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Abstract—The convolutional layers of standard convolutional
neural networks (CNNs) are equivariant to translation. However,
the convolution and fully-connected layers are not equivariant
or invariant to other affine geometric transformations. Recently,
a new class of CNNs is proposed in which the conventional
layers of CNNs are replaced with equivariant convolution,
pooling, and batch-normalization layers. The final classification
layer in equivariant neural networks is invariant to different
affine geometric transformations such as rotation, reflection and
translation, and the scalar value is obtained by either eliminating
the spatial dimensions of filter responses using convolution and
down-sampling throughout the network or average is taken over
the filter responses. In this work, we propose to integrate the
orthogonal moments which gives the high-order statistics of the
function as an effective means for encoding global invariance with
respect to rotation, reflection and translation in fully-connected
layers. As a result, the intermediate layers of the network become
equivariant while the classification layer becomes invariant.
The most widely used Zernike, pseudo-Zernike and orthogonal
Fourier-Mellin moments are considered for this purpose. The
effectiveness of the proposed work is evaluated by integrating the
invariant transition and fully-connected layer in the architecture
of group-equivariant CNNs (G-CNNs) on rotated MNIST and
CIFAR10 datasets.

Index Terms—neural networks, equivariance, invariance, im-
age classification

I. INTRODUCTION

Recently, deep convolutional neural networks (CNNs) have
achieved new state-of-the-art accuracy for various computer
vision applications including visual object recognition. Among
the other factors, convolutional weight sharing and depth are
the two most important factors behind the remarkable success
of CNNs [13]. Generally, the architectures of CNNs are consist
of two parts: the feature extraction part and classification
part. The convolutional layer is the core building block of
the feature extraction part that does most of the computation
and responsible to learn the abstractions present in the input
data. The convolutional layers of CNNs are equivariant to
translation which means shifting the original image and then
feeding through the network is similar to first feeding the
original input image and then shifting the feature maps [23].
However, the standard CNNs are not equivariant to other affine
geometric transformations such as rotation and reflection.
Invariance or equivariance with respect to different geometric
transformations is one of the highly desirable properties of the

deep learning models, especially for the task of image classi-
fication. As a result, a novel class of CNNs is proposed which
are equivariant to different affine geometric transformations
(i.e., rotation, reflection, and translation) either by utilizing the
group-equivariant convolutional operators [3] or steerable fil-
ters. Generally, the conventional layers and standard operations
(i.e., convolution, pooling, batch normalization and activation
functions) in CNNs are replaced with equivariant layers and
operations in equivariant neural networks. The fully-connected
layer is neither equivariant nor invariant to any transforma-
tions, consequently, not used in equivariant networks. Almost
all the equivariant networks are either conditioned to perform
convolution and down-sampling over the filter responses until
the spatial dimensions get eliminated or average is taken over
the filter responses to get the scalar fields for classification
layer.

Contribution we propose a simple but very effective solu-
tion by integrating the circular continuous orthogonal moments
into a transition between the convolutional and fully-connected
layers in equivariant neural networks to encode the global
invariance with respect to rotation, reflection and translation
instead of down-sampling filter responses to eliminate the
spatial dimensions or taking the average to encode invariance
in the final layer [3]. As a result, the intermediate layers of the
network become equivariant to different transformations while
fully-connected layer becomes invariant. The Zernike, pseudo-
Zernike and orthogonal Fourier-Mellin moments are consid-
ered to encode invariance which provides higher-order statis-
tics of the input function instead of using average or maximum
of input function. Discrete Fourier transforms (DFTs) has been
successfully used in the design of equivariant convolutional
layers [9], as of yet, the applications of orthogonal moments
to equivariant networks has been relatively overlooked [6],
[17]. In contrast to DFTs, the kernel functions of orthogonal
moments are real polynomial functions and one can compute
infinite number of moments.

II. RELATED WORK

The conventional hand-crafted feature descriptors used in
the area of computer vision are broadly classified into local
and global descriptors. Moments are one of the most popular
feature descriptors which belong to the class of global shape
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descriptors [25]. The popularity of moments among the various
global descriptors is due to their invariance properties with
respect to different affine geometric transformations and their
robustness towards noise [17]. Thus, moments have been suc-
cessfully applied to various computer vision applications such
as image matching, denoising, image classification, segmenta-
tion, etc. The class of continuous orthogonal moments which
are defined in the polar domain are used more commonly
as compared to their non-orthogonal counterparts and these
moments are popularly known as orthogonal rotation invariant
moments (ORIMs) [12]. Among the number of moments that
belong to the class of ORIMs, the Zernike moments (ZMs),
pseudo-Zernike moments (PZMs), and orthogonal Fourier-
Mellin moments (OFMMs) are used more regularly.

It is important to distinguish between the terms invariance
and equivariance because these terms are used frequently
throughout this paper. A feature descriptor is invariant to a
given transformation (i.e., rotation, reflection and translation)
when the output feature vector does not change given the
transformed input. On the other side, a feature descriptor is
equivariant with respect to a given transformation when the
output transforms in a predictable manner with respect to
transformed input. The convolutional layers of the standard
CNNs are only equivariant to translation. Cohen and Welling
[3] in their seminal work proposed a new class of convo-
lutional neural networks known as group-equivariant CNNs
(G-CNNs) based on the group theory. The convolution layer
of the standard CNN is replaced with group convolution
layer in G-CNN. The convolution layer in CNN is a special
case of group convolution layer and group convolution layers
are the only layers in the linear neural networks that are
guaranteed to be equivariant. The key feature of G-CNNs is
its equivariance with respect to the transformations defined
by the special group. However, G-CNNs are equivariant to
discrete transformations that leave the pixel grid intact (e.g.,
90°-rotations, translations and reflections). Hoogeboom et al.
[7] proposed the HexaConvs which has 6-fold rotational
symmetry as compared to the 4-fold rotational symmetry of
G-CNNs which allows more parameter sharing. The proposed
HexaConvs are able to utilize symmetry equivariance and
invariance which is vital factor behind its better performance
as compared to other techniques. Bekkers [1] proposed a
modular framework for G-CNNs for arbitrary Lie groups in
order to overcome the limitations of standard G-CNN [3]
which is practically applicable to only either discrete groups
or continuous compact groups. Furthermore, Lafarge et al.
[10] proposed the SE(2) group convolutional operator which
proves that a concatenation of two roto-translations results in
a net roto-translation. The three new layers are introduced
to achieve fully equivariance throughout the CNN: a lifting
layer, group-convolution layer and a projection layer. As a
result the proposed SE(2) equivariant G-CNN is not only
equivariant to orientations in the input data that lay on the
pixel gird but also to orientations that are out of the pixel
grid. The key features of SE(2) G-CNNs are: i) it learns
the geometric structures into the network architecture and ii)

equivariance is guaranteed. Chidester et al. [2] proposed a new
equivariant convolutional scheme known as conic convolution
which is an alternative to group-convolution. In the case of
conic convolution, the rotated filters are convolved only over
the conic regions of the input feature maps rather than across
the entire image. The proposed technique is computationally
efficient and provides better performance. Worrall et al. [23]
proposed the Harmonic networks (H-Nets) by restricting the
filters of the convolutional layers to be from the circular
harmonic family. H-Net hard-bake patch-wise 360° rotational
equivariance into deep image representation. The theory of
steerability reveals that a steerable filter can be constructed at
any rotation as a linear finite combination of base filters which
eliminates the need to learn multiple filters for different rota-
tion angles. The new class of efficient and flexible equivariant
CNNs are developed based on the steerable filters which has
achieved state-of-the-art performance on the standard image
classification datasest [4], [21]. Weiler et al. [22] developed a
Steerable Filter CNNs (SFCNNs) which is equivariant under
translation and rotation. The key property of the SFCNNs is
that it learns the steerable filters by avoiding the interpolation
artifacts. Further, SFCNNs utilize group convolution in the
intermediate layers to ensure an equivariant mapping of feature
maps. In addition to using group theory or steerable filters to
design the equivariant layers, Sabour et al. [15] proposed the
capsule neural networks. Each capsule in the capsule network
is a group of convolutional neurons and the dynamic routing
algorithm is developed for learning between the primary and
digit capsules. Capsule networks are equivariant to complex
global transformations.

III. CNNS AND GROUP-EQUIVARIANT CNNS

Let l be a particular layer in a CNN model, the feature
map f and filter φ of dimension K are represented by f :
Z2 → RK and φ : Z2 → RK , respectively. The convolution
operation (∗) is defined as follows:

f ∗ φ(x) =
∑
z∈Z2

Kl∑
k=1

fk(z)φk(x− z). (1)

The standard convolutional operation in CNN is equivariant
to translation. However, it is not equivariant to other affine
geometric transformations such as rotation and reflection [3].
Let Lr be a operator which rotates a feature map f by r then
the convolution of a rotated f with φ is equals to the rotation
of convolution between f and inversely rotated filter Lr−1φ
given as follows [7]:

[[Lrf ] ∗ φ](x) = Lr[f ∗ [Lr−1φ]](x). (2)

Since [Lrf ] ∗ φ can not be expressed in terms of f ∗ φ, thus,
convolution is not rotation equivariant.

Cohen and Welling [3] generalized the convolutional oper-
ation to operate on functions on groups in order to achieve
equivariance with respect to other transformations. Mathemat-
ically, a group is a set combined with a binary operation
which together follows the conditions of identity, inverse,



associativity and closure. Let G be a group and f ∈ Z2 is an
input image then the first convolutional layer in group-CNN
(G-CNN) is defined as follows [3]:

f ∗ φ(g) =
∑
z∈Z2

K∑
k=1

fk(z)φk(g−1z), (3)

where g ∈ G is a transformation about the origin (e.g. rotation
and reflection). In the case of standard convolutional operation
given in (1), the filter is translated over the image and the
inner product is computed at each translation, while in group-
convolution, the filter is transformed by each element of G.
The output of group convolution operation defined in (3) is a
function on the group G. The group convolution operation in
subsequent layers of G-CNN must operate on group functions
which are defined as follows:

f ∗ φ(g) =
∑
h∈G

K∑
k=1

fk(h)φk(g−1h). (4)

The standard operation of neural networks including pooling,
batch normalization, and activation functions are redefined for
group functions to preserve the equivariance property [3].

IV. MATHEMATICAL FRAMEWORK OF CONTINUOUS
ORTHOGONAL MOMENTS

Let O be a function defined in the continuous polar domain
(r, θ). Then continuous orthogonal moments of order p and
repetition q over the unit disk for the function O are defined
as follows [8]:

OMp,q(O) = λp

∫ 2π

0

∫ 1

0

O(r, θ)Rp,q(r)e
−iqθrdrdθ, (5)

where i =
√
−1, p ∈ Z+, q ∈ Z, λp is the normalization

parameter, and Rp,q(r) is the radial polynomial basis function.
The moments which belong to the class of orthogonal mo-
ments and defined in the continuous polar domain differ only
in the form of their radial basis function (Rp,q(r)). The radial
basis functions (Rp,q(r)) of the three most commonly used
moments which are Zernike moments (ZMs) [20], pseudo-
Zernike moments (PZMs) [24] and orthogonal Fourier-Mellin
moments (OFMMs) [18] are shown in Table I. The orthogonal
moments which are defined in the continuous polar domain
are also known as orthogonal rotation invariant moments
(ORIMs) because the magnitude of these moments is invariant
to rotation and reflection [19]. The moments defined using (5)
is for the continuous functions in the polar coordinate system
(r, θ) over the unit disk. However, digital computers work
with the discrete functions defined in the cartesian domain. Let
O(s, t) be a discrete function defined in the cartesian domain
of size M × M , where (s, t) ∈ [0,M − 1] × [0,M − 1],
then a mapping from cartesian to polar domain is performed.
Let (s, t) be a location in the cartesian domain, then its
corresponding coordinates in the polar domain (rst, θst) are
derived using rst =

√
x2
s + y2

t (xs and yt are defined below),
and θst = tan−1(yt/xs), where θst ∈ [0, 2π]. The condition

x2
s +y2

t ≤ 1 is imposed to restrict the computation on the unit
disk.

The following transformation is used to map the coordinates
of (s, t) of a discrete function of size M ×M into a unit disk
[20]:

xs =
2s+ 1−M

D
, yt =

2t+ 1−M
D

,

s, t = 0, 1, 2, . . .M − 1,
(6)

and

D =

{
M for inner unit disk,

M
√

2 for outer unit disk,

}
where xs and yt represent the cartesian coordinates (s, t) on
the unit disk in the polar domain. The elemental area occupied
by each coordinate is

[
xs−∆x

2 , xs+
∆x
2

]
×
[
yt−∆y

2 , yt+
∆y
2

]
,

where ∆x = ∆y = 2
D . It may be observed that a digital

coordinate (s, t) is mapped to a location (xs, yt) on the unit
disk by translating the origin (0, 0) to the center (M/2,M/2),
and then scaling the resulting values by the scaling factor λ =
2
D . This mapping ensures that resulting coordinates (xs, yt) ∈
[−1, 1] × [−1, 1] and the condition x2

s + y2
t ≤ 1 ensure that

the computations are performed inside the unit disk.
Since there is no direct analytical solution to the double

integration given in (5) for the radial basis functions of ORIMs
given in Table I. The zeroth-order approximation of (5) is
commonly used which is defined as:

OMp,q(O) = λp

M−1∑
s=0

M−1∑
t=0

O(xs, yt)Rp,q(rs,t)e
−iqθst . (7)

It is important to mention here that OMp,q(O) is complex,
and ORIMs are implemented efficiently using vectorization
and the computational complexity of computing each moment
coefficient (p, q) for ZMs, PZMs and OFMMs is O(pmax).

V. INVARIANCE PROPERTIES OF MOMENTS

In the following subsections, we discuss the invariance
properties of ORIMs on rotation, reflection and translation.

A. Rotation Invariance

Let O(r, θ) be a function and an arbitrary angle α, where
α ∈ [0◦, 360◦). If the function O(r, θ) is rotated by an angle
α in the counter clockwise direction around its center, then
a pixel at location (r, θ) is shifted to (r, θ + α). Therefore,
Oα(r, θ) = O(r, θ+α). The moments of the rotated function
OMp,q(O

α) and the unrotated function OMp,q(O) has the
following relationship (see Appendix A for details) [14]:

OMp,q(O) = OMp,q(O
α)e−iqα. (8)

This relationship shows that the moments of the original
and rotated image undergo phase-shift by an angle −qα
and the magnitude of the moments remain the same. It is
quite straightforward to achieve the invariance with respect



TABLE I
RADIAL BASIS FUNCTIONS (Rp,q(r)) ALONG WITH NORMALIZATION PARAMETER λp OF ZMS, PZMS, AND OFMMS WITH THE CONDITIONS ON THE

PARAMETERS p AND q, AND POSITIVE NUMBER OF MOMENT COEFFICIENTS FOR pmax .

Moments λp Radial function Rp,q(r) Number of moment
coefficients for pmax

ZMs [20] p+1
π

∑ p−|q|
2

k=0
(−1)k(p−k)!

k!
(

p+|q|
2
−k

)
!
(

p−|q|
2
−k

)
!
rp−2k 1

8

[
2p2max + 4pmax+

|q| ≤ p, p− |q| = even (−1)2pmax + (−1)pmax+1
]

PZMs [24] p+1
π

∑p−|q|
k=0

(−1)k(2p+1−k)!
k!(p−|q|−k)!(p+|q|+1−k)! r

p−k 1
2
pmax(pmax + 1)

|q| ≤ p
OFMMs [18] p+1

π

∑p
k=0

(−1)p+k(p+k+1)!
k!(k+1)!(p−k)! rk 1

2
pmax(pmax + 1)

|q| ≤ p

to rotation from this relationship by taking the magnitude on
both sides which cancels the role of phase angles as follows:

|OMp,q(O)| = |OMp,q(O
α)| . (9)

The magnitude of ORIMs is invariant to any arbitrary rotation
angle α in [0◦, 360◦).

B. Reflection Invariance

Let Ohf (s, t) = O(−s, t) is the horizontal and Ovf (s, t) =
O(s,−t) is the vertical flipped versions of the discrete function
O(s, t). The relationship between the moments of the flipped
function OMp,q(O

hf ) and the original function OMp,q(O) is
defined as follows (see Appendix B for details) [12]:

OMp,q(O
hf ) = (−1)qOM∗p,q(O). (10)

Similary, the relationship between the moments of the verti-
cally flipped function OMp,q(O

vf ) and the original function
OMp,q(O) is defined as follows:

OMp,q(O
vf ) = OM∗p,q(O), (11)

where OM∗p,q(O) is the complex conjugate of OMp,q(O).
Again the magnitudes of (10) and (11) are invariant to both
horizontal and vertical flipping.

C. Translation Invariance

In Section IV, the moments are computed using (7) by
mapping the center (M/2, N/2) of function O to the origin of
unit disk. Invariance to translation can be achieved by mapping
the function O such that the centroid of O coincide with the
origin of unit disk. The central moments invariant to translation
are computed as follows (see Appendix C for details) [5]:

OMp,q(O) = λp

M−1∑
s=0

M−1∑
t=0

O(xs, yt)Rp,q(rs,t)e
−iqθst . (12)

It is important to note here that moment function OMp,q(O)
is defined in the complex space and magnitude of central
moments OMp,q(O) is taken which is a real value to make
the moments invariant to rotation and reflection.

VI. INVARIANT TRANSITION USING ORIMS

In standard CNNs, some number of fully-connected layers
are applied after the final convolution layer to combine the
filter responses. However, the layers and standard operations
(i.e., convolution, pooling, batch normalization and activation
functions) in CNNs are replaced with equivariant layers and
operations in equivariant networks. Since, fully-connected
layer is neither equivariant nor invariant. Thus, either down-
sampling over filter responses is performed to eliminate the
spatial dimensions or average is taken over the filter responses
to get scalar fields for classification layer [3], [10], [21], [22].
The general framwork of 2-D ORIMs is discussed in Section
IV. Since the basis functions of moments are orthogonal, the
two basis functions Vp,q(r, θ) and Vp′,q′(r, θ) belong to the
basis function set are highly uncorrelated∫ 2π

0

∫ 1

0

Vp,q(r, θ)Vp′,q′(r, θ)rdrdθ =
1

λp
δp,p′δq,q′ (13)

where δp,p′ = 1 if p = p′ and 0 otherwise. Due to the
orthogonal basis set, the error estimation is easy when the
limited number of projections are given and reconstruction is
also simple. Moreover, the kernel function Rp,q(r) of different
orders (p, q) have different number of zero-crossings and
shapes which is very useful to represent the discriminative
features of the input function O(r, θ). Instead of eliminating
the spatial dimensions of filter responses, the higher-order
moment invariant OMp,q(.) are computed over the feature
maps (X l) of layer l.

If = OMp,q(X
l
f ), f = 1, 2, ..., F l. (14)

The intermediate layers l, where l > 1, are equivariant to
the transformations defined by group G. The feature maps X l

for l > 1 are function on G in G-CNN and dimensions of
X l are H l × W l × θ × F l, where θ represent the number
of transformations (e.g. 1 for CNN and 4 or 8 for G-CNN).
Before applying (14), the maximum projection is taken over
θ denoted as maxθ(X l). As a result, the feature maps X l

becomes function on Z2 and the higher-order moment invari-
ants are computed over X l. The resulting invariant features I ,
where I = [I1, I2, ..., IF l ] are passed to fully-connected layer
for classification.



Fig. 1. The proposed equivariant and invariant architecture using intermediate group convolution layers and invariant fully-connected layers using ORIMs,
respectively.

The process of encoding invariance using ORIMs is shown
in Figure 1. It is explicit from the discussions in Sections
IV and V that the ORIMs project the input function on to
the orthogonal basis set, consequently, the features are highly
discriminative, invariant and represent the complete aspects of
the input function.

VII. EXPERIMENTS

In the following subsections, the proposed equivariant and
invariant architecture is evaluated on rotated MNIST and
CIFAR10 datasets. Rotated MNIST and CIFAR10 datasets
are chosen because results are reported using G-CNN [3] on
these two datasets. Thus, the effectiveness of the proposed
invariant transition is also evaluated using these two datasets
and by concatenating the invariant transition followed by fully-
connected layer to the architectures used for G-CNNs [3]
experiments1

A. Rotated MNIST

The rotated MNIST dataset [11] consists of 62,000 hand-
written digit images which are divided into training, validation
and testing sets of size 10000, 2000 and 50000, respectively.
It is important to mention here that the train and validation
sets are un-rotated while the images of test set are rotated
randomly in [0, 2π).

We trained the network, according to the specifications
specified in [3]. The proposed invariant transition from convo-
lutional to fully-connected is integrated after layer 6 (l = 6) of
the G-CNN architecture given in [3]. The output dimensions of
the feature maps (X l) at layer l = 6 are 4×4×8×10, where
H l = 4, W l = 4, θ = 8, and F l = 10. The maximum
projection is taken over the transformation (θ) axis which
results into feature maps (X6) of dimension 4× 4× 10. It is
important to mention here that after integrating the invariant
transition followed by a fully-connected layer results into
approximately equal number of parameters as in G-CNN. The
results obtained by the proposed G-CNN+ORIMs (i.e., G-
CNN+ZMs, G-CNN+PZMs, and G-CNN+OFMMs) are shown
in Figure 2 in left for the different moment orders pmax.

1Source code of G-CNN+ORIMs is available at:
https://github.com/JaspreetSinghMaan/G-CNN-ORIMs.

The purpose of changing the moment orders is to select the
optimal moment order pmax for different moment functions.
The optimal moment order (pmax) for G-CNN+ZMs is 9 while
for G-CNN+PZMs and G-CNN+OFMMs optimal order is 5.
Further, in this section, only optimal moment orders (pmax)
are used to perform the experiments. Table II shows the results
obtained by the existing state-of-the-art CNN, CNN+data aug,
G-CNN, CFNet, H-Net and the proposed G-CNN+ZMs, G-
CNN+PZMs, and G-CNN+OFMMs. The minimum test error
is obtained by G-CNN+PZMs of 1.62%, followed by G-
CNN+ZMs of 1.63% and G-CNN+OFMMs of 1.67% which
has reduced the test error (%) significantly when compared
to CNN, CNN+data aug, G-CNN, CFNet and marginally to
H-Net. The center and right figures in Figure 2 shows the
train-validation loss and accuracy, respectively, obtained by
G-CNN+PZMs.

TABLE II
TEST ERROR (%) OBTAINED ON ROTATED MNIST DATASET.

Method Rotated MNIST
Test error (%) #params

CNN [3] 5.03± 0.002 22k
CNN+data aug 3.50 22k

G-CNN [3] 2.28± 0.0004 25k
CFNet [2] 2.00 -
H-Net [23] 1.69 33k

G-CNN+ZMs 1.63± 0.003 25k
G-CNN+PZMs 1.62± 0.002 25k

G-CNN+OFMMs 1.67± 0.005 25k

B. CIFAR10

CIFAR10 is a color image dataset which consists of 60,000
images categorized into 10 classes and the size of each image
is 32 × 32. The dataset is split into training, validation and
testing splits of size 40,000, 10,000 and 10,000, respectively.
We compare the proposed G-CNN+ZMs, G-CNN+PZMs, and
G-CNN+OFMMs with the CNN and G-CNN given in [3].
Thus, the experiments are conducted according to the model
architecture and specifications specified in [3]. Here, instead
of taking the average over the feature maps (X l) after layer 8
(l = 8), the ORIMs-based transition procedure is integrated.
The dimensions of the output feature maps at layer 8 (X8)



Fig. 2. (Left) Recognition rates (%) obtained by G-CNN+ZMs, G-CNN+PZMs, and G-CNN+OFMMs for different moment orders, (Center) training and
validation loss obtained by G-CNN+PZMs, and (Right) training and validation accuracy obtained by G-CNN+PZMs.

are 8 × 8 × 8 × 64 and after taking the maximum projection
over the transformation axis the dimensions get reduced to
8 × 8 × 64. Since the invariant transition is integrated in-
stead of average operation [3], a fully-connected layer adds
1k additional parameters to the existing network. The test
error(%) obtained by the existing and proposed models is
shown in Table III. Here, the proposed G-CNN+ZMs, G-
CNN+PZMs and G-CNN+OFMMs reduces the test error
significantly as compared to G-CNN. The lowest test error
is achieved by G-CNN+PZMs of 6.90%, followed by G-
CNN+ZMs of 6.98% and G-CNN+OFMMs of 7.02%. Fur-
thermore, CIFAR10+ dataset is generated by augmenting the
horizontal flips and small translations to evaluate the impact of
data augmentation [3]. The obtained results are shown in Table
III. Here also the proposed G-CNN+PZMs, G-CNN+ZMs and
G-CNN+OFMMs performs significantly better than CNN and
G-CNN.

TABLE III
TEST ERROR (%) OBTAINED ON CIFAR10 AND CIFAR10+ DATASETS.

Method CIFAR10 CIFAR10+ #params
CNN [3] 9.44 8.86 1.37M

G-CNN [3] 7.59 7.04 1.22M
G-CNN+ZMs 6.98±0.007 6.45±0.005 1.23M

G-CNN+PZMs 6.90±0.004 6.40±0.003 1.23M
G-CNN+OFMMs 7.02±0.009 6.52±0.007 1.23M

VIII. CONCLUSION

We have proposed the integration of ORIMs in the transition
between convolution and fully-connected layers to learn the
invariant representation in equivariant CNNs (e.g. G-CNNs).
The mathematical framework of ORIMs for equivariant CNNs
which is invariant to rotation, reflection and translation is
also provided. The experiments are performed using Zernike,
pseudo-Zernike and orthogonal Fourier-Mellin moments. Our
experimental results on rotated MNIST and CIFAR10 datasets
show that the proposed integration of ORIMs improve the
performance of equivariant CNNs (i.e., G-CNNs) significantly.
Thus, the proposed invariant transition using ORIMs can be
used in equivariant CNN architectures as a replacement to
the down-sampling layers which are only used to remove the

spatial dimensions of the filter responses to get the scalar fields
for classification. Among G-CNN+ZMs, G-CNN+PZMs and
G-CNN+OFMMs, G-CNN+PZMs achieves the lowest test er-
ror(%) followed by G-CNN+ZMs and G-CNN+OFMMs. The
kernel functions of ZMs and PZMs have similar characteristics
while PZMs provide twice number of moments as compared
to ZMs. Since, PZMs have more lower-order moments for
same order pmax than ZMs, thus, PZMs are less sensitive
to transformations in an input function which is the reason
PZMs performed well. OFMMs are useful for small functions
because they provide more moment coefficients than ZMs and
PZMs [16]. Here, OFMMs are conditioned to be |q| ≤ p,
provides same number of moment coefficients as PZMs, thus,
provides less improvement.
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APPENDIX

A. Rotation Invariants

Detailed proof of rotation invariance (Section V-A). Let
Oα(r, θ) is the rotated version of function O(r, θ), rotated by
angle α in the counter clockwise direction then the moment
function OMp,q(O

α) is defined as follows [5], [12], [17]:

OMp,q(O
α) = λp

∫ 2π

0

∫ 1

0

Oα(r, θ)Rp,q(r)e
−iqθrdrdθ,

= λp

∫ 2π

0

∫ 1

0

O(r, θ + α)Rp,q(r)e
−iqθrdrdθ,

= λp

∫ 2π

0

∫ 1

0

O(r, θ
′
)Rp,q(r)e

−iq(θ
′
−α)rdrdθ

′
,

= λp

∫ 2π

0

∫ 1

0

O(r, θ
′
)Rp,q(r)e

−iqθ
′

eiqαrdrdθ
′
,

= eiqαOMp,q(O).
(A1)

This relationship shows that the moments of the original and
the rotated images undergo phase-shift by an angle qα and the
magnitude of the moments remain the same.

B. Reflection Invariants

Detailed proof of reflection invariance (Section V-B). Let
Ohf (s, t) = O(−s, t) is the horizontal flipped version of

Fig. A1. Mapping of unit disk to the center (M/2,M/2) of an image (left)
and mapping of unit disk to the centroid (x, y) of translated image(right).

the discrete function O(s, t) then the ORIMs are defined as
follows [12]:

OMp,q(O
hf ) = λp

M−1∑
s=0

M−1∑
t=0

O(−xs, yt)Rp,q(rs,t)e−iqθst ,

= λp

M−1∑
s=0

M−1∑
t=0

O(xs, yt)Rp,q(rs,t)e
−iq(π−θst),

= λp

M−1∑
s=0

M−1∑
t=0

(−1)qO(xs, yt)Rp,q(rs,t)e
iqθst ,

= (−1)qOM∗p,q(O).
(A2)

Similarly, for vertical flipped Ovf (s, t) = O(s,−t)

OMp,q(O
vf ) = λp

M−1∑
s=0

M−1∑
t=0

O(xs,−yt)Rp,q(rs,t)e−iqθst ,

= λp

M−1∑
s=0

M−1∑
t=0

O(xs, yt)Rp,q(rs,t)e
−iq(−θst),

= λp

M−1∑
s=0

M−1∑
t=0

O(xs, yt)Rp,q(rs,t)e
iqθst ,

= OM∗p,q(O),
(A3)

where OM∗p,q(O) is the complex conjugate of OMp,q(O).

C. Translation Invariants

Detailed proof of translation invariance (Section V-C). Let
O′(s′, t′) is the translated version of discrete function O(s, t),
translated by ∆s and ∆t in the direction s and t, respec-
tively. The central moments OMp,q(O

′) in (12) are computed
using (A4) instead of (6) which replaces the digital center
(M/2, N/2) of O′ by its centroid (x, y) [17] as follows:

xs =
2s+ 1− x

D
, yt =

2t+ 1− y
D

. (A4)

The centroid (x, y) are obtained as follows [12]:

x =

∑M−1
s=0

∑M−1
t=0 s.O(s, t)∑M−1

s=0

∑M−1
t=0 O(s, t)

, y =

∑M−1
s=0

∑M−1
t=0 t.O(s, t)∑M−1

s=0

∑M−1
t=0 O(s, t)

.

(A5)

http://arxiv.org/abs/1911.08251


Figure A1 shows the mapping of unit disk to the center
(M/2,M/2) and centroid (x, y) of an image where (A5) is
used to compute the centroids.
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