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Abstract—Voice Conversion (VC) for unseen speakers, also
known as zero-shot VC, is an attractive research topic as it
enables a range of applications like voice customizing, animation
production, and others. Recent work in this area made progress
with disentanglement methods that separate utterance content
and speaker characteristics from speech audio recordings. How-
ever, many of these methods are subject to the leakage of
prosody (e.g., pitch, volume), causing the speaker voice in
the synthesized speech to be different from the desired target
speakers. To prevent this issue, we propose a novel self-supervised
approach that effectively learns disentangled pitch and volume
representations that can represent the prosody styles of different
speakers. We then use the learned prosodic representations as
conditional information to train and enhance our VC model
for zero-shot conversion. In our experiments, we show that our
prosody representations are disentangled and rich in prosody
information. Moreover, we demonstrate that the addition of
our prosody representations improves our VC performance and
surpasses state-of-the-art zero-shot VC performances.

Index Terms—Zero-Shot Voice Conversion, Self-Supervised
Learning, Disentanglement Representation Learning

I. INTRODUCTION

Voice Conversion (VC) converts the voice of a source

speech to the voice of a target speech while maintaining

the source’s content. VC is widely utilized in a variety of

applications, including privacy protection, the entertainment

sector, and many more.

Traditional VC approaches like Gaussian mixture models

[1] and restricted Boltzmann machines [2] require parallel

data, i.e., different speakers need to read the same contents.

Such datasets are hard to obtain. Recently, VC models that

can be trained on non-parallel data have been proposed and

show promising results. Generative models like Variational

autoencoders (VAEs) [3], [4], Generative Adversarial Network

(GAN) [5], [6] and Flow [7] are widely studied for nonpar-

allel VC. Although these models can generate speech with

good quality, they are limited to VC among speakers from

the training dataset and struggle to synthesize a voice from

previously unseen speakers (zero-shot voice conversion).

Zero-shot voice conversion is a new research direction that

focuses on conversion between speakers that are unseen during

training, and has become more and more popular since it

can address the real-world problem of speaker information

that is sometimes inaccessible or unknown during training.

One common zero-shot VC approach is to disentangle spoken

contents and speaker characteristic information from speech

audios [8]–[10]. With this method, unseen speaker character-

istic information can be extracted from the speech, and can be

recombined with content information from other speech.

Despite the efforts on disentanglement in such models, the

prosody leakage issue might happen, where prosody elements

like pitch or volume are partially damaged or even totally

lost during conversion. Prosody leakage results in the phe-

nomenon that the speaker voices in the synthesized speech

samples are different from the voices of the desired target

speakers. The prosody leakage is often caused by the self-

reconstruction training loss in most of these related models

[11], which expects the speakers in the input and output

speech to be the same. Under the self-reconstruction loss, the

model is likely to encode speaker prosody information in the

latent representations (e.g., content representations). However,

because the source and target speakers are different during

inference, the source prosody information that resides in the

latent representation might hinder conversion.

If we explicitly provide the prosody information of the

target speaker, the model might obtain benefits and avoid

prosody leakage. Thus, in this paper, we propose a novel self-

supervised approach to effectively learn pitch and volume rep-

resentations, two crucial prosody elements [12], from diverse

speakers. Such representations represent speakers’ prosody

style (e.g, a speaker tends to speak in a high pitch or a low

volume). The extracted prosodic representations are then used

as useful conditional information to train and enhance our

zero-shot VC model. The addition of prosody representation is

similar to the addition of speaker embedding X-vectors [13],

except that prosody representations provide speaker prosody

information rather than speaker characteristic information.

We summarize our contributions as follows: (i) We propose

a novel zero-shot VC approach. (ii) We introduce a self-

supervised method to extract disentangled prosody representa-

tions without the requirement of labels or hand-crafted prosody

features. (iii) Our experiments show that the prosody encoder

can learn disentangled prosody representations from diverse

speakers. Moreover, we demonstrate that our VC model ob-

tains improvements by adding the prosody representations and

outperforms state-of-the-art zero-shot VC models.
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Fig. 1. The left is the training pipeline of our prosody encoder, the right is
the architecture of our prosody encoder and Rank module. In the pipeline, we
first convert a speech waveform pair (X ,Xaug) into a Mel-Spectrogram pair
(I , J) as the training input. Our prosody encoder extracts pitch and volume
representation ψp and ψv from each Mel-Spectrogram. Pitch Rank module
(blue frame) and volume Rank module (green frame) produce pitch score rp

and volume score rv based on the ψp and ψv , respectively. Two scores of
the same prosody type but from different inputs are then sent to the Sigmoid
function to get pij . pij indicates the probability thatX is ranked higher than
Xaug regarding pitch/volume. Lastly, we calculate cross entropy loss Lij

from pij and the augmentation hyper-parameter τij .

II. RELATED WORKS

In this section, we summarize related works on zero-shot

voice conversion and speech prosody disentanglement.

A. Zero-shot Voice Conversion

Zero-shot voice conversion focuses on the conversion be-

tween the speakers who are unseen in the training dataset.

Disentangling spoken content and speaker characteristics from

recording speech data is a popular strategy for this task. With

disentanglement, the content from the source speech and the

speaker characteristic from the target can then be combined

during conversion to achieve zero-shot VC. AutoVC [8] ap-

plies a pre-trained speaker encoder and a vanilla autoencoder

with a carefully tuned bottleneck to enable disentanglement.

Authors in [9] use Instance Normalization (IN) to sepa-

rate linguistic content and speaker characteristics. [10] takes

into account different activation functions for better content-

speaker disentanglement. In [14], [15], the authors use Vector

Quantization (VQ) [16] to remove speaker information from

the content. However, prosody leakage issue has been found

in some of these related works. One cause [11] is that these

models’ training loss is based on self-reconstruction, which

expects the speakers in the input and output speech to be the

same. Hence the model is likely to encode speaker prosody

information in the latent representations (e.g., content repre-

sentations). However, because the source and target speakers

are different during inference, the source prosody information

encoded in the latent representations might impede conversion.

The authors in [11], [17] mitigate prosody leakage issue

by conditioning on the pitch prosody (F0) information. In

conclusion, effective learning of prosody is critical for better

representing unseen speakers in the zero-shot VC task.

B. Speech Prosody Disentanglement

Speech prosody disentanglement has been studied for many

years and still remains an important topic due to its application

in controllable or emotional speech synthesis. Text-to-Speech

models like [18], [19] can learn disentangled prosody repre-

sentations and synthesize a speech with controllable prosody.

However, these models require hand-crafted prosody features.

The model in [20] can disentangle speech prosody elements,

although hand-crafted prosody features are still required. The

model in [21] can learn prosody representations without the

need for hand-crafted features, but there is little empirical

evidence that learned representations are disentangled. Self-

supervised learning has recently received a lot of attention in

a variety of domains due to its ability to learn useful represen-

tations without the need of labels [22]–[24]. Self-supervised

methods learn representations by taking advantage of the data

invariance or variance that augmentation transforms provide

[25]–[27]. However, there are very few works investigating to

use self-supervised methods to learn prosody representation.

In this paper, inspired by RankNet [28], where using rank

labels to learn visual attribute representations, we use self-

supervised methods and learn prosody representations based

on the prosody variance provided by augmentations.

III. METHOD

In this section, we introduce our data augmentation, prosody

encoder model and describe our zero-shot voice conversion

model.

A. Data Augmentation

Since we learn prosody representations based on the

prosody variance that augmentation transforms provide, we

first need to describe our augmentation process. We denote

speech waveform data as X , and apply two augmentation

functions Xaug = Transformpro(X; τ) for pitch stretch
or volume adjustment, where pro ∈ {p, v} is defined as the
prosody set and p stands for pitch, v stands for volume. The

hyper-parameter τ ∈ (0, 1) indicates the augmentation inten-
sity. Given a specific augmentation function, τ < 0.5 means
negative augmentations (decrease pitch/volume), while τ >

0.5 means positive augmentations (increase pitch/volume).

Lastly, τ = 0.5, indicates no augmentation is applied.

B. Prosody Encoder

Inspired by RankNet [28], we use a pair of inputs to train

our prosody encoder, one of which is different from the other

in terms of pitch or volume information. Instead of requiring

ground truth ranked pairs in the original RankNet work, we

apply augmentation transforms to construct the training pairs.

Additionally, different from RankNet, which requires expert

rank labels, we consider the augmentation hyper-parameter τ

our rank label.



We use the pair (X , Xaug) as the training input for the

prosody encoder. The pipeline is illustrated in Fig. 1. We

first convert the audio pair into a pair of Mel-Spectrograms

(I , J ). Then, we feed the Mel-Spectrogram pair into the

prosody encoder. For each Mel-Spectrogram, the prosody

encoder produces two 512D prosody representations ψp and

ψv , for pitch and volume information respectively. Finally,

we apply two Rank modules to respectively rank pitch and

volume prosody representations by mapping ψ into r ∈ R1. r
is used as a score of the prosody intensity (large r value, high

pitch/volume; small r value, low pitch/volume).

With the output r of our Rank modules, we define the

training loss to achieve disentangled prosody representations:

Lprosody =
X

pro∈{p,v}

Lproij , where (1)

Lproij = −τproij log(pproij )− (1− τ
pro
ij )log(1− p

pro
ij ), (2)

p
pro
ij =

1

1 + e−(r
pro

i
−rpro

j
)
. (3)

The idea behind the training loss Lprosody is to learn prosody
representations by predicting the augmentation intensity τ . We

first calculate the difference between prosody scores r
pro
i and

r
pro
j from the original and augmented inputs, then we send

the score difference r
pro
i − r

pro
j into a Sigmoid function to

get p
pro
ij (Equation (3)), p

pro
ij indicates the probability that

X is ranked higher then Xaug regarding prosody pro. We

then calculate the cross entropy loss between p
pro
ij and the

augmentation intensity hyper-parameter τpro (Equation (2)).

Since we do two types of augmentations (prosody stretch and

volume adjustment), we sum Lpij (pitch) and L
v
ij (volume) up

to produce the overall loss Lprosody (Equation (1)).
Furthermore, to achieve the disentanglement between pitch

representation ψp and volume representation ψv , we only ap-

ply one type of augmentation transform (either pitch stretch or

volume adjustment) for each training iteration. The motivation

is to keep one type of prosody representations similar while

encouraging the dissimilar of the representations of the other

prosody element. For instance, in one iteration, we perform

pitch stretch and obtain Xaug from augmentation function

Transformpitch(X; τp = 0.3) (decrease the pitch). Since
the volumes of X and Xaug are not expected to be affected

and remain the same, we set τv = 0.5 (no volume augmenta-
tion is applied). Thus, when we optimize the prosody encoder

with loss Lvij (Equation (2)), p
v
ij should be close to 0.5, which

means the volume score rvi of X and the volume score rvj
of Xaug should be close. In other words, we encourage our

prosody encoder produce similar volume representations ψv
i

and ψv
j . On the other side, pitch representations ψ

p
i and ψ

p
j are

expected to be dissimilar because of the pitch augmentation.

By doing this, we enable our prosody encoder to output two

disentangled representations, which are aiming to represent

two different types of prosody elements (pitch and volume).

Prosody 

Encoder
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X

Fig. 2. The left is the training pipeline of our zero-shot voice conversion
model, the right is the architecture of our decoder and Contrastive Predictive
Coding (CPC). In the pipeline, we first convert the waveform X into Mel-
Spectrogram I . We send I into two paths, the left path is to extract pitch
and volume representations ψp and ψv with a pre-trained and frozen prosody
encoder. The right path (the big blue block) is to produce content information
Q and speaker characteristic S. We first use convolutional layers to process I
and get E. Then we employ Instance Normalization (IN), Vector Quantization
(VQ) and CPC to screen out content Q from E. Speaker characteristics can
be obtained with S = E||E −Q||. Lastly, with ψp, ψv , Q and S, we use
a decoder to reconstruct the input I .

C. Zero-shot Voice Conversion Model

Like many other works, the training of our VC model is

based on the self-construction loss, and additional effective

methods are applied to yield disentangled spoken content and

speaker characteristic information. But the key difference is

that we train the VC model with pitch and volume represen-

tations ψp and ψv from our prosody encoder as conditional

information. The pipeline is showed in Fig. 2.

We first convert the audio waveform X into Mel-

Spectrogram I and send it into two paths. The left path

includes a prosody encoder, which is pre-trained and remains

frozen during the training of our VC model. As discussed in

Sec. III-B, our prosody encoder produces pitch and volume

representations ψp and ψv from speech. For the right path

(the big blue block), our target is to separate spoken contents

and speaker characteristic information from the speech.

Specifically, on the right path, we first feed Mel-

Spectrogram I into 5 layers of 1D convolutions with ReLU ac-

tivation to produce latent representation E = {e1, e2, ..., eT },
where et ∈ R

512, and T is the length of the Mel-Spectrogram.

To remove acoustic information (e.g., speaker characteris-

tics, prosody information) from E, and screen out spoken

content information Q = {q1, q2, ..., qT }, where qt ∈ R
512,

we adopt Instance Normalization (IN) [9], Vector Quantization

(VQ) [14] and Contrastive Predictive Coding (CPC) [29] into

our VC model. IN can remove invariant information (like the



speaker characteristic) away. VQ extracts content information

by mapping similar vectors into one vector,

qt = arg min
q∗∈QV

(∥et − q∗∥22), (4)

where QV is a learnable discrete codebook with limited

numbers of vectors (we denote the number of discrete vectors

in codebook as codebook size V ). VQ takes et and selects the

closest q from a codebook based on the Euclidean distance.

We train our VC model and update the codebook QV with

Lvq = ∥sg[E]−Q∥22 + β∥E − sg[Q]∥22, (5)

where sg[·] denotes the stop-gradient operator. The first term
Lvq updates the codebook Q

V , while the second term prevents

E from growing arbitrarily, hyper-parameter β is the weight

between these two terms.

CPC is another effective way to extract content informa-

tion. It applies an InfoNCE loss [30] to predict the pos-

itive representation from a set of negative representations.

Specifically, we pass Q through a LSTM to produce context

C = {c1, c2, ..., cT } and we build linear predictors Pred
k

(0 < k ≤ K) that take ct and output a vector zt+k. We define

our CPC loss as

Lcpc =
1

K

KX

k=1

log
exp(dot(Predk(ct), qt+k))P
n∈Nq

exp(dot(Predk(ct), qn))
. (6)

We enforce similarity by minimizing the dot product (dot(·,
·)) between prediction zt+k and the positive vector qt+k
while account for dissimilarity by maximizing the dot product

between zt+k and the negative vectors Nq that are randomly

drawn from our training batch.

Afterwards, with content informationQ, we follow [14] and

produce speaker characteristic S = E[E −Q].
To prepare the input of the decoder, we repeat pitch rep-

resentation ψp and volume representation ψv for T times in

order to concatenate them with content representation Q. The

decoder utilizes prosody representations ψp and ψv , content

information Q and speaker characteristic S to generate the

Mel-Spectrogram Î . We use the reconstruction loss

Lrec = ∥I − Î∥11 + ∥I − Î∥22. (7)

Both L1 (∥ · ∥1) and L2 (∥ · ∥2) distances are applied to
increase the stability of the training process.

Lastly, to train our VC model, we define loss Lvc as

Lvc = Lrec + Lvq + Lcpc. (8)

D. Inference

For voice conversion, we have source speech and target

speech, and we expect to generate a speech with content

from the source, while speaker characteristic and prosody

from the target. Thus, during our inference phase, we obtain

content Q from the source speech (the right path in Fig.

2), pitch and volume prosody representations ψp and ψv

from target speech, and speaker characteristic information S

from the target speech as well (the right path in Fig. 2).

Lastly, we synthesize a new speech with the decoder from

the aforementioned information.

IV. EXPERIMENTS

We devote this section to our empirical evaluation. Synthe-

sized samples can be found in our demo page1.

A. Dataset

We conduct experiments on the VCTK dataset [31], which

is a popular dataset for the VC task. VCTK includes 109

English speakers, each speaker reads about 400 sentences.

After preprocessing, we remove one speaker due to the in-

sufficient samples of this speaker. We then split the remaining

108 speakers into training and testing data sets. There are 88

speakers in the training set, which we refer to seen speakers,

the left 20 speakers in the testing set are unseen speakers.

Additionally, in VCTK, 91 out of 109 speakers in VCTK read

“Please call Stella.”, which we utilize in one of the experiments

(Sec. IV-C2).

B. Implementation Detail and Experiment Setup

For augmentaion, we use the library pysox2 to augment

waveform files. During data preprocessing, we downsample

all VCTK waveform files from 48000Hz to 22050Hz, and

convert these files into 80-bin Mel-Spectrograms with 1024

STFT window size and 5.8 milliseconds hop size.

We train our models on the seen speakers set, and evaluate

the models on the unseen speakers set. After fine-tuning, we

set β in Equation (5) to 0.25, and k in Equation (6) to 20.

We train our prosody encoder with a batch size of 32 and a

learning rate of 0.0001 for 150k iterations. We train the VC

model for 300k iterations, and set the learning rate to 0.00003,

the batch size to 64. We use the Adam optimizer for both

models.

Since our VC model outputs Mel-Spectrograms, we need

to convert them into waveform files. Thus, we employ a pre-

trained vocoder PWGAN [32] to perform this task.

We include two state-of-the-art VC models as our baselines,

AGAIN [10] and VQVC+ [15]. AGAIN can do zero-shot VC

by Activation Guidance and Adaptive Instance Normalization.

VQVC+ is a U-net like VC model with hierarchical VQ layers.

To make fair comparisons, all baseline models are trained with

the same dataset. Additionally, in the following experiments,

we use the term Ours to denote out zero-shot VC model that is

conditioned on the pitch and volume prosody representations.

C. Study of the Prosody Encoder

In this section, we carry out experiments to see if our

proposed prosody encoder can produce pitch and volume rep-

resentations properly. Besides, we want to investigate whether

the prosody encoder is able to extract distinct prosody repre-

sentations for different unseen speakers.

1https://anonymous.4open.science/w/IJCNN2022 demo-5003/
2https://pysox.readthedocs.io/en/latest/
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Fig. 3. TOP: Visualization of the probability density of pitch rank scores rp.
The pitch Rank module assigns rp based on the extracted pitch representation
ψp. The larger the score is, the higher the pitch a speech has. We plot two
densities from 900 speech samples (450 female, 450 male). We can observe
that females’ pitch tends to be higher than males’, which is consistent with
the human vocal system. BOTTOM: We list three speech samples with the
highest, median, and lowest pitch scores. For each one, we plot the pitch curve
(green) and the waveform volume (grey). We can see the pitch information
is clearly different and ordered by the scores, while the overall volumes of
these three samples are almost the same.

1) Visualization of Pitch and Volume Rank Scores: In this

experiment, we want to show whether the prosody encoder

can capture proper pitch and volume information from the

speech. Thus, we randomly pick 900 speech samples from

the unseen speakers set, and we visualize rank scores rp and

rv for pitch and volume prosody information respectively. If

the pitch/volume Rank module can assign a proper score for

pitch/volume information based on prosody representations

(high scores for speech samples with high pitch/volume, and

low scores for low pitch/volume), then it implies that the

model can learn meaningful prosody representations.

In Fig. 3, on the top, we show two probability densities of

pitch scores rp, one for female (450 speech samples), one for

male (450 speech samples). As we can see, females’ speech

is likely to have a higher pitch than males’ speech. Such a

result is consistent with the human vocal system, where a

male’s voice usually has a lower pitch than a female’s voice.

Additionally, on the bottom, we plot the pitch (the green curve)

and volume (the grey waveform amplitude) for three speech

samples. The sample on the left has the highest pitch score,

the sample on the middle has the median pitch score, and the

sample on the right has the lowest pitch score. We can observe

that the pitches are ordered by the pitch score rp. On the other

hand, the overall volumes of these three samples are nearly the

same. With such results, we can clearly see that our pitch Rank

module can assign proper pitch scores rp for different speech

samples, regardless how high or low of the volume, which

means the pitch representation ψp, on which the score rp is

Higest Volume Score Median Volume Score Lowest Volume Score

Fig. 4. TOP: Visualization of the probability density of volume rank scores
rv . The volume Rank module assigns rv based on the extracted volume
representation ψv . The larger the score is, the higher the volume a speech has.
We plot two densities from 900 speech samples (450 female, 450 male). We
can observe that the density of females’ and males’ speech volumes are almost
the same, both females and males can have loud or quiet voices. BOTTOM:
We list three speech samples with the highest, median, and lowest volume
scores. For each one, we plot the pitch curve (green) and the waveform volume
(grey). We can see the overall volume is clearly ordered by the scores, while
the pitch information of these three samples is disordered, the sample with
the highest volume has a very low pitch.

based, carries useful pitch information, and unaffected by the

volume information.

We depict two probability densities of volume scores rv

from the volume Rank module in Fig. 4. On the top, we

perform the visualization of the volume densities, one volume

density is from 450 females’ speech samples, the other is

from 450 males’ speech samples. Compared with the pitch

densities (Fig. 3), there is no significant difference between

females’ and males’ overall speech volumes. Both females and

males can have loud or quiet voices. On the bottom, we also

visualize the three speech samples of the highest, median, and

lowest volume scores. As we can see, overall volumes drop in

order of volume scores rv , but volume score is unaffected

by pitch, as the sample with the highest volume has very

low pitch information. Such circumstances indicate that our

prosody encoder is capable of recognizing volume information

and extracting meaningful volume representation ψv , while the

volume representations are independent of the pitch.

2) Visualization of Speakers’ Prosody Representations:

Since one main target in our work is to learn different pitch and

volume representations from diverse speakers (e.g., a speaker

tends to speak with a low pitch, another speaker usually speaks

loudly). Thus, we visualize pitch and volume representations

for unseen speakers.

We first randomly select 10 speakers from the unseen

speakers set. To be not biased by the spoken content, we

pick these speech samples with the same content “Please call



VolumePitch

Fig. 5. Visualization of pitch and volume prosody representations for 10
unseen speakers, each color represents one speaker. We can observe: (i) Pitch
and volume representations are disentangled. (ii) Our prosody encoder can
extract different pitch/volume representations from distinct speakers.

Stella.” By doing this, we can produce 10 pitch and 10 volume

representations for each speaker.

Please keep in mind, to make our representation visualiza-

tion more trustworthy, in this section (Sec. IV-C2), instead of

t-SNE [33], we perform visualization on representations from

an equivalent prosody encoder (Fig.1) but with 2D ψp and ψv .

In all other experiments, ψ remains 512D.

We visualize pitch and volume representations in Fig. 5

and we can observe: (i) Pitch representations ψp and volume

representations ψv are disentangled as we expected. (ii) Our

ψp and ψv can represent prosody information for distinct

speakers, which implies that our prosody encoder is able to

capture prosody styles even for unseen speakers.

D. Prosody Representation for Voice Conversion

In this section, we need to investigate whether our prosody

representations can improve the zero-shot voice conversion

task. Specifically, we need to validate whether the model can

present the prosody information of the target speakers, and

how much we can improve the speaker verification task with

the addition of the prosody representations.

Therefore, we conduct experiments to evaluate the proposed

model and compare it with baselines. Additionally, to see the

contribution of our prosody representations for the zero-shot

voice conversion task, we train 3 extra models and denote them

as (i) Ours(None), our VC model without the addition of any

prosody representations. (ii) Ours(P), our VC model with the

addition of only pitch representation, and (iii) Ours(V), our

VC model with the addition of only volume representation.

1) Pitch (F0) Distribution Comparison: We conduct this

experiment by following the method in [11], and show the

Kullback-Leibler (KL) divergence regarding F0 distribution

between the samples from the unseen speakers set and synthe-

sized samples from different models. Low F0 KL divergence

means the pitch information of the synthesized speech samples

is close to the pitch information of the target speakers.

Specifically, we select 5 Male-to-Female (Male → Female)

and 5 Female-to-Male (Female → Male) speaker pairs and

TABLE I
PITCH KL DIVERGENCE BETWEEN THE TARGET SPEAKERS’ SAMPLES AND

THE OUTPUTS OF DIFFERENT MODELS (THE LOWER, THE BETTER).

Model Male → Female Female → Male

AGAIN [10] 0.169 0.129
VQVC+ [15] 0.104 0.094

Ours(None) 0.099 0.064
Ours(V) 0.080 0.062
Ours(P) 0.076 0.049
Ours 0.061 0.035

TABLE II
VOLUME KL DIVERGENCE BETWEEN THE TARGET SPEAKERS’ SAMPLES
AND THE OUTPUTS OF DIFFERENT MODELS (THE LOWER, THE BETTER).

Model Male → Female Female → Male

AGAIN [10] 0.023 0.022
VQVC+ [15] 0.025 0.022

Ours(None) 0.031 0.030
Ours(V) 0.023 0.013
Ours(P) 0.023 0.018
Ours 0.019 0.014

use 10 audio samples for each pair. Then, we calculate log-

F0 distributions of generated samples from each model and

compute the KL divergence between these distributions and

the distribution of original speech samples from the dataset.

We show the results in Tab. I. As we can see, our models

outperform all baseline models. Furthermore, by adding pitch

representation, we outperform the model without any prosody

representations and the model with volume representation

only. We obtain the best result when we employ both the pitch

and volume representations. These findings demonstrate the

importance of our pitch representation in providing valuable

pitch information during VC. Additionally, Ours(None) also

outperforms baselines, since the disentanglement methods we

use (VQ, IN and CPC) potentially play crucial roles in speaker-

content disentanglement, and speaker prosody information

might be encoded in the speaker embedding.

2) Volume (amplitude) Distribution Comparison: Similar to

the F0 distribution comparison, to evaluate the volume con-

version performance, we compare the KL divergence between

the amplitude distribution of evaluation samples and samples

from our models and the baselines. The conversion of volume

prosody is successful when the KL divergence between two

distributions, the distribution of the volume information in the

synthesized speech samples and the target speakers’ volume

distribution, is low.

The same 5 unseen Male-to-Female and 5 unseen Female-

to-Male speaker pairs used in the F0 distribution compari-

son are used here. As shown in Tab. II, When the volume

representation is added, the model outperforms all baselines,

including our model without prosody representation and the

model that just employs pitch representation. Similar to the

results of the F0 Distribution comparison, the model that uses

both pitch and volume representations performs the best. With

these results, we can conclude that our volume representations



TABLE III
SPEAKER VERIFICATION RESULTS (THE HIGHER, THE BETTER).

Model Cross Gender Same Gender

AGAIN [10] 0.649 0.671
VQVC+ [15] 0.678 0.692

Ours(None) 0.704 0.718
Ours(V) 0.706 0.714
Ours(P) 0.717 0.724
Ours 0.721 0.726

contain volume information that is beneficial for the VC task.

3) Speaker Verification: We then follow [17] and use a

speaker verification tool Resemblyzer 3 to investigate whether

the addition of prosody representation can improve speaker

verification performance. Resemblyzer scores the speaker sim-

ilarity between target speech samples and generated speech

samples, on a scale of 0 to 1. The higher the score, the more

similar the speakers are to the target speakers. The results are

shown in Tab. III. We list the verification scores of “Cross

Gender” conversion (Female to Male or Male to Female) and

“Same Gender” conversion (Female to Female or Male to

Male). Since “Cross Gender” conversion is more challeng-

ing and requires a more successful prosody conversion, this

analysis is a robust test of our prosody representation.

As we can see from the table, our models outperform all

the baselines. Furthermore, with the addition of two prosody

representations, we achieve the highest score. In compar-

ison to volume representation, we can observe that pitch

representation is slightly more useful in terms of speaker

verification. In conclusion, the pitch and volume extracted

by our prosody encoder, especially pitch representation, are

critical in improving the representation of speaker characteris-

tics. Additionally, Ours(None) outperforms the two baselines,

the reason might be similar to what we mentioned in Sec.

IV-D1, the disentanglement methods enable encoding prosody

information in the speaker embeddings.

E. Subjective Evaluation

Subjective evaluation is another reliable method to measure

the performance of zero-shot VC models. We use Amazon

Mechanical Turk (MTurk) to conduct two subjective Mean

Opinion Score (MOS) tests: similarity and naturalness. For the

similarity test, we ask subjects to tell us whether the speakers

from the synthesized and target speech are the same. For the

naturalness test, we ask subjects to tell us whether the speaker

from the synthesized speech speaks naturally.

We first randomly choose 10 speech samples from 10

speakers from the unseen speakers set. Then, we produce

10×9 = 90 conversions by generating a sample from each of

the 10 speakers to each of the other 9 speakers. Since we

use a vocoder PWGAN to generate waveform files from the

synthesized Mel-Spectrograms, to make a fair comparison, we

transform these 10 waveform files from the original dataset

3https://github.com/resemble-ai/Resemblyzer

Fig. 6. Results of the MOS test. The GT (Ground Truth) comes from the
dataset’s samples. We set VQVC+ and AGAIN as our baselines. For the
similarity test, our model performs nearly as well as GT. For the naturalness
test, our model can produce more natural speech compared with the baselines.

into spectrograms, then convert them back with the PWGAN.

We denote these new waveform files as Ground Truth (GT).

To obtain reliable MOS results, we apply strict standards

to all subjects. First, we only accept the results when subjects

use headphones. We also have preliminary English-speaking

questions to test whether subjects can understand English well.

Trap questions are also implemented during the test to detect

if subjects are just randomly picking answers. In the similarity

test, the subjects are presented with pairs of utterances. Each

pair has one converted sample, and one GT sample. Subjects

are asked to assign a score of 1-5 on the speaker similarity:

5) Same, absolutely sure; 4) Same, sightly sure; 3) Not sure;

2) different, sightly sure; 1) different, absolutely sure. Each

pair is assigned to 10 subjects. In the naturalness test, we ask

subjects to assign a score: 5) Excellent; 4) Good; 3) Fair; 2)

Poor; 1) Bad. Each speech sample is assigned to 10 subjects.

In Fig. 6, we show the results of the MOS tests. For the

speaker similarity test, our model outperforms all baseline

models and nearly achieves the same performance as GT.

This implies that our extracted pitch and volume prosody

can truly help represent unseen speakers for zero-shot VC as

we expected. For the naturalness test, our model outperforms

baselines as well and produces audios with the highest natu-

ralness score. Thus, the MOS scores confirm that our model

can successfully convert the voice among unseen speakers and

synthesize speech with good naturalness.

CONCLUSION

In this paper, we propose a novel approach to prevent the

prosody leakage issue for improving zero-shot voice conver-

sion. We introduce a prosody encoder that can learn disen-

tangled prosody representations in a self-supervised fashion

without the requirement of prosody labels or hand-crafted

prosody features. We use the prosody representations as useful

conditional prosody information to train a voice conversion

model. To validate our approach, we perform empirical eval-

uations and demonstrate (i) Our prosody encoder can extract

useful and meaningful disentangled pitch and volume prosody

representations. (ii) The extracted prosody representations can

represent prosody styles for diverse unseen speakers. (iii) Our

VC benefits from the prosody representations and is able to

generate natural speech samples with voices that are almost

the same as the desired target speakers.
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[30] Aäron van den Oord, Yazhe Li, and Oriol Vinyals, “Representation
learning with contrastive predictive coding,” ArXiv, vol. abs/1807.03748,
2018.

[31] C. Veaux, J. Yamagishi, and Kirsten Macdonald, “Cstr vctk corpus:
English multi-speaker corpus for cstr voice cloning toolkit,” 2017.

[32] Ryuichi Yamamoto, Eunwoo Song, and J. Kim, “Parallel wavegan:
A fast waveform generation model based on generative adversarial
networks with multi-resolution spectrogram,” ICASSP 2020 - 2020 IEEE
International Conference on Acoustics, Speech and Signal Processing

(ICASSP), pp. 6199–6203, 2020.
[33] Laurens van der Maaten and Geoffrey E. Hinton, “Visualizing data using

t-sne,” Journal of Machine Learning Research, vol. 9, pp. 2579–2605,
2008.


