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Abstract

Many approaches have been proposed for early classification of time series in light of its
significance in a wide range of applications including healthcare, transportation and fi-
nance. Until now, the early classification problem has been dealt with by considering only
irrevocable decisions. This paper introduces a new problem called early and revocable time
series classification, where the decision maker can revoke its earlier decisions based on the
new available measurements. In order to formalize and tackle this problem, we propose a
new cost-based framework and derive two new approaches from it. The first approach does
not consider explicitly the cost of changing decision, while the second one does. Exten-
sive experiments are conducted to evaluate these approaches on a large benchmark of real
datasets. The empirical results obtained convincingly show (i) that the ability of revok-
ing decisions significantly improves performance over the irrevocable regime, and (ii) that
taking into account the cost of changing decision brings even better results in general.

Keywords: revocable decisions, cost estimation, online decision making

1. Introduction

Consider Eisenhower, in June 1944, having to decide when to launch the landing on the
French coast (Eisenhower (1944)). He had an imperfect knowledge of the weather conditions.
The longer he waited, the more precise they became, allowing for a more informed decision:
to launch the landing today or wait for another day, but the more difficult it became to
ensure that all arrangements would be met and that the enemy remained unaware of the
danger. Eisenhower was faced with a very common problem, even if dramatic here, to have
to optimize a trade-off between the earliness of a decision and its potential cost. Note that
once the decision to launch operation Overlord was made, it was irrevocable. There was no
way it could be halted.

In many situations, however, one can take a decision and then decide to change it
after some new pieces of information become available. The change may be costly but still
warranted because it seems likely to lead to a much better outcome. This can be the case
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for instance when an outdoor event is canceled due to a dramatic change in the weather
forecast, or when a doctor revises what now seems a misdiagnosis.

Here again, we are faced with an an early classification problem: having to decide to
make a prediction about a situation before all information becomes available because it is
costly to wait, but now having the opportunity to change the prediction made if needed,
potentially several times.

We can liken our work to what is studied in control theory (Bennett (1993)). Control
theory is concerned as well with online decision making. For instance, when firing a rocket,
the engines are controlled in strength and direction such as to maintain the rocket on
the correct course. While the control here is instantaneous, other examples involve some
prediction at what is likely to happen. This is the case with anti-aircraft guns that must
point ahead of the plane in order to hit it. And the farther away is the plane from the gun,
the more ahead of the plane should the pointing be. Notice that a whole lot of standard
rules in control theory use as well integration of measurements over some time interval, thus
taking stock of the past to take decisions.

Control theory is the province of smart engineers who know how to design mathemat-
ical formula that capture all of the knowledge pertinent for the problems to be solved. In
numerous fields however, it is difficult or impossible to formulate such mathematical rules,
either because the field is ripped with intricate and numerous factors, like in biology, econ-
omy or sociology, or because the environment changes in such a way that it is not worth
trying to find mathematical formulas that would soon be useless. In these cases, one way
to circumvent this difficulty is to rely on heuristic rules learned from data representative of
the environment using machine learning methods.

Early classification of time series goes one step further and tries to learn second order
knowledge. The idea is to learn when there will be enough information to decide in such a
way as to optimize both the expectation of the misclassification cost and the cost associated
with delaying the decision.

Back to control theory, tremendous progress has been achieved when feedback signals
have been taken into account. Then, the system, by observing the discrepancy between the
prediction and further measurements, can correct its earlier decisions. Again, this is what
is done in anti-aircraft systems. And, here also, these feedback loops which control by how
much to correct, after which time interval, and so on, have to be designed by engineers
using their knowledge of the domain.

In the early classification of time series context, this translates into revocable early
classification of time series. There, the system is allowed to estimate the best time to
make a decision, but also to estimate when to revise prior decisions, if the need seems
warranted. There also, the rules can be learned from the available data. For instance, it
can be anticipated that large amounts of such data are and will become available in the
domain of autonomous vehicles.

To illustrate in a more concrete way the usefulness of extending Early Classification to
revocable decisions, let us consider the example of an emergency stop system implemented
in an autonomous car. Let us assume that this system is equipped with several sensors,
consisting of radars and cameras, which scan the road in order to detect a possible obstacle.
The reliability of these measurements decreases when the distance between the car and the
observed point increases. The car is driven at 120 km/h on the highway and a dark shape
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located 300 meters ahead is detected on the camera image. At this moment, there is a
doubt on the nature of this shape which could be an obstacle on the road with a probability
of 0.008. Thus, the system decides to brake. While approaching, the image of the camera
becomes more precise and the radars which have a range limited to 100 meters can now be
used: it does not detect an obstacle. The system decides to release the brake because it
recognizes a dark spot on the road which is at the origin of the shape initially observed.

Some notations
More formally, we assume that there exists a data set S = {(xiT , yi)}1≤i≤m of complete

time series xT = 〈x1, . . . , xT 〉 each of which is associated with a label y ∈ Y (e.g. patient
who needs a surgical operation or patient who does not). The measurements xi (1 ≤ i ≤ T )
belong to some input space X and can be univariate as well as multivariate. At each time
step t, the decision-maker gets to know the time series measured so far: xt = 〈x1, . . . , xt〉
and must decide either to make a prediction ŷt about the class of the incoming time series
or to postpone the decision.

In the irrevocable regime, once a decision has been taken, it cannot be changed and
the decision-maker endures a cost which is the sum of the misclassification cost Cm(ŷt|y)
plus the cost of having delayed the decision until time t: Cd(t). Whereas, in the revocable
regime, the decision-maker can change its prediction several times before the time limit T .
Let us call Dk, the sequence of the k predictions 〈ŷt1 , . . . , ŷtk〉 made at times t1, . . . , tk in the
time interval {1, . . . , T}. Each decision change from ŷti to ŷti+1 entails a cost Ccd(ŷti+1 |ŷti).
Then, the cost endured by the decision maker at time T is given by Equation 3 which sums
all previously introduced costs.

Interestingly, while the early classification of time series, in the irrevocable regime, has
been addressed in several papers in the last few years, we do not know of similar works
for the revocable regime. One reason could be that this does not seem worthwhile. Are
there so many situations, after all, where changing decisions could reduce the overall cost
of the expected misclassification cost and of the cost associated with further delays? A
second reason is that the problem seems difficult. Our work shows in effect that it is not
straightforward to identify the best instants to revoke a decision. But yet, it shows also that
such revocations can yield significant gains. This is demonstrated by the statistics presented
at the beginning of the experimental section: indeed, there are very few useful revocations
for sure, but the system presented is able to identify them. And, as shown by comparison
between our approach and the best known irrevocable method, to our knowledge, the gain
in performance is statistically significant.

The contribution of this paper is threefold. First, it formalizes the optimization problem
associated with the revocable regime for the early classification problem. Second, it proposes
two approaches to tackle this problem. Both approaches are non-myopic in that they take
into account expectancies about likely futures to take their decisions. The first approach
does not consider explicitly the cost of changing decision, while the second one does. Third,
extensive experiments are presented that both allow the comparison of the two approaches
and show that it is actually better to be able to revise decisions than to implement an
irrevocable decision strategy.

For the clarity of this paper, we consider a simple case where the input is in the form
of a univariate time series whose measurements are observed over time (i.e., equivalent to
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a single sensor). The framework and approaches presented in this paper can be adapted to
multivariate time series in a trivial way.

The rest of this paper is organized as follows. Section 2 provides an overview of classical
early classification approaches, all of which deal with the irrevocable regime. Section 3
focuses on a non-myopic framework which is designed for the irrevocable regime. The early
and revocable classification problem is defined in Section 4. Then, two new approaches are
proposed, which are evaluated through extensive experiments in Section 5. Perspectives
and future work are discussed in Section 6.

2. State of the art on early classification

All works that we are aware of deal with the early classification of time series problem in
the irrevocable regime. Most of these works do not take into account explicitly the costs
associated with a decision: the cost of misclassification and the cost of delaying decision.
Instead, they generally base their decision on some form of confidence criterion and wait
until a predefined threshold is reached before making a decision. For instance, in (Xing et al.
(2009)), the best time step to trigger the decision is estimated by determining the earliest
time step for which the predicted label does not change, based on a 1NN classifier. Similarly,
(Mori et al. (2017b)) proposes a method where the accuracy of a set of probabilistic classifiers
is monitored over time, which allows the identification of time steps from whence it seems
safe to make predictions. In (Parrish et al. (2013); Hatami and Chira (2013); Ghalwash
et al. (2012)), a classifier ht(·) is learned for each time step and various stopping rules are
defined (e.g. threshold on the confidence level).

With the advent of deep learning, researchers tried to revisit the problem of early clas-
sification in the light of these modern techniques. (Rußwurm et al. (2019)) proposed a
trainable framework for early classification of time series that can be fine-tuned end-to-end
using standard gradient back-propagation. (Martinez et al. (2018)) and (Hartvigsen et al.
(2019)) approach early classification as a reinforcement learning problem, a perspective
extended to multi-label classification in (Hartvigsen et al. (2020)).

Few works do explicitly take costs into account. A notable example is (Mori et al.
(2019)) where the conflict between earliness and accuracy is explicitly addressed. Moreover,
instead of setting the trade-off in a single objective optimization criterion as in (Mori et al.
(2017a)), the authors keep it as a multi-objective criterion and to explore the Pareto front
of the multiple dominating trade-offs.

It is however in (Dachraoui et al. (2015)), that the early classification problem is for the
first time cast as the optimization of a loss function which combines the expected cost of
misclassification at the time of decision plus the cost of having delayed the decision thus far.
Importantly, besides the fact that this optimization criterion is well-founded, it permits also
the expected costs for an incoming subsequence xt to be estimated for future time steps. A
non-myopic decision procedure can thus be used. These expectations about the foreseeable
future of an incoming time series can be learned from the training set of m full-length time
series S = {(xiT , yi)}1≤i≤m.

Approaches that do not explicitly consider costs are ill-equipped to deal with the possi-
bility of revocable decisions. At best, they could base such revisions on observing that the
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confidence level falls below the pre-set threshold, and possibly exceeds it again, but this
would not allow for the associated costs: of decision change and of delay.

In the following, we therefore focus our attention on a setting where the costs are explicit
factors entering the optimization problem.

3. A cost-based non-myopic framework

In this section, we introduce a cost-based non-myopic framework that was designed for the
irrevocable regime (Achenchabe et al. (2021)). The following sections will show how it can
be adapted to the revocable regime.

We suppose that a training set S = {(xiT , yi)}1≤i≤m of complete time series, with their
associated labels, exists.
I- For each time step, t ∈ {1, . . . , T}, a classifier ht can be learned ht : X t → Y. Note that
this contrasts with learning from data stream where the world can be non-stationary and
the classifiers might have to evolve over time.
II- Using these classifiers and the knowledge that can be extracted from S when estimating
the likely future of an incoming time series xt, it is possible to estimate the optimal instant
for deciding a prediction about its class1.

More precisely, given the misclassification cost function Cm(ŷ|y) : Y × Y → R that
expresses the cost of predicting ŷ when the true class is y and the delay cost function
Cd(t) : R→ R which is assumed to be an increasing function of time, the expectancy of the
cost of taking a decision at time t given the incoming time series xt is:

f(xt) = E t
(ŷ,y)∈Y2 [Cm(ŷ|y)|xt] + Cd(t)

=
∑
y∈Y

Pt(y|xt)
∑
ŷ∈Y

Pt(ŷ|y,xt) Cm(ŷ|y) + Cd(t)
(1)

where E t
(ŷ,y)∈Y2 [] is the expectancy at time t, over the variables y and ŷ. Pt(y|xt) is

the probability of the class y given a time series that starts as xt , and Pt(ŷ|y,xt) is the
probability that the classifier ht makes the prediction ŷ given xt as input and when y would
be its true label. In this non-myopic setting, the idea is that the decision of making a
prediction is made at the current time t only insofar that it is not expected that a lower
cost could be achieved at a later time. This could happen if the expected misclassification
cost would drop sufficiently to offset the increase of Cd(t).

For any time in the future t+τ (1 ≤ τ ≤ T−t), the expected cost of making a prediction
can be estimated as:

fτ (xt) = E t+τ
(ŷ,y)∈Y2 [Cm(ŷ|y)] + Cd(t+ τ)

=
∑
y∈Y

Pt+τ (y|xt)
∑
ŷ∈Y

Pt+τ (ŷ|y,xt) Cm(ŷ|y) + Cd(t+ τ) (2)

1. This can be seen as an instance of the LUPI (Learning Under Privileged Information) framework (Vapnik
and Vashist (2009)): during the learning phase, the learner has access to the full knowledge about the
training time series S = {(xi

T , yi)}1≤i≤m, while at testing time, only a subsequence xt (t < T ) is known.
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and f0(xt) = E t
y∈Y [Cm(ŷt|y)] + Cd(t) since we have access to predictions at current time.

Then the optimal decision time, at time t, is expected to be: τ∗ = ArgMinτ∈{0,...,T−t} fτ (xt)
The idea is to estimate the cost of a decision at all future time steps, up until t = T ,

based on the current knowledge about the incoming time series, and to postpone the decision
to the time step that appears to be the best.

If τ∗ = 0 then the best time for prediction seems to be now, the prediction ht(xt) is
returned and the classification process is terminated. Otherwise the decision is postponed
to the next time step, and Eq. 3 is computed again, this time with xt+1. The process goes
on until a decision is made or t = T at which point a prediction is forced.

While this irrevocable decision process is well-founded and has proven to be quite effi-
cient in extensive experiments (Achenchabe et al. (2021)), it can nonetheless lead to non
optimal decisions when the estimated expected future cost of decision reveals itself to be
erroneous. Figure 1 provides an example where at time t, it is expected that all future
instants will lead to worse costs, when actually a better decision time occurs later, that
could even have been anticipated given just a few additional measurements.

0 t T

xt

xj

f⌧ (xt)

0 t T

xj

f⌧ (xt+�t)

t + �t

xt+�t

Figure 1: (Left) At time t, the system foresees that this is the best time to make a decision,
fτ (xt) is at its lowest. (Right) At some ulterior time t+ δt, it appears that there
should be a better time for decision in the future.

The question then arises as to how best adapt the irrevocable non-myopic strategy just
described to the revocable regime where changes of decisions are allowed until T , but at the
expense of incurring the additional costs associated with these changes.

4. A new framework for revocable decisions

Suppose that while the measurements xt about time series xT unfold from time t = 1 to
t = T , the decision-maker can change its mind as many times as it sees fit and ends up
triggering a sequence of predictions D` = 〈ŷt1 , . . . , ŷt`〉 about the class of the input time
series. The final cost incurred will be:

g(D`|xT , y) = Cm (ŷt` |y) + Cd(t`) +

`−1∑
i=1

ŷti ,ŷti+1∈D`

Ccd(ŷti+1 |ŷti) (3)
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where t` is the time of the last change of decision yielding the prediction ŷt` = ht`(xt`),
when the true class of xT is y. Moreover, the cost of changing decision is defined as
Ccd(ŷ1|ŷ2) : Y × Y → R with Ccd(ŷ1|ŷ2) = 0 if ŷ1 = ŷ2.

Formally, the problem is to find a sequence of decisions D? ∈ DT that minimizes Equa-
tion 3:

D? = ArgMin
D∈DT

g(D|xT , y) (4)

where DT is the set of all possible sequences of maximum length T .

When, at time t, only a partial knowledge xt is available about the incoming time series,
Equation 3 cannot be computed. A sequence of decisions Dk = 〈ŷt1 , . . . , ŷtk〉 has been taken
so far, and the question is to see if changing the last decision ŷtk now, at time t, is favorable,
because it would bring a better expected cost, and it would not seem better to postpone
such a possible change to a later time t+ τ .

The cost of adding a new decision at time t+ τ , can be estimated as:

f rev
τ (Dk, t̃ |xt) = E t+τ

(ŷ,y)∈Y2 [Cm(ŷ|y)|xt] +
k−1∑
i=1

ŷti ,ŷti+1∈Dk

Ccd(ŷti+1 |ŷti) +

E t+τ
ŷ∈Y [Ccd(ŷ|ŷtk)|xt] + Cd(t̃)

(5)

and for τ = 0,

f rev
τ=0(Dk, t̃ |xt) = E t

y∈Y [Cm(ŷt|y)|xt] +
k−1∑
i=1

ŷti ,ŷti+1∈Dk

Ccd(ŷti+1 |ŷti) + Cd(t̃)

where t̃ is introduced as input of the function f rev
τ in order to control the delay cost paid

by the user. In addition, the expected cost of changing decision is defined as follows for
(1 ≤ τ ≤ T − t):

E t+τ
ŷ∈Y [Ccd(ŷ|ŷtk)|xt] =

∑
ŷ∈Y

Pt+τ (ŷ|ŷtk ,xt)Ccd(ŷ|ŷtk) (6)

and for τ = 0, this term equals zero by convention because we have full knowledge of
the prediction at the current time step t. Then, given that the notation Dk+1 is used to
denote the sequence of decisions 〈ŷt1 , . . . , ŷtk , ŷt〉, the criterion for changing decision at time
t becomes:

criterion =


ŷt 6= ŷtk

and ArgMin
τ∈{0,...,T−t}

f rev
τ (Dk, t+ τ |xt) = 0

and f rev
τ=0(Dk+1, t |xt) < f rev

τ=0(Dk, tk |xt)

(7)

A decision is thus taken at time t only if (i) the current prediction ŷt would differ from
the last one ŷtk , (ii) if it seems that now is the best time to make a new decision, and (iii)
if the estimated cost with the new prediction would be less than the engaged one with the
previous decision.
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An interesting case occurs when changing decision is costless: ∀y, y′ ∈ Y×Y, Ccd(y|y′) =
0. Equation 5 becomes:

f rev
τ (Dk, t̃ |xt) = E t+τ

(ŷ,y)∈Y2 [Cm(ŷ|y)|xt] + Cd(t̃) (8)

which is Equation 2. Then, the strategy is to change decision each time the gain in the
expected misclassification cost with a new decision offsets the increased delay cost.

Now a question is: what would be the optimal sequence of decisions if the decision
maker had access to the true class y of the incoming time series but could only use the
classifiers ht(t ∈ {1, . . . , T}) to make its prediction? (Thus, it could not output y before
the first time t st. ht(xt) = ŷt = y).

Theorem 1 (Optimal sequence of decisions when ∀(y, y′) ∈ Y2, Ccd(y|y′) > 0) For
any time series xT of class y, the optimal sequence of decision is reduced to a one decision
sequence where the (or one of possibly several) optimal time(s) t? is defined by: t? =
ArgMin1≤t≤T

{
Cm(ŷt|y) + Cd(t)

}
.

Proof Consider a sequence of decisions Dk = 〈ŷt1 , . . . , ŷtk〉 taken at times {t1, . . . , tk}.
Then the cost paid at time T is:

∑k−1
i=1 Ccd(ŷi+1|ŷi) + Cm(ŷk|y) + Cd(tk) which cannot be

less than: Cm(ŷt? |y) + Cd(t
?).

Theorem 1 shows that it is better to make the optimal decision at the right time rather
than revoking a decision since this can only lead to sub-optimal sequences of decisions.
However, in practice, without having access to the ground truth y, it may be beneficial to
make a first guess and to change it later on.

In a consistent way, f rev
τ envisions a single future decision ŷt+τ , which entails a minimal

cost compared to longer sequences involving several decision changes between t and t + τ .
Indeed, the costs associated with the successive decision changes would be added to the
Equation 5, and would necessarily lead to a higher total cost.

It must be noted that the criterion (Equation 7) does not specify how and when to make the
first prediction ŷt1 . Since a decision is mandatory in the framework of decision making,
we assume that a “no decision” is associated with an infinite cost: f rev

τ (∅ |xt) = +∞. By
contrast, when a first decision is taken, its expected cost is:

f rev
τ=0(〈ŷ1〉 , t, |xt) = E t

y∈Y2 [Cm(ŷt|y)|xt] + 0 + Cd(t)

Consequently, f rev
τ=0(〈ŷ1〉 |xt) < f rev

τ=0(∅ |xt) and the first decision is made accordingly
to the non-myopic strategy defined by fτ (xt) in its irrevocable regime (see Equation 1).

A generic algorithmic implementation of the revocable decision-making criterion as de-
fined in Equation 7 is presented in Algorithm 1. The sequence of decisions is initialized with
〈ŷt1〉, where ŷt1 is provided using the irrevocable strategy based on fτ (xt) (see Equation 1)
and t1 is the corresponding triggering time. The cost of the previous decision costprev is
initialized with the cost of the first decision fτ=0(xt1). A new decision is triggered if the
conditions of Equation 7 are satisfied.
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One goal of our research is to evaluate the added value of explicitly taking into account
the cost of the changes of decision with respect to a revocable strategy which would not.
Accordingly, we coded two algorithms.

1. The first one is named eco-rev-cu for cost unaware (as in Equation 8).

2. The second is named eco-rev-ca for cost aware (as in Equation 5).

Algorithm 1 Generic revocable regime algorithm

decisions← 〈ŷt1〉
tprev ← t1
for t = t1 + 1 . . . T do

τ? ← ArgMinτ∈{0...T−t}f
rev
τ (decisions , t+ τ |xt)

costnew ← f rev
τ=0(decisions , t+ τ∗|xt)

costprev ← f rev
τ=0(decisions , tprev|xt)

if ŷt 6= ŷtprevandτ
∗ = 0andcostnew < costprev then

tprev = t
decisions← decisions ∪ ŷt

end
returndecisions

5. Experiments

The criterion defined by Equation 7 and its implementation in Algorithm 1 aim at identifying
the advantageous changes of decision, those that take advantage of the knowledge gained
with additional measurements of the incoming time series. With the experiments, we want
to measure the true added value of this strategy. Specifically, the question is twofold.
First, does it recognize useful changes of decisions: those that increase the performance?
Second, does it pay off to implement a revocable strategy that takes into account the costs
of changing decisions by comparison to one that would not consider these costs? In the
following, we report results obtained on 34 datasets (see Section 5.2) for a whole range of
values for the delay cost Cd and the cost incurred if changing decision Ccd.

5.1. Implementation choices

Equation 2 for the irrevocable strategy has been proposed and has given way to several
different algorithmic versions generically called Economy as described in (Achenchabe
et al. (2021)). They differ in the way they group time series in order to estimate the
expectation E t+τ

(ŷ,y)∈Y2 [Cm(ŷ|y)]. Of all these methods, Economy-γ is the one that stands

out, both because its refined way of predicting the likely future of an incoming time series
and its significantly better performances demonstrated in extensive experiments over the
other Economy versions as well as with the method of (Mori et al. (2017a)). This is why
it is the method used in our experiments, both in a revocable version that takes the cost of
changing decisions into account, and one that does not.
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Implementation of the two proposed approaches: in our experiments, the eco-rev-
cu algorithm is simply the Economy-γ algorithm allowed to be reiterated after each deci-
sion. It thus does not take into account the costs associated with changing decisions, whereas
eco-rev-ca does. More technically, eco-rev-ca approximates E t+τ

ŷ∈Y [Ccd(ŷ|ŷtk)|xt] in
Equation 6 by using the groups of time series, denoted by G:

E t+τ
ŷ∈Y [Ccd(ŷ|ŷtk)|xt] ≈

∑
gk∈G

P (gk|xt)E t+τ
ŷ∈Y [Ccd(ŷ|ŷtk)| gk] (9)

Then, the probability Pt+τ (ŷ|ŷtk , gk) is estimated in a frequentist way as the proportion of
time series predicted to belong to ŷtk at time tk, and for which the classifier changed its
decision at time t+ τ by predicting the class ŷ. For full reproducibility of the experiments
presented in this paper, an open-source code is available in the supplementary material.

Overview of the Economy-γ approach: more precisely, the groups G are obtained by
stratifying the time series by confidence levels2 of ht. At each time step t, the confidence level
p(ht(xt) = 1) of the classifier can take a value in [0, 1]. Examining the confidence levels for
all time series in the validation set S ′t truncated to the first t observations, we can discretize
the interval [0, 1] into K equal frequency intervals, denoted {I1

t , . . . , I
K
t }. Then, the future

expectancy E t+τ
y∈Y2 [Cm(ŷt|y)|xt] is estimated by modeling the term Pt+τ (ŷ|y,xt ∈ Itk) as a

projection into the future of the probability distribution over It+τk , the confidence intervals
of ht+τ . A Markov-chain model is used for this purpose. A fully detailed description of the
Economy-γ is provided in (Achenchabe et al. (2021)).

5.2. Data and feature extraction

Because Economy-γ is restricted to binary classification problems, and in order to be able
to directly compare our results with those reported in (Achenchabe et al. (2021)), we chose
to use the same 34 datasets that are taken from the UEA & UCR Time Series Classification
Repository3 (Bagnall et al. (2017)). However, it is important to note that the revocable
framework presented here could as well accommodate multi-class classification problems.
Additional experiments on multi-class problem are reported in the supplementary material

Each training set is built with 70% of the examples randomly uniformly selected, while
the remaining 30% are used as test set (note that in each dataset, all time series have
the same length). In addition, each training set is divided into three disjoint subsets: (i)
40% for training the Xgboost (Chen and Guestrin (2016)) classifiers {ht}t∈{1,...,T} that are
the base classifiers used in the Economy-γ method, which offer a good trade-off between
computing time and accuracy; (ii) 40% for estimating the probabilities in f revτ and fτ ; and
(iii) the remaining 20% for optimizing the number of groups |G| in Economy-γ which is
its only hyper-parameter.

In order to give equal weight to all data sets in the comparison, it is important that
they offer the same number of opportunities for decision changes. This is why instants for
potential changes are sampled every n% of the length of the times series in each data set
(in our case, n= 5%). For each possible length, 60 features on the statistical, temporal and

2. This restricts these methods to binary classification problems.
3. Available at: http://www.timeseriesclassification.com
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spectral domains are extracted using the Time Series Feature Extraction Library (Barandas
et al. (2020)), and are used for training the classifiers {ht}t∈{1,...,T}.

5.3. The evaluation criterion

The cost incurred using an early classification system on a time series xT is the sum of three
costs, the cost of misclassification, the delay cost incurred at the time of the last decision,
and the sum of the costs associated with all changes of decision if any:

Cost(xT ) = Cm(htl(xtl)|y) + Cd(tl) +

|Dl|−1∑
i=1

Ccd(ŷi+1|ŷi) (10)

In order to evaluate a method, we compute its mean performance on the test set T :

AvgCost(T ) =
1

|T |

|T |∑
i=1

Cost(xiT ) (11)

5.4. Description of the experiments

In our experiments, we compared three algorithms: Economy-γ which is an irrevocable
decision-maker , eco-rev-cu which is the revocable version of Economy-γ but unaware
of the costs of changing decision, and, finally, eco-rev-ca the revocable decision-maker
that is aware of these changing costs. We are thus able to measure the added-value of the
revocable strategy (eco-rev-cu vs. Economy-γ) and the added-value of being aware of
the costs of changing decision (eco-rev-ca vs. eco-rev-cu).

For a given application, it is expected that the various costs, relative to misclassifications,
delays and changes of decision, will be provided by the domain expert. For our experiments,
we explored the performance of the three methods on a wide range of cost values:

• The misclassification cost was set to Cm(ŷ|y) = 1 if ŷ 6= y, and = 0 if not.

• The delay cost was assumed to be linear with a positive slope: Cd = α × t
T starting

from very low α = { 0.0001, 0.00025, 0.0005, 0.00075}, to low α = {0.001, 0.0025,
0.005, 0.0075}, to medium values α = {0.01, 0.025, 0.05 ,0.075} and to high values α
= {0.1, 0.25, 0.5, 0.75, 1}.

• The cost of changing decision was set to Ccd(ŷ1|ŷ2) = β if ŷ1 6= ŷ2, and = 0 otherwise.
The parameter β being taken in the same set of values as α4

The AvgCost criterion defined in Equation 11 was evaluated on the 34 test sets for all
cost values, and the Wilcoxon signed-rank test (Wilcoxon (1945)) was performed for all
the range of cost values, in order to assess whether the observed performance gap between
methods is significant (“+” and “-”) or not (“◦”).

4. α and β were chosen in a very large spectrum of values so as not biasing the results.
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5.5. Results and analysis

Before comparing the methods, it is important to measure the proportion of time series that
offer useful opportunities for revocable decisions. Those are the ones where the first decision
taken by an irrevocable strategy, here Economy-γ, turns out not to be optimal. For the
34 datasets under study, it turns out that (i) for a low delay cost Cd = 0.0025× t

T only 3%
of the first decisions can be usefully revoked; (ii) for a medium delay cost Cd = 0.025× t

T
this percentage rises to 3.6%; and (iii) for a high delay cost Cd = 0.5 × t

T this percentage
reaches 8%. These figures show that, for these datasets and this range of cost values, it is
not clear that a significant added-value can be found in favor of the revocable strategies.
That such an advantage is nonetheless what the experiments bring out is thus remarkable
(see Supplementary Material for a more detailed analysis).

The first lesson is that both revocable methods eco-rev-cu and eco-rev-ca get sig-
nificantly better results than the irrevocable method Economy-γ on a wide range of delay
cost Cd and decision change cost values β (see Figures 3(a) and 3(b)). The second lesson
is that it pays off to use a strategy which takes into account the costs of changing decision.
Indeed, eco-rev-ca beats Economy-γ on a wider range of conditions than eco-rev-cu.

Both revocable strategies fail to overcome the irrevocable one, Economy-γ, when β is
large (i.e. more than 0.1), and then eco-rev-cu fails more often than eco-rev-ca. This
behavior is not surprising since, when it is very costly to delay a decision, the best strategy
is generally to make a very early decision and not to revise it afterwards.

Figure 2: Average Earliness vs. Average Kappa score obtained over all the 34 datasets for
β = 0.05 and by varying the slope α of the delay cost. The reader may find the
same behavior for other β values in the supplementary material.

Figure 3(c) shows the results of the Wilcoxon signed-rank test between the two revocable
strategies. It appears that the cost aware approach eco-rev-ca performs significantly
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better than the cost unaware approach eco-rev-cu, for almost one third of the pairs of
values (α, β). As the slope of the delay cost α grows, eco-rev-ca becomes significantly
better than eco-rev-cu for an increasing larger range of values for β. This means that
when the delay cost is rather high, it pays off to use a revocable strategy that takes into
account the cost of changing decision. In addition, the Friedman test (Nemenyi (1962))
shows that eco-rev-ca is on average better ranked than eco-rev-cu in 96% of pairs (α,
β). (Further details are available in the the supplementary material).

In order to get a global view of the merits of each method, we have drawn Pareto curves
(see Figure 2) with respect to the average Cohen’s kappa score (Cohen (1960)) and the
average earliness, which is defined as the mean of the last triggering times normalized by
the length of the series earliness = Avg{t`/T}. These two quantities are averaged over the
34 datasets by varying α in the range of values defined in Section 5.4, and for β = 0.05. The
Pareto curves that are obtained show that (i) the baseline irrevocable Economy-γ method
is dominated by the two revocable strategies; (ii) and eco-rev-ca dominates eco-rev-cu.
These results are consistent with the ones cited above and hold for other values of β a well
(see the supplementary material for more details). More finely, it is apparent that, as the
slope α of the delay cost increases, from 0.00025 to 1, all methods first maintain a high
kappa, before being unable to maintain it as they are forced to make decisions too early.
Still, the eco-rev-ca algorithm is the one that best resists.

Overall, our experiments show the interest of using revocable strategies for the early
classification of time series in a wide range of delay and change of decision costs. They
demonstrate also the relevance of the formal criterion that we propose for these strategies.

6. Conclusion

Applications abound, in which incoming time series must be labeled as early and as accu-
rately as possible, before all measurements are available. Until now, the problem of early
classification of time series was addressed by triggering irrevocable decisions. For the first
time, this paper defines the revocable version of this problem and introduces an associated
optimization problem. Optimization is performed over the space of all possible sequences
of decisions given an incoming time series. Thanks to a non-myopic criterion given in the
paper its exploration is simplified and an algorithm follows naturally. This algorithm has
been implemented in two versions, the first one takes into account the cost of changing the
decision and the second one does not. Extensive experiments have shown that this algo-
rithm, which explicitly takes into account the cost of changing decisions, has significantly
better performances than the same algorithm that does not. In addition, comparison with
the irrevocable regime (Economy-γ) shows that the two proposed algorithms make useful
revocations, because they both outperform the irrevocable regime.

As future work, we plan to adapt the proposed framework to the online setting, where
decisions should be taken based on a data stream. We will also improve the multi-class
approaches proposed in the supplementary material.
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(a)

(b)

(c)

Figure 3: (a) eco-rev-cu vs. Economy-γ; (b) eco-rev-ca vs. Economy-γ; (c) eco-
rev-ca vs. eco-rev-cu. Wilcoxon signed-rank test applied on the AvgCost
criterion over the 34 test sets, for a range of couples of values α and β, with “+”
indicating a significant success of the first approach, “◦” an insignificant difference
and “−” indicating a significant failure of the first approach.
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