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Abstract—Low resource automatic speech recognition (ASR)
is a useful but thorny task, since deep learning ASR models
usually need huge amounts of training data. The existing models
mostly established a bottleneck (BN) layer by pre-training on a
large source language, and transferring to the low resource target
language. In this work, we introduced an adaptive activation
network to the upper layers of ASR model, and applied different
activation functions to different languages. We also proposed
two approaches to train the model: (1) cross-lingual learning,
replacing the activation function from source language to target
language, (2) multilingual learning, jointly training the Connec-
tionist Temporal Classification (CTC) loss of each language and
the relevance of different languages. Our experiments on IARPA
Babel datasets demonstrated that our approaches outperform
the from-scratch training and traditional bottleneck feature
based methods. In addition, combining the cross-lingual learning
and multilingual learning together could further improve the
performance of multilingual speech recognition.

Index Terms—Adaptive Activation Network, Multilingual, Low
Resource Speech Recognition

I. INTRODUCTION

Recently, end-to-end Automatic Speech Recognition (ASR)
has attracted a lot of attention due to the significant perfor-
mance improvement brought by deep neural networks [1]-
[3. However, building an ASR system usually requires a
large amount of transcripted training data. It is known that
labeling speech data requires huge labor resources. In addition,
compared with rich-resource language, the dataset of low-
resource language is more difficult to obtain [4f]. Hence,
it has great significance to establish an efficient and high-
accuracy low resource language, as well as multilingual speech
recognition system [S[]—[7].

Some works have been devoted to the development of low-
resource ASR methods [8]], [9]. The most common method
applied to low resource tasks is transfer learning [[10]. These
methods use a large-scale corpus to pre-train the model,
and utilize this pre-trained model to extract bottleneck (BN)
feature layers for the target language [11]], [12]. Then, the
upper layers of the target language model are fine-tuned
on the target corpus. The bottom layers might contain the
common speech features, such as phoneme, spectrum, inten-
sity, etc. In this work, we used an end-to-end CNN-RNN-
DNN (Convolutional-Recurrent-Deep) ASR network, which
is inspired by DeepSpeech2 [13]. The bottom convolutional
layers are designed to extract local speech features, and the
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upper recurrent and deep neural layers can model different
language information on different target languages.

Multi-task learning is another effective method for multilin-
gual low resource ASR systems [14]. Multilingual ASR estab-
lishes multi-task learning to train all of the target languages
together. The typical structures are shared-hidden-layer (SHL)
model [15], [16], stacked-shared-exclusive (SSE) model [17]],
and parallel-shared-exclusive (PSE) model [18]], [[19]. Multilin-
gual ASR systems usually include shared units and exclusive
units. The shared units are leveraged to learn common features
of each language, while the exclusive units are designed to
train the monolingual target. However, the choice of shared
and exclusive units is a manual and complicated process. Some
researchers have designed a special structure to distinguish
between the shared and exclusive units. In this work, we
introduced an adaptive activation network to find suitable
structure among different languages automatically.

Task Adaptive Activation Network (TAAN) is a flexible
and accurate architecture for multi-task learning [20]. TAAN
has proved to be an effective model for multi-domain video
classification task. Because all the tasks share the same weight
and bias parameters of the neural network, the complexity
of TAAN is similar to that of a single task model. TAAN
discovers the optimal knowledge sharing structure automati-
cally through adjusting the task-adaptive activation functions
according to the properties and quantities of each individual
task. With its flexible structure and capability of dealing with
task-imbalance problem, we find its great potential in ASR
area. Thus, we introduced the adaptive activation network to
the low resource multilingual ASR in this paper. We used the
adaptive activation to replace the traditional activation function
of RNN and DNN layers. The adaptive activation can automat-
ically explore the language relationship by learning multiple
language-adaptive activation functions. We also proposed two
learning strategies to realize this language-adaptive character-
istic. One is cross-lingual learning, replacing the language-
adaptive activation from source to target language. The other
is multilingual learning, training all of the target languages
together with CTC loss of each language and relevant trace-
norm loss among different languages.

In summary, the main contributions of this paper are as
following:

« Introduce adaptive activation network to low resource

speech recognition, applying different activation func-
tions to different languages.



o Propose a cross-lingual learning approach, replacing the
activation function of upper layers for target language.

o Propose a multilingual learning approach, jointly training
the CTC loss of each language and the relevance of
different languages by trace-norm function.

o Combine the cross-lingual learning and multilingual
learning together, further improving the performance of
the multilingual speech recognition.

II. RELATED WORKS

It has been shown that the performance of end-to-end ASR
models degrades sharply on low-resource languages. Some
researchers employed unsupervised or semi-supervised meth-
ods to exploit unlabeled data to alleviate the need for labeled
data [21]. XLST is a cross-lingual self-training method, which
is trained by maximizing the similarity between the target and
source language [22]]. However, these methods still require
massive unlabeled low-resource data. To solve this issue, some
methods used transfer learning to improve the performance of
low-resource languages by exploiting other source languages.
[19] proposed to use an additional language discriminator
in the adversarial SHL model, making the shared layers of
source model can learn more language invariant features. [|18]]
attempted to learn a language-invariant BN features through an
attention based adversarial language identification. [23|] found
that combination of a language vector and language-specific
adapter layers could handle the imbalance of training data
across languages. [24] combined semi-supervised training and
language adversarial transfer learning to improve the perfor-
mance of Hindi ASR system in limited resource conditions.

Multi-task learning has achieved great success in speech
tasks. Some works established a multilingual speech recogni-
tion system by multi-task learning. Dalmia et al. [25] used
multi-task learning to train a multi-language model and then
transfers the model to a specific language. Hou et al. [26]
proposed a large-scale multilingual transfer learning ASR,
proving that pre-training could improve the performance of the
model significantly on low-resource languages. [16]] take ad-
vantage of the similarity between the corpus of each language.
During the multilingual model training, they start training with
uniform-sampling from each corpus at first, and then gradually
increase the training samples from more related corpora. [[17]]
proposed a stacked architecture where the first network is a
BN feature extractor and the second network is the acoustic
model. [27] used MTL-SOL (Multi-Task Learning Structured
Output Layer) framework by conducting language-specific
phoneme recognition and multilingual acoustic modeling to-
gether. [28] demonstrated a multilingual grapheme-based ASR
model learned on seven different languages and used multiple
data augmentation alternatives within languages to further
leverage the complementarity with multilingual modeling.

Meta-learning has also been applied to low-resource ASR.
Meta learning is used to solve the problem of fast adaption of
unseen data, which corresponds to the setting of low-resource
ASR. MetaASR [29] meta-learns initialization parameters

from pre-training tasks in different languages, quickly adapt-
ing to unseen target languages. Winata et al. [30] proposed
a meta-transfer learning method that explores the transfer
of knowledge from monolingual rich-resource language to
low-resource languages. There are also some methods of
learning the optimal network structure for multilingual ASR
automatically. An efficient gradient-based architecture search
algorithm is applied in DARTS-ASR, avoiding to design
the model architecture and hyperparameters manually [31].
Language Adaptive DNNs train another neural network to
encode language specific features, and add this language
information to the input features of the network [32]. [33]]
developed an adversarial meta sampling (AMS) approach to
improve multilingual meta-learning ASR (MML-ASR). AMS
calculates adaptively the task sampling probability for each
source language when sampling tasks in MML-ASR. The
AMS framework excellently tackle the task-imbalance prob-
lem caused by language tasks difficulties and quantities by
well-designed sampling approach.

III. METHODOLOGY

A. Speech Recognition Architecture

The end-to-end CNN-RNN-DNN model has made great
success in the speech recognition task on large corpus of
English and Mandarin [[13]]. In this work, we used this CNN-
RNN-DNN network for low resource ASR.
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Fig. 1. The architecture of CNN-RNN-DNN network for low resource speech
recognition task. The bottom convolutional layers (CNN) extract the local
features of the audio. The middle recurrent layers (RNN) model the long-time
dependency of the feature sequence. The upper deep neural layers (DNN) map
the features to the vocabulary of target language. The whole network is trained
by the CTC loss between the output hidden states and gold text sequence.

As depicted in Fig [I] the network contains three compo-
nents: (1) convolutional layers, extracting local-time features,
(2) recurrent layers, modeling long-time dependency, (3) deep



neural layers, projecting the hidden states to the vocabulary.
The network is trained via the CTC loss. For a special language
1, the low resource speech recognition network maps the input
acoustic feature sequence X' = (zl,2!,....2}) to the text
sequence Y! = (yh,yt,...,y}). In which, T is the frame
length of the audio, and U is the text length of the sentence.
The architecture is several convolutional layers, followed by
several recurrent layers, and lastly fully connected layers.
For convolutional layers, the hidden states O!, of layer n
and language [ are computed via the convolutions over the
bottom layer output O!

n—1-
ol = F,(W,0! ) (1)

In which, W,, is the convolutional weight and F,,(-) is the
activation function. O} represents the input audio features
X!. Following the convolutional layers are the bidirectional
recurrent layers with the forward features 0!, and backward
features O!,. The output Oﬁ,,_’t of recurrent layer at time step
t is computed as:

BiLt:G (On 1,t» nt 1) (2)
— —
Oizt:G (On 1tvOiLt+1) 3)

oL, =0, + )

In which, G,,(-) is the recurrent operationS'
Ol = Fu(WoOl_ ,+ U0, +b) (5

where W, is the weights of input features, ﬁn is the weights
of recurrent features, and b,, is the bias item. In our works,
the G,,(-) could be replaced with more complex operations,
gated recurrent units (GRU). After convolutional and recurrent
layers, several fully connected layers are computed as:

Oix, = Fn(WnO;—l + bn) (6)

CTC loss is applied to the output hidden feature map O, of
output layer V. CTC predicts a frame-level alignment between
the input sequence X' and the output sequence Y. The CTC
loss could be defined as follows:

Elctc 2 —In PctC(Y ‘ON =—In HP(?J”O?\M) (7
t

Where P(y! \Oﬁ\,,t) is the probability of the corresponding text
at frame step ¢ of the network output.

B. Adaptive Activation Network

Activation function introduces the nonlinear characteristics
to the model, and plays an important role in the network of
speech recognition. The network layer usually has three com-
ponents, activation function, weight and bias parameters. In
this work, we introduced the adaptive activation network [20],
replacing the traditional activation functions (like sigmoid,
tanh, ReLu, etc.). For low resource ASR tasks, we applied
the activation function F!, to the target language [, and shared
weight W,, and bias b,, across different languages.

Ol = F,(W,0,_; +by) (8)

In which, W,, and b,, were the shared weight and bias
parameters. F denotes the specific activation function of
different language [ at n-th layer. The defination of F! is a
set of basis functions as follows:

M
= _A@ai) ©
=1

where {o;}M, represents M different basis activation func-
tion, and )\l = \L(1), ..., AL(M)] € RM are the coordinates
of bases {al M . In this work, we also chose the adaptive
piecewise linear (APL) activation units [20]], to parameterize
F!(-). The definition of F!(-) is as following:
M
Fl(z) = maz(0,z) +Z)\l

i=1

(i)mazx(0,—x +b;)  (10)
where b; is also the trainable parameter, and M denotes the
number of different APL units. It should be noted that the first
item of F! (z) is the traditional ReLu activation function, and
this mechanism enables that the adaptive activation network
could have equivalent or better performance than existing
activation functions.

C. Cross-lingual Learning

We denote the Adaptive Activation Network as “AANET”,
while the traditional Activation Functions are denoted as
“AF”. As depicted in Fig [2(a)] the traditional transfer learning
method is: (1) pre-training the network in source large corpus,
(2) fixing the bottom layers to extract bottleneck (BN) features,
and (3) fine-tuning the upper layers for the target low resource
language. By contrast, our method leveraged the adaptive
activation network to replace activation function of upper
layers. Thus, the information in weight matrix and bias could
be reserved.

Lopre = L& (11

More specifically, our cross-lingual learning method is: (1)
pre-training the model, which contains adaptive activation
network Flo, in a large source corpus [y by the source CTC
loss Elc(;c, (2) applying a new adaptive activation network
Fl to the upper layers, and maintaining the weight and bias
paramters, (3) fine-tuning these new adaptwe activations for
the target language /; by the target CTC loss ﬁctc It should be
noted that only upper layers’ activation functions are replaced.
Because bottom layers are leveraged to extract speech feature,
and could not distinguish different unique features among
different languages.

ch

Lfine cte (12)

D. Multilingual Learning

Besides the cross-lingual learning, another solution for low
resource ASR is multilingual architecture. As depicted in
Fig [2(b)] traditional multilingual approach is: (1) multilingual
model shares the bottom layers until bottleneck layer in a
single network, (2) every target language has a unique branch
of upper layers and softmax layer, and (3) the whole network
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Fig. 2. The traditional transfer learning (a) and multilingual (b) structures are training the models in source large or multilingual corpus, to produce the
bottleneck (BN) layer features. And then, the upper layers are finetuned in the target corpus for target ASR task. By contrast, the proposed Adaptive Activation
Network (AANET) architecture (c) only replaces the Activation Function (AF) of the upper layers, and uses these AANET to model the relevance and difference

among different languages.

is jointly trained through a multi-task learning loss of each
language branch.

Our multilingual learning method is shown in Fig Sev-
eral target languages (I1,ls, ..., 1) could be trained in a single
network, with different adaptive activation networks of each
language. The loss function of multilingual training contains
two parts. The first item is the CTC loss of each language. The
second item is the loss of distinguishing different languages
in the multilingual process.

L
Lonuiri = Y Ll + 0Ly (13)
=1

We introduced the trace-norm function to reflect the rel-
evance of different languages. The definition of multi-task
languages loss L, is as following:

Lomu = trace(y/ /\n)\nT)

where /- denotes the square root of matrix, A, =
AL, .., AL] € REXM represents the activation coefficient
matrix of layer n. L is the number of languages. The trace-
norm trace(-) is proven to be the convex envelope of the
matrix rank [34]]. By minimizing the multi-task language loss
Lo, we aim to find a coefficient matrix \,, with lowest
rank [35]. Since the rank of a matrix equals the maximum
number of linearly independent column vectors, A,, will have
as many linear dependent column vectors as possible if its
rank is minimized. Thus, it leads to a higher correlation
between the languages in multilingual learning by minimizing
the trace-norm term, which corresponds to our initial goal
that the knowledge sharing between multiple tasks should be
encouraged in multi-task learning. The low-rank assumption
of the model parameters is often considered in previous multi-
task learning work [36]], [37]]. Our proposed regularization term

(14)

Loy is aligned with the hypothesis on the assumption and
linear dependency of coefficient matrix.

In addition, we could combine the cross-lingual learning
and multilingual learning together, to further improve the
model performance. It should be noted that multiple source
languages can be used in the cross-lingual learning stage with
the multilingual loss L,,4,4;, instead of monolingual CTC loss.

IV. VISUALIZATION

In order to further illustrate the benefits of proposed adap-
tive activation network, we display an example about the
differences between the traditional ReLU activation function
and adaptive activation network in Fig [3] The solid blue line
represents the traditional ReLLU activation function, which has
no parameters to learn during training. The dash-dotted orange
and dark orange line denotes adaptive activation network
learned from Guarani and Lithuanian languages, respectively.
The dotted red line indicates adaptive activation network
learned from Cantonese. The horizontal axis is the input of
activation function W,,O!,_; + b,, which is the output of
layer n — 1 for language [ operated by weight and bias in
layer n; the vertical axis is the output of activation function
O,ll. As Guarani and Lithuanian share more common features,
the adaptive activation networks learned from them are more
similar. Cantonese belongs to another language family, thus,
its adaptive activation network differs a lot.

It is clear that, adaptive activation network introduces more
non-linearity into the neural network. The neural network
is able to learn more complicated relationship between hid-
den layers. Thus, from the mathematical point of view, the
proposed adaptive activation network increases the learning
capability of our ASR system. From the perspective of ap-
plication, adaptive activation network can fully leverage the
correlation between languages. As described previously, the
weights and bias are shared in TAAN. Thus, similar languages,
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Fig. 3. The tradition ReLU activation function (blue) and the adaptive
activation networks of Guarani, Lithuanian and Cantonese (orange, dark
orange and red) in layer n. The adaptive activation networks of Guarani and
Lithuanian are more similar, and differ from that of Cantonese a lot. Adaptive
activation network introduces more non-linearity into the neural network and
increases the learning capability of ASR system.

like Guarani and Lithuanian, can be expressed using similar
adaptive activation function, instead of learning this similarity
through multiple hidden layers with traditional ReLU activa-
tion.

V. EXPERIMENTS

In this section, we evaluated the adaptive activation ap-
proach in low resource ASR tasks. We investigated two kinds
of CNN-RNN-DNN networks with different model sizes. The
experiment results of proposed cross-lingual learning and
multilingual learning approaches were obtained, and compared
with from-scratch training and bottleneck features methods.
We also showed the performance improvement by combin-
ing the cross-lingual and multilingual learning, and explored
different configurations of adaptive activation layers.

A. Datasets

We used TARPA Babel datasets [|38]] to conduct the experi-
ments of proposed adaptive activation method for low resource
ASR. The IARPA Babel datasets consist of conversational
telephone speech for 28 languages collected across a variety
of environments. 5 languages (Amharic, Cantonese, Guarani,
Igbo, Lithuanian) are applied in our experiments. 3 languages
(Guarani, Igbo, Lithuanian) are used as the source languages,
and 2 languages (Amharic, Cantonese) are used as the target
languages. For two target languages, we randomly split each
language dataset into two parts. Three-fourths of the dataset
is used for training, and the other one-fourths is used for
testing. We demonstrate the detail information of used datasets
in Table [

B. Setups

We designed two kinds of CNN-RNN-DNN networks with
different layers, which is called CRD-Small and CRD-Large.
The hyperparameters of CRD-Small and CRD-Large are listed

TABLE I
THE USED DATASETS FOR EXPERIMENTS

Source Languages Length, Hours (h) Speakers’ Ages (years)

Guarani 198 16-67
Igbo 207 16-67
Lithuanian 210 16-71
Target Languages  Length, Hours (h)  Speakers’ Ages (years)
Ambharic 204 16-60
Cantonese 215 16-67

in Table @ For CRD-Small model, the adaptive activation is
applied in the first DNN layer and last GRU layer. For CRD-
Large model, the first DNN layer and both of last two GRU
layers use the adaptive activation.

TABLE 11
THE HYPERPARAMETERS OF CRD-SMALL AND CRD-LARGE MODELS

Model CNN RNN DNN AANET
2 Conv layers 2 GRU layers 2 FC layers
CRD-Small 5 x 5 filters 1GRU,1DNN
32 units 128 units 1024 units
3 Conv layers 3 GRU layers 2 FC layers
CRD-Large 5 x 5 filters 2GRU,1DNN
64 units 256 units 1024 units
TABLE III
THE HYPERPARAMETERS OF EXPERIMENTAL SETUPS
Unit Name Hyperparameters

sliding window = 25 ms

Speech Features Extraction frame-shift = 10 ms

Speech Frame Representation ~ 40-dimensional log Mel-filter bank

learning rate = 0.001

Adam Optimizer £1 =09

B2 =0.98
Gradient Cropping Coefficient  [-1,1]
Beam Width 10

Besides different model size, we also compared our models
with two other methods, from-scratch training and bottleneck
features.

o From-Scratch Training: Directly train the model using
the training set of target language without pre-training or
multi-task learning.

o Bottleneck Features [18]: Insert a Bottleneck (BN)
layer between the first and second DNN layer, and the
dimension of BN layer is set to 80.

The speech features were extracted with a 25-ms sliding
window with a 10-ms frame shift. Each speech frame was
represented by 40-dimensional log Mel-filter bank (Fbank)
features. All of our experiments were implemented by Ten-
sorFlow2. The Adam optimizer was used to minimize the
loss function. The learning rate was set to 0.001, and the /33
and B2 were 0.9 and 0.98. During the model training, the
gradient cropping strategy was also applied, and the gradient



TABLE IV
RESULTS OF DIFFERENT TRAINING STRATEGIES WITH ADAPTIVE ACTIVATION NETWORK, WER (%)

Model Pre-training Data Fine-tuning Data Ambharic Cantonese
CRD-Small + FS - Ambharic, Cantonese 71.2 58.3
CRD-Small + BN Guarani, Igbo, Lithuanian Ambharic, Cantonese 69.1 55.1
CRD-Small + CL Guarani, Igbo, Lithuanian Ambharic, Cantonese 68.2 53.2
CRD-Small + ML - Guarani, Igbo, Lithuanian, Amharic,  68.9 56.2
Cantonese
CRD-Small + CL & ML Guarani, Igbo, Lithuanian Guarani, Igbo, Lithuanian, Amharic, 67.3 52.9
Cantonese
CRD-Large + FS - Amharic, Cantonese 68.9 57.7
CRD-Large + BN Guarani, Igbo, Lithuanian Ambharic, Cantonese 66.3 54.6
CRD-Large + CL Guarani, Igbo, Lithuanian Ambharic, Cantonese 66.2 51.3
CRD-Large + ML - Guarani, Igbo, Lithuanian, Amharic, 67.8 54.1
Cantonese
CRD-Large + CL & ML Guarani, Igbo, Lithuanian Guarani, Igbo, Lithuanian, Amharic,  66.3 511
Cantonese
of each parameter was limited between —1 and 1. During the TABLE V
inference stage, we used beam search to obtain the recognition DIFFERENT CONFIGURATION OF ADAPTIVE ACTIVATION NETWORK,
. WER (%)
results, and the beam width was set to 10. The hyperparameters
of our experimental setups are shown in Table For fair Model AANET Amharic  Cantonese
comparison, all of the models were evaluated by word error
. CRD-Large + CL 1GRU,IDNN  67.1 52.6
rate (WER), and not any language model was leveraged in the CRD-Large + CL  2GRU,IDNN 662 513
decoding. CRD-Large + CL  3GRU,IDNN  66.0 51.6

C. Results

The results of different training methods are shown in
Table We denote different training strategies as following:

o FS: From-Scratch Training

« BN: Bottleneck Features

e CL: Cross-lingual Learning

o ML: Multilingual Learning

We can observe that our cross-lingual learning approach
with adaptive activation outperforms the from-scratch training
and traditional bottleneck feature approaches. It confirmed that
the adaptive activation method is effective for low resource
ASR task. In addition, combining the cross-lingual learning
and multilingual learning will further improve the perfor-
mance, and achieve the best WER results. The combined CRD-
Large + CL & ML model achieves 3.5% WER reduction than
traditional CRD-Large + BN model on Cantonese language
dataset. We could also observe that the larger CRD-Large
model could have better performance than CRD-Small model.
The combined CRD-Large + CL & ML model has 1.0%
WER improvement on Ambharic dataset and 1.8% on Ambharic
dataset, than CRD-Small + CL & ML model.

In order to explore the function of adaptive activation,
different GRU layers with adaptive activation networks are
further investigated. We use CRD-Large model to compare
different structures. The results are shown in Table [V We
use AANET to replace different configurations of layers.
It can be inferred that increasing the number of adaptive
activation layers could improve the model performance, but
more layers might have limited improvement. Therefore, we
chose 2GRU,1DNN as the standard configuration of CRD-
Large model.

VI. CONCLUSION

This paper introduced adaptive activation network to the low
resource multilingual speech recognition. Two kinds of end-
to-end CNN-RNN-DNN networks are used for ASR tasks.
We found that CRD-Large model with larger model size
could have better performance than smaller CRD-Small model.
The adaptive activations are applied to different languages,
instead of fine-tuning the parameters of upper layers. We
proposed cross-lingual learning and multilingual learning ap-
proaches to realize this adaptive strategy. The experiment
results show that our approaches achieve better results than
traditional bottleneck features method. Moreover, combining
cross-lingual learning and multilingual learning could further
improve the model performance. We also explored the con-
figuration of adaptive activation layers, inferring that more
adaptive activation layers lead to better WER results. The
future works involved the exploration of better structure for
multilingual ASR, such as hybrid CTC/attention model. We are
also interested in investigating different strategies to measure
the relevance of multi-languages, such as cosine similarity,
euclidean distance, etc.
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