤Pρ̂

{∣∣∣∣∣ 1

N

∑
m∈I c

1

R

R∑
u=1

(
ξ̂i;Fm,u

)
(Âim −Aim)

∣∣∣∣∣ ≥ ε

16

}
(28a)

+ Pρ̂

{∣∣∣∣∣ 1

N

∑
m∈I c

Aim
1

R

R∑
u=1

[
(ξ̂i;Fm,u − ξi;Fm,u)

]∣∣∣∣∣ ≥ ε

16

}
. (28b)

We can argue that (28a) converges to 0 in probability as
N → ∞ using similar arguments when we prove that (25b)
converges to 0 in probability. Simultaneously, we can argue
(28b) converges to 0 in probability as N → ∞ using
similar arguments when we prove that (25c) converges to 0 in
probability. Consequently, we have κ̂i;FR,N −κ

i;F
R,N converges to

0 in probability.
The proof is completed.
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