
mFI-PSO: A Flexible and Effective Method
in Adversarial Image Generation for

Deep Neural Networks
Hai Shu*, Ronghua Shi†, Qiran Jia*, Hongtu Zhu‡, Ziqi Chen§

*Department of Biostatistics, School of Global Public Health, New York University, New York, NY, USA
†School of Mathematics and Statistics, Central South University, Changsha, China

‡Departments of Biostatistics, Statistics, Computer Science, and Genetics,
The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA

§Key Laboratory of Advanced Theory and Application in Statistics and Data Science-MOE,
School of Statistics, East China Normal University, Shanghai, China

Email: zqchen@fem.ecnu.edu.cn

©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Abstract—Deep neural networks (DNNs) have achieved great
success in image classification, but can be very vulnerable
to adversarial attacks with small perturbations to images. To
improve adversarial image generation for DNNs, we develop
a novel method, called mFI-PSO, which utilizes a Manifold-
based First-order Influence measure for vulnerable image and
pixel selection and the Particle Swarm Optimization for various
objective functions. Our mFI-PSO can thus effectively design
adversarial images with flexible, customized options on the
number of perturbed pixels, the misclassification probability,
and the targeted incorrect class. Experiments demonstrate the
flexibility and effectiveness of our mFI-PSO in adversarial attacks
and its appealing advantages over some popular methods.

Index Terms—adversarial attack, influence measure, particle
swarm optimization, perturbation manifold.

I. INTRODUCTION

Deep neural networks (DNNs) have exhibited exceptional
performance in image classification [1]–[3] and thus are
widely used in various real-world applications including face
recognition [4], self-driving cars [5], biomedical image pro-
cessing [6], among many others [7]. Despite these successes,
DNN classifiers can be easily attacked by adversarial examples
with perturbations imperceptible to human vision [8]–[10].
This motivates the hot research in adversarial attacks and
defenses of DNNs [11, 12].

Existing adversarial attacks can be categorized into white-
box, gray-box, and black-box attacks. Adversaries in white-
box attacks have the full information of their targeted DNN
model, whereas their knowledge is limited to model structure
in gray-box attacks and only to model’s input and output in
black-box attacks. For instance, popular algorithms for white-
box attacks include the fast gradient sign method (FGSM)
[9], the projected gradient descent (PGD) method [13], the

Dr. Ziqi Chen’s work is partially supported by National Natural Science
Foundation of China (Grant No. 11871477) and Natural Science Foundation of
Shanghai (Grant No. 21ZR1418800). Dr. Hai Shu’s work is partially supported
by a startup fund from New York University.

Carlini and Wagner (CW) attack [14], the Jacobian-based
saliency map attack (JSMA) [15], DeepFool [16], among many
others [8, 17].

In this paper, we propose a simple yet efficient method for
white-box adversarial image generation for DNN classifiers.
For generating an adversarial example of a given image, our
method provides user-customized options on the number of
perturbed pixels, misclassification probability, and targeted
incorrect class. To the best of our knowledge, this is the first
approach rendering all the three desirable options.

The freedom to specify the number of perturbed pixels
allows users to conduct attacks at various pixel levels such
as one-pixel [10], few-pixel [15], and all-pixel [18] attacks.
In particular, we adopt a recent manifold-based first-order
influence (mFI) measure [19] to efficiently locate the most
vulnerable pixels to increase the attack success rate. Besides,
to generate a high-quality adversarial image set, our method
also utilizes the mFI measure to identify vulnerable images
in a given dataset. In contrast with traditional Euclidean-
space based measures such as Jacobian norm [20] and Cook’s
local influence measure [21], the mFI measure captures the
“intrinsic” change of the perturbed objective function [22, 23]
and shows better performance in detecting vulnerable images
and pixels.

Our method allows users to specify the misclassification
probability for a targeted or nontargeted attack. The prespec-
ified misclassification probability is rarely seen in existing
approaches, which produce an adversarial example either
near the model’s decision boundary [16, 24] or with unclear
confidence [25]. For instance, the CW attack [14] uses a κ
parameter to control the confidence of an adversarial example,
but the parameter is not the misclassification probability that
is more user-friendly. In addition, the CW method does not
provide the option to control the number of perturbed pixels.

Moreover, we tailor different loss functions accordingly to
the above three desirable options and their combinations, and
apply the particle swarm optimization (PSO) [26] to obtain

ar
X

iv
:2

00
6.

03
24

3v
3

 [
cs

.L
G

]
 8

 M
ay

 2
02

2

Image-level mFI

(a) Vulnerable Image Selection

Pixel-level mFI map

(c) Vulnerable Pixel Selection

+=

(d) Particle Swarm Optimization

m: # of perturbed pixels

Perr: misclassification prob.

ytarget: targeted wrong class

(b) User-customized Options

(e) Adversarial Perturbation
Class 6Class 2

Original PerturbationAdversarial

Original dataset

Adversarial datasetPretrained network

(f) Attack/defense

Fig. 1. Flowchart of our mFI-PSO method.

the optimal perturbation. The PSO is a widely-used gradient-
free method that is preferred over gradient-based methods in
solving nonconvex or nondifferentiable problems [27, 28], and
thus provides us much freedom to design various loss functions
to meet users’ needs.

Our proposed method is named as mFI-PSO, based on
its combination nature of the mFI measure and the PSO
algorithm. Figure 1 illustrates the flowchart of our method.

We notice that two recent papers [29, 30] also applied
PSO to craft adversarial images. However, we have intrinsic
distinctions. First, the two papers focus on black-box attacks,
but ours is white-box. Article [29] only studied all-pixel
attacks; although article [30] considered few-pixel attacks but
searched in random chunks to locate the vulnerable pixels,
we use the mFI measure to directly discover those pixels.
Moreover, targeted attacks are not considered in [30], and
both papers cannot prespecify a misclassification probability
for the generated adversarial example. Our mFI-PSO method
is able to design arbitrary-pixel-level, confidence-specified,
and/or targeted/nontargeted attacks.

Our contributions are summarized as follows:

• We propose a novel white-box method for adversarial
image generation for DNN classifiers. It provides users
with multiple options on pixel levels, confidence levels,
and targeted classes for adversarial attacks.

• We innovatively adopt a mFI measure based on an
“intrinsic” perturbation manifold to efficiently identify
vulnerable images and pixels for adversarial perturba-
tions.

• We design various different loss functions adaptive to
user-customized specifications and apply the PSO, a
gradient-free optimization, to obtain optimal perturba-
tions.

• We demonstrate the flexibility and effectiveness of our
mFI-PSO method in adversarial attacks via experiments
on benchmark datasets and show its winning advantages
over some commonly-used methods.

The Python code to implement the proposed mFI-PSO is
available at https://github.com/BruceResearch/mFI-PSO.

II. METHOD

A. Manifold-based Influence Measure

Given an input image x and a DNN classifier N with pa-
rameters θ, the prediction probability for class y ∈ {1, . . . ,K}
is denoted by P (y|x,θ) = Nθ(y,x). Let ω = (ω1, . . . , ωm)T

be a perturbation vector in an open set Ω ⊆ Rm, which
can be imposed on any subvector of (xT ,θT)T . Let the
prediction probability under perturbation ω be P (y|x,θ,ω)
with P (y|x,θ,ω0) = P (y|x,θ) and ω0 ∈ Ω.

For sensitivity analysis of DNNs, article [19] recently has
proposed a mFI measure to delineate the intrinsic perturbed
change of the objective function on a Riemannian manifold. In
contrast with traditional Euclidean-space based measures such
as Jacobian norm [20] and Cook’s local influence measure
[21], this perturbation-manifold based measure enjoys the de-
sirable invariance property under diffeomorphic (e.g., scaling)
reparameterizations of perturbations and has better numerical
performance in detecting vulnerable images and pixels.

Let f(ω) be an objective function of interest, for example,
the cross-entropy f(ω) = − logP (y = ytrue|x,θ,ω). The mFI
measure at ω = ω0 is defined by

mFIω(ω0) = [∂ωf(ω0)]G†ω(ω0)[∂ωf(ω0)]T , (1)

where ∂ω = (∂/∂ω1, . . . , ∂/∂ωm), Gω(ω) =∑K
y=1 ∂

T
ω`(ω|y,x,θ)∂ω`(ω|y,x,θ)P (y|x,θ,ω) with

`(ω|y,x,θ) = logP (y|x,θ,ω), and G†ω(ω0) is the
pseudoinverse of Gω(ω0). A larger value of mFIω(ω0)
indicates that the DNN model is more sensitive in f(ω) to
local perturbation ω around ω0.

In (1), we can see that mFIω(ω0) is an extension of the
squared Jacobian norm ‖Jω(ω0)‖2F = ∂ωf(ω0)[∂ωf(ω0)]T

that is corrected with G†ω(ω0). When Gω(ω0) = I,
mFIω(ω0) reduces to ‖Jω(ω0)‖2F . Note that Gω(ω) is the
metric tensor of the pseudo-Riemannian manifold M =
{P (y|x,θ,ω) : ω ∈ Ω}. If Gω(ω) is positive def-
inite, then it can define an inner product on Tω =
span({∂`(ω|y,x,θ)/∂ωi}mi=1) which is the tangent space
of M at point ω, and thus can measure the distance of
two points on M. However, Gω(ω) is a singular matrix
when the dimension of ω is larger than the number of

https://github.com/BruceResearch/mFI-PSO

classes, i.e., m > K. The singularity of Gω(ω) indicates
that ∂`/∂ω1, . . . , ∂`/∂ωm, which span Tω , are linearly de-
pendent and thus some components of ω are redundant.
Therefore, ω is transformed to a low-dimensional vector
ν by ν = Λ

1/2
0 UT

0 ω, where U0 ∈ Rm×r0 , with r0 =
rank(Gω(ω0)), and the diagonal matrix Λ0 form the compact
singular value decomposition Gω(ω0) = U0Λ0U

T
0 . Then,

Mν0 = {P (y|x,θ,ν) : ν ∈ Bν0} is a Riemannian man-
ifold with a positive-definite metric tensor Gν(ν) in some
open ball Bν0

centered at ν0 = Λ
1/2
0 UT

0 ω0, and moreover,
Gν(ν0) = I. This indicates that ∂`/∂ν1, . . . , ∂`/∂νr0 are a
basis of the tangent space, Tν , of Mν0

at ν, and are an
orthonormal basis of Tν at ν = ν0. We can thus view ν
as the intrinsic representation of perturbation ω. Furthermore,
we have that mFIω(ω0) = [∂ωf(ω0)]G†ω(ω0)[∂ωf(ω0)]T =
[∂νf(ν0)]G−1ν (ν0)[∂νf(ν0)]T = ∂νf(ν0)[∂νf(ν0)]T =
‖Jν(ν0)‖2F , i.e., the measure mFIω(ω0) is equal to the
squared Jacobian norm ‖Jν(ν0)‖2F using the intrinsic pertur-
bation ν. See [19] for the detailed derivation of the definition
of mFIω(ω0) in (1) from the Riemannian manifold Mν0

.
We shall apply the mFI measure to discover vulnerable

images or pixels for adversarial perturbations. It is worth
mentioning that [19] did not develop an optimization algorithm
for adversarial attacks that incorporates their proposed mFI
measure. We will connect the mFI measure to adversarial
attacks by our devised optimizations that can be solved by
the PSO algorithm.

B. Particle Swarm Optimization

Since introduced by [26], the PSO algorithm has been
successfully used in solving complex optimization problems
in various fields of engineering and science [31]–[33]. Let
fA be an objective function, which will be specified in
Section II-C for adversarial scenarios. The PSO algorithm
performs searching via a population (called swarm) of can-
didate solutions (called particles) by iterations to optimize the
objective function fA. Specifically, let

pti,best = arg min
k=1,...,t

fA(ωk
i), i ∈ {1, 2, . . . , Np}, (2)

gtbest = arg min
i=1,...,Np

fA(pti,best), (3)

where ωk
i = (ωk

i1, . . . , ω
k
im)T is the position of particle i in

an m-dimensional space at iteration k, Np is the total number
of particles, and t is the current iteration. The position, ωt+1

i ,
of particle i at iteration (t + 1) is updated with a velocity
vt+1
i = (vt+1

i1 , . . . , vt+1
im) by

vt+1
i = wvti + c1r1(pti,best − ωt

i) + c2r2(gtbest − ωt
i),

ωt+1
i = ωt

i + vt+1
i ,

(4)

where w is the inertia weight, c1 and c2 are acceleration
coefficients, and r1 and r2 are uniformly distributed random
variables in the range [0, 1]. Following [34], we fix w = 0.6
and c1 = c2 = 2. The movement of each particle is guided by
its individual best known position and the entire swarm’s best
known position.

The PSO is a widely-used gradient-free method that is
more stable and efficient than gradient-based methods to solve
nonconvex or nondifferentiable problems [27, 28]. This moti-
vates us to adopt the PSO to optimize our various objective
functions (in Section II-C), designed to meet different user’s
requirements on adversarial images, which may not be convex
or differentiable.

C. Adversarial Image Generation

Given an image x, we innovatively combine the mFI mea-
sure and the PSO to generate its adversarial image with user-
customized options on the number of pixels for perturbation,
the misclassification probability, and the targeted class to
which the image is misclassified, denoted by m, Perr, and
ytarget, respectively.

Denote image x = (x1, . . . , xp)T . For an RGB image of q
pixels, we view the three channel components of a pixel as
three separate pixels, so p = 3q here. We let the default value
of m = p.

We first locate m vulnerable pixels in x for perturbation,
if m is specified but the targeted pixels are not given by the
user. We compute the mFI measure in (1) for each pixel i ∈
{1, . . . , p} based on the objective function

f(ω) =

{
− logP (ytrue|x,θ,ω), if ytarget is not given,
− logP (ytarget|x,θ,ω), otherwise,

(5)
where ω = ∆xi. Denote x(i) to be the pixel with the i-th
largest mFI value. We use x(1), . . . , x(m) as the m pixels for
adversarial attack and let perturbation ω = (ω1, . . . , ωm)T =
(∆x(1), . . . ,∆x(m))

T .
We then apply the PSO in (2)–(4) to obtain an optimal value

of ω that minimizes the adversarial objective function

fA(ω) = af0(ω) + b‖ω‖2, ωi ∈ ε · [0− x(i), 1− x(i)],

where we assume x(i) ∈ [0, 1], ε constrains the range of
perturbation to guarantee the visual quality of the generated
adversarial image compared to the original, f0(ω) is a mis-
classification loss function, ‖ω‖2 represents the magnitude of
perturbation, and a and b are prespecified weights. To ensure
the misleading nature of the generated adversarial sample,
a� b is set to prioritize f0(ω) over ‖ω‖2.

We design different f0(ω) functions to meet different user-
customized requirements on {m,Perr, ytarget}. If only m is
known, inspired by [35] and [36], we let the misclassification
loss function be

f0(ω) =

{
|P (y1|x,θ,ω)− P (y2|x,θ,ω)| , if y1 = ytrue,

0, if y1 6= ytrue,

where yk is the label with the k-th largest prediction proba-
bility P (y = yk|x,θ,ω) from the trained DNN for the input
image x added with perturbation ω. Since y1 6= ytrue results in
the minimum of f0(ω), this loss function encourages PSO to
yield a valid perturbation. If the ω-perturbed x is prespecified

with a misclassification probability Perr ≥ 0.5, we use the
misclassification loss function

f0(ω) =

{
|P (y2|x,θ,ω)− Perr| , if y1 = ytrue,

|P (y1|x,θ,ω)− Perr| , if y1 6= ytrue.

If a targeted class ytarget is given, we choose the misclassifica-
tion loss function

f0(ω)=

{
|P (y1|x,θ,ω)−P (ytarget|x,θ,ω)| , if y1 6= ytarget,

0, if y1 = ytarget.

Furthermore, if both Perr and ytarget are provided, we use

f0(ω)=

{
|P (y1|x,θ,ω)−P (ytarget|x,θ,ω)| , if y1 6= ytarget,

|P (y1|x,θ,ω)− Perr| , if y1 = ytarget.

or equivalently f0(ω) = |P (ytarget|x,θ,ω)− Perr|.
Our procedure for generating a customized adversarial im-

age is illustrated in Figure 1 (b)-(e) and also summarized in
Algorithm 1.

Algorithm 1 Adversarial image generation
Input: Image and label {x, ytrue}, number of perturbed pixels

m, (optional) indices of perturbed pixels, (optional) mis-
classification probability Perr, (optional) targeted incorrect
label ytarget, hyperparameters {Np, a, b, ε} in PSO, and
maximum iteration number T

1: If perturbed pixels are not specified, compute mFI by (1)
and (5) for all pixels to locate the m pixels for perturbation
ω;

2: Initialize Np particles in PSO with positions {{p0i,best =

ω0
i }

Np

i=1, g
0
best} and velocities {v0i }

Np

i=1;
3: Repeat
4: for particle i = 1, . . . , Np do
5: Update vti and ωt

i by (4);
6: Update pti,best by (2);
7: end for
8: Update gtbest by (3);
9: Until convergence or iteration t = T

Output: Adversarial image (x+zero-padded ω), where ω =
gtbest.

We now aim to create a set of adversarial images for a given
trained DNN model. To include as many adversarial images
as possible, one may not need to specify a value to Perr in
Algorithm 1. Note that Algorithm 1 may not have a feasible
solution when given with restrictive parameters such as small
ε or small Np. To efficiently generate a batch of adversarial
images, we first select a set of potentially vulnerable images
by some modifications to Algorithm 1.

Specifically, given an image dataset X = {xi}ni=1, thresh-
olds {mFIimg, Ptarget, mFIpixel}, optional {m,Perr}, and targeted
incorrect labels {yi,target}ni=1 (if not given, yi,target = yi,2 the
label with the second largest prediction probability), we first
find X̃ , the set of all correctly classified images that have
image-level mFI (with ω = ∆xi) ≥ mFIimg and prediction

probability P (yi,target|xi,θ) ≥ Ptarget. For each image in set
X̃ , we generate its adversarial image by Algorithm 1 with
m, if not specified, being the number of pixels with mFI
≥ mFIpixel, optional misclassification probability Perr, and
ytarget = yi,target. These generated adversarial images form
an adversarial dataset. The algorithm to generate such an
adversarial dataset is detailed in Algorithm 2.

Algorithm 2 Adversarial dataset generation
Input: Image set X = {xi}ni=1 and labels {yi,true}ni=1,

thresholds {mFIimg, Ptarget, mFIpixel}, optional {m,Perr},
targeted incorrect labels {yi,target}ni=1 (if not given, let
yi,target = yi,2), and hyperparameters {Np, a, b, ε, T} in
Algorithm 1

1: For each correctly classified xi ∈ X , compute the image-
level mFI (denoted by mFIi) by (1) with ω = ∆xi and
f(ω) = − logP (y = yi,true|xi,θ,ω);

2: Determine X̃ = {xi ∈ X : mFIi ≥ mFIimg,
P (yi,target|xi,θ) ≥ Ptarget};

3: For each xi ∈ X̃ , generate its adversarial image xa
i by

Algorithm 1 with m, if not given, being # of pixels with
mFI ≥ mFIpixel, optional Perr, and ytarget = yi,target.

Output: Adversarial dataset X̃a = {xa
i }
|X̃|
i=1

III. EXPERIMENTS

We conduct experiments on the two benchmark datasets
MNIST and CIFAR10 using the ResNet32 model [2]. Data
augmentation is used, including random horizontal and vertical
shifts up to 12.5% of image height and width for both datasets,
and additionally random horizontal flip for CIFAR10. We
train the ResNet32 on MNIST and CIFAR10 for 80 and 200
epochs, respectively. For each dataset, we randomly select 1/5
of training images as the validation set to monitor the training
process. Table I shows the prediction accuracy of our trained
ResNet32 for the two datasets.

We first showcase the proposed mFI-PSO method in Sec-
tion III-A and then compare it with some widely used methods
in Section III-B.

TABLE I
CLASSIFICATION ACCURACY (IN %) OF ORIGINALLY TRAINED RESNET32.

MNIST/CIFAR10

Training (n=60k/50k) Test (n=10k/10k)

99.76/98.82 99.25/91.28

A. Illustration of the proposed mFI-PSO

We first consider two images with easy visual detection
and large image-level mFI in MNIST and CIFAR10, shown in
Figures 2-3 with predictive probability graphs and pixel-level
mFI maps. The probability bar graphs imply candidate mis-
classification classes that can be used as ytarget. The mFI maps
indicate the vulnerability of each pixel to local perturbation
and are useful to locate pixels for attack.

(a) Original (b) Prob. bar (c) mFI (y=6) (d) mFI (y=0) (e) mFI (y=2) (f) mFI (y=4)(a) Original (b) Prob. bar (c) FI (y=6) (d) FI (y=0) (e) FI (y=2) (f) FI (y=4)

Fig. 2. Pixel-level mFI maps of an MNIST image for different target classes.

3142 8

0.8

0.6

0.4

0.2

0.0

1.0

5 7 6 9

(b) Prob. bar

(c) Original RGB (d) FI (y=2) (e) FI (y=0) (f) FI (y=4) (g) FI (y=5)

3142 8

0.8

0.6

0.4

0.2

0.0

1.0

5 7 6 9

(a) Original (b) Prob. bar

(c) Original RGB (d) FI (y=2) (e) FI (y=0) (f) FI (y=4) (g) FI (y=5)

3142 8

0.8

0.6

0.4

0.2

0.0

1.0

0 5 7 6 9(a) Original

(c) Original RGB (d) mFI (y=2) (e) mFI (y=0) (f) mFI (y=4) (g) mFI (y=5)

Fig. 3. Pixel-level mFI maps of a CIFAR10 image’s RGB channels for different target classes. Class labels: (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) = (plane, car, bird,
cat, deer, dog, frog, horse, ship, truck).

We evaluate the performance of Algorithm 1 (see Fig-
ure 1 (b)-(e)) in generating adversarial examples of the two
images according to different requirements on m, Perr and
ytarget. Figures 4-5 show the generated adversarial images with
corresponding perturbation maps. Perturbations 1-3 consider
the settings with m = 1, 3, 7, respectively, and with no
specifications to Perr and ytarget. For Perturbations 4-6, we only
specify Perr = 0.5, 0.75, 0.99, respectively, assign no value
to ytarget, and tune m being the number of pixels with mFI
≥ mFIpixel ∈ {0.1, 1} and Np ∈ {200, 500, 1000} to obtain
feasible solutions from PSO. Perturbations 7-9 are prespecified
with ytarget = 0, 2, 4 for MNIST, and 0, 4, 5 for CIFAR10,
respectively, m being the number of pixels with mFI ≥ 0.1,
and no value for Perr. The generated adversarial images have
visually negligible differences from the originals and satisfy
the prespecified requirements.

We now consider using Algorithm 2 to generate adversarial
datasets. Figure 6 shows the Manhattan plots of image-level
mFIs for correctly classified images. Based on the figure,
for both MNIST and CIFAR10, we generate three adversar-
ial datasets by selecting vulnerable images with image-level
mFI ≥ mFIimg = 0.2, 0.1, 0.01, respectively (see Figure 1(a)).
For all the sets, we set Ptarget = 0.2 and mFIpixel = 0.01
in Algorithm 2; following [37] we set the bound of the max
absolute value (i.e., the `∞ norm) of perturbations ε = 0.15
for pixel values converted onto [0, 1]. Table II shows that
the success rate of our mFI-PSO attack is enhanced as the
threshold mFIimg increases, and it is 100% when mFIimg = 0.2
and is above 96.5% for MNIST and 92.5% for CIFAR10 even
when mFIimg is small as 0.01.

B. Comparison with Related Methods

We compare the proposed mFI-PSO with five commonly-
used methods, including FGSM [9], PGD [13], JSMA [15],
`∞-norm CW (CW∞) [14], and DeepFool [16]. A brief
summary of the five existing methods can be found in [12].
None of the five methods can include all of the aforementioned
three desirable user-customized options for crafting adversarial
images. Moreover, none of them consider the perturbation
intrinsically from the Riemannian manifold. In particular,
similar to our pixel-level mFI map, a saliency map but based
on the Jacobian matrix is utilized in the JSMA. However,
as shown in [19], the mFI measure outperforms the Jacobian
information in detecting vulnerable images and pixels.

We implement the five previous methods in Python
using the Adversarial Robustness Toolbox (ART) from
https://github.com/Trusted-AI/adversarial-robustness-toolbox.
Letting pixel values transform onto [0, 1], following [37] we
set the bound of the `∞ norm of perturbations ε = 0.15
for FGSM, PGD, CW∞, and our mFI-PSO, but JSMA and
DeepFool do not have a similar parameter to bound the
magnitude of perturbations. Our mFI-PSO (Algorithm 2) is
set with the same parameters as in Section III-A and the
other methods are based on the default settings of the ART
package. All methods are not specified with targeted classes.

We first investigate the success rates of the six attack
methods. We compare their attacks on the three subsets of
MNIST or CIFAR10 consisting of correctly classified images
with mFI ≥ mFIimg = 0.2, 0.1, 0.01, respectively. We consider
these vulnerable images rather than all correctly classified
images due to the slow attack speed, e.g., of JSMA. Table II
reports the attack results. The mFI measure indeed benefits

https://github.com/Trusted-AI/adversarial-robustness-toolbox

Class:6

Fig. 4. Adversarial examples of an MNIST image. Perturbations 1-3 are set with m = 1, 3, 7, respectively; Perturbations 4-6 are with Perr = 0.5, 0.75, 0.99,
respectively; Perturbations 7-9 are with ytarget = 0, 2, 4, respectively. Perturbation maps are followed by adversarial images.

Class:2

Fig. 5. Adversarial examples of a CIFAR10 image. Perturbations 1-3 are set with m=1, 3, 7 attacked pixels (framed in the attacked channel’s color),
respectively. Perturbations 4-6 are set with Perr=0.5, 0.75, 0.99, respectively. Perturbations 7-9 are set with ytarget=0, 4, 5, respectively. Perturbation maps are
followed by adversarial images.

m m m m

Fig. 6. Manhattan plots of image-level mFIs for correctly classified images.

the success of our mFI-PSO attack. Moreover, our mFI-
PSO achieves the highest attack success rate on the subsets
with threshold mFIimg = 0.2, 0.1 for MNIST and those with
mFIimg = 0.2, 0.01 for CIFAR10, and also has a high rate
comparable to the best on the other two subsets. In particular,
our mFI-PSO wins with large margins (≥ 24%) on the subset

of CIFAR10 with mFIimg = 0.01. In contrast, CW∞ has
imbalanced performance on all the three MNIST subsets with
low success rates (≈ 10%) on training data but high rates
(> 97.5%) on test data. Both JSMA and DeepFool have low
success rates on these selected images if with the constraint
on the magnitude of perturbations.

TABLE II
ATTACK SUCCESS RATES (IN %) ON CORRECTLY CLASSIFIED IMAGES WITH DIFFERENT IMAGE-LEVEL MFI THRESHOLDS (MFIIMG)

FOR ORIGINALLY TRAINED RESNET32.

MNIST CIFAR10
mFIimg value 0.2 0.1 0.01 0.2 0.1 0.01
CC’ed Tr./Ts. (n=189/46) (n=413/84) (n=1876/325) (n=356/229) (n=693/385) (n=2562/1008)

mFI-PSO 100/100 100/100 96.54/97.54 100/100 97.26/94.81 92.55/92.66
FGSM 77.78/89.13 82.08/91.67 81.82/90.46 100/100 97.40/98.96 53.16/64.19
PGD 99.47/100 99.76/100 98.61/98.38 100/100 97.98/99.74 58.70/68.35

CW∞ 10.05/100 10.9/100 9.22/97.54 79.21/76.86 65.95/63.64 33.33/42.16

JSMA 0/0 0/0 0.053/1.53 63.20/60.34 65.95/57.92 57.92/64.48
(100)/(100) (100)/(100) (100)/(100) (100)/(100) (100)/(100) (100)/(100)

DeepFool 0.53/54.34 1.45/69.04 1.33/32.62 60.34/44.96 23.09/27.79 6.25/10.62
(92.06)/(56.52) (94.19)/(70.24) (95.20)/(90.46) (100)/(100) (100)/(100) (100)/(100)

Note: The preset bound of the `∞ norm of perturbations is ε = 0.15 for pixel values converted onto [0, 1]. JSMA and DeepFool
do not have the parameter ε, and their success rates without the `∞-norm bound are given in the parentheses. Tr. = training
data, Ts. = test data, CC’ed = correctly classified.

TABLE III
CLASSIFICATION RESULTS OF ADVERSARIALLY FINE-TUNED RESNET32.

MNIST/CIFAR10
Fine-tuned by Tr. Accuracy in % on Accuracy in % on n of CC’ed Ts.

(n=60k/50k)+Adv. Tr. of Ts. (n=10k/10k) Adv. Ts. with mFI≥0.01

mFI-PSO (n=1811/2371) 99.78/91.63 93.06(n=317)/65.42(n=934) 132/441
FGSM (n=1535/1362) 99.65/91.77 84.69(n=294)/71.72(n=647) 169/570

PGD (n=1850/1504) 99.66/91.43 82.35(n=323)/71.55(n=689) 163/603
CW∞ (n=173/777) 99.72/91.54 93.38(n=317)/72.24(n=425) 199/615

JSMA (n=1876/2562) 99.68/91.68 91.38(n=325)/75.79(n=1008) 153/551
DeepFool (n=1786/2556) 99.60/91.77 85.03(n=294)/24.80(n=1002) 368/800

Note: The adversarial training and test sets for each method are selected with image-level mFI ≥ 0.01.
Adv. = adversarial, Tr. = training data, Ts. = test data, CC’ed = correctly classified.

TABLE IV
ATTACK SUCCESS RATE (IN %) ON ADVERSARIALLY FINE-TUNED RESNET32.

MNIST/CIFAR10
Correctly classified test images (with mFI≥0.01) by the fine-tuned network of

Attacked mFI-PSO FGSM PGD CW∞ JSMA DeepFool
by (n=132/441) (n=169/570) (n=163/603) (n=199/615) (n=153/551) (n=368/800)

mFI-PSO 44.06/98.87 91.72/99.47 90.80/99.50 96.48/99.19 91.50/98.37 90.52/97.75
FGSM 60.61/29.02 81.82/29.47 52.76/29.68 81.91/30.73 56.87/33.21 83.70/35.25

PGD 89.39/32.43 100/30.88 98.16/30.35 94.47/31.38 99.35/32.76 94.57/34.63
CW∞ 30.30/23.13 38.46/24.91 33.74/25.21 31.66/23.58 37.91/30.13 36.96/32.50

JSMA 0/24.49 0/43.68 0/46.10 0/43.42 0/40.29 0/72.13
(98.48/96.60) (100/96.32) (98.48/98.34) (100/96.91) (100/96.91) (100/97.63)

DeepFool 15.91/5.90 10.06/4.91 14.11/5.80 12.27/5.04 10.45/5.63 9.51/8.13
(87.88/88.21) (89.35/91.40) (89.57/89.88) (87.94/91.54) (91.53/88.93) (91.30/90.13)

Note: The preset bound of the `∞ norm of perturbations is ε = 0.15 for pixel values converted onto [0, 1]. JSMA
and DeepFool do not have parameter ε, and their success rates without the `∞-norm bound are given in parentheses.

We then compare the six methods in adversarially fine-
tuning the newtork to build more robust classifiers. For each
method, the originally trained ResNet32 is additionally trained,
with 30 epochs for MNIST and 80 epochs for CIFAR10, on
the combined set of original training data and its adversar-
ial dataset from the subset with mFI ≥ 0.01. For JSMA
and DeepFool, we use their adversarial datasets including
the images perturbed over the 0.15 `∞-norm bound. We
randomly select 1/5 of the original training data and 1/5
of the adversarial dataset as the validation set for the fine
tuning. Six fine-tuned ResNet32 models are obtained for each
of MNIST and CIFAR10. Table III shows the classification

results of each method’s fine-tuned model on the original test
data and on its own adversarial data from test images with
mFI ≥ 0.01. All fine-tuned networks perform slightly better
than the originally trained network in accuracy on the original
test data, and have a large improvement on corresponding
adversarial datasets with accuracy over 82% for MNIST and
65% (except DeepFool with 24.8%) for CIFAR10. For more
fair comparison, the table lists the sample size of vulnerable
test images with mFI ≥ 0.01 for each fine-tuned network. Our
mFI-PSO dramatically reduces the sample size from 325 and
1008 to 132 and 441 for MNIST and CIFAR10, respectively,
ranking the best among the six methods.

All adversarially fine-tuned networks are further attacked by
all the six methods. Table IV shows the attack results for each
fine-tuned network on its correctly classified test images that
are vulnerable with mFI ≥ 0.01. The network fine-tuned by
our mFI-PSO generally exhibits the best defense performance
over the other five networks, with most of the lowest success
rates of the six attack methods and with comparable results to
the best rates on its unwon items. Moreover, for the other five
fine-tuned networks, our mFI-PSO attack still has high success
rates over 90% on both MNIST and CIFAR10, but the other
five attacks have poor success rates less than 72.2% (and below
46.2% except JSMA) on CIFAR10, and CW∞, JSMA and
DeepFool have rates below 38.5% on MNIST. For the network
fine-tuned by mFI-PSO for CIFAR10, the defense against mFI-
PSO is not clearly seen on its test subset of mFI ≥ 0.01,
but it is observed from the aforementioned dramatic reduced
sample size (from 1008 to 441) of the vulnerable test images
that have mFI ≥ 0.01. We also use mFI-PSO to attack on the
test subsets with mFI ≥ 0.01 from the original network but
correctly classified by the corresponding fine-tuned networks.
Enhanced defense against mFI-PSO is observed with an attack
success rate 45.51% for the mFI-PSO fine-tuned network, in
contrast to the worse rates between 60.83% and 65.05% for
the other five networks.

IV. CONCLUSION

This paper introduced a novel method called mFI-PSO
for adversarial image generation for DNN classifiers by ac-
counting for the user specified number of perturbed pixels,
misclassification probability, and/or targeted incorrect class.
We used a mFI measure based on an “intrinsic” perturbation
manifold to efficiently detect the vulnerable images and pixels
to increase the attack success rate. We designed different
misclassification loss functions to meet various user’s specifi-
cations and obtained the optimal perturbation by the PSO algo-
rithm. Experiments showed good performance of our approach
in generating customized adversarial samples and associated
adversarial fine-tuning for DNNs and its better performance
in most studied cases over some widely-used methods.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Conference on Neural
Information Processing Systems, 2012, pp. 1097–1105.

[2] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in CVPR, 2016, pp. 770–778.

[3] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in CVPR, 2017, pp. 4700–4708.

[4] Y. Sun, D. Liang, X. Wang, and X. Tang, “Deepid3: Face recognition
with very deep neural networks,” arXiv:1502.00873, 2015.

[5] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp,
P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang,
J. Zhao, and K. Zieba, “End to end learning for self-driving cars,”
arXiv:1604.07316, 2016.

[6] C. Lyu and H. Shu, “A two-stage cascade model with variational
autoencoders and attention gates for mri brain tumor segmentation,” in
International MICCAI Brainlesion Workshop, 2021, pp. 435–447.

[7] M. M. Najafabadi, F. Villanustre, T. M. Khoshgoftaar, N. Seliya,
R. Wald, and E. Muharemagic, “Deep learning applications and chal-
lenges in big data analytics,” J. Big Data, vol. 2, no. 1, pp. 1–21, 2015.

[8] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Good-
fellow, and R. Fergus, “Intriguing properties of neural networks,”
arXiv:1312.6199, 2013.

[9] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” arXiv:1412.6572, 2014.

[10] J. Su, D. V. Vargas, and K. Sakurai, “One pixel attack for fooling deep
neural networks,” IEEE TEVC, vol. 23, no. 5, pp. 828–841, 2019.

[11] R. R. Wiyatno, A. Xu, O. Dia, and A. de Berker, “Adversarial examples
in modern machine learning: A review,” arXiv:1911.05268, 2019.

[12] K. Ren, T. Zheng, Z. Qin, and X. Liu, “Adversarial attacks and defenses
in deep learning,” Engineering, vol. 6, no. 3, pp. 346–360, 2020.

[13] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards
deep learning models resistant to adversarial attacks,” arXiv:1706.06083,
2017.

[14] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural
networks,” in IEEE Symp. Secur. Priv., 2017, pp. 39–57.

[15] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and
A. Swami, “The limitations of deep learning in adversarial settings,”
in IEEE European Symposium on Security and Privacy, 2016.

[16] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: a simple
and accurate method to fool deep neural networks,” in CVPR, 2016, pp.
2574–2582.

[17] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial examples in the
physical world,” arXiv:1607.02533, 2016.

[18] S.-M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard, “Univer-
sal adversarial perturbations,” in CVPR, 2017, pp. 1765–1773.

[19] H. Shu and H. Zhu, “Sensitivity analysis of deep neural networks,” in
AAAI Conference on Artificial Intelligence, 2019, pp. 4943–4950.

[20] R. Novak, Y. Bahri, D. A. Abolafia, J. Pennington, and J. Sohl-Dickstein,
“Sensitivity and generalization in neural networks: an empirical study,”
in International Conference on Learning Representations, 2018.

[21] R. D. Cook, “Assessment of local influence,” Journal of the Royal
Statistical Society Series B, vol. 48, no. 2, pp. 133–155, 1986.

[22] H. Zhu, J. G. Ibrahim, S. Lee, and H. Zhang, “Perturbation selection
and influence measures in local influence analysis,” Annals of Statistics,
vol. 35, no. 6, pp. 2565–2588, 2007.

[23] H. Zhu, J. G. Ibrahim, and N. Tang, “Bayesian influence analysis: a
geometric approach,” Biometrika, vol. 98, no. 2, pp. 307–323, 2011.

[24] A. Nazemi and P. Fieguth, “Potential adversarial samples for white-box
attacks,” arXiv:1912.06409, 2019.

[25] A. Nguyen, J. Yosinski, and J. Clune, “Deep neural networks are
easily fooled: High confidence predictions for unrecognizable images,”
in CVPR, 2015, pp. 427–436.

[26] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Interna-
tional Conference on Neural Networks, vol. 4, 1995, pp. 1942–1948.

[27] V. G. Gudise and G. K. Venayagamoorthy, “Comparison of particle
swarm optimization and backpropagation as training algorithms for
neural networks,” in IEEE Swarm Intell. Symp., 2003, pp. 110–117.

[28] B. Warsito, H. Yasin, and A. Prahutama, “Particle swarm optimization
versus gradient based methods in optimizing neural network,” Journal
of Physics: Conference Series, vol. 1217, no. 1, 2019.

[29] Q. Zhang, K. Wang, W. Zhang, and J. Hu, “Attacking black-box image
classifiers with particle swarm optimization,” IEEE Access, vol. 7, pp.
158 051–158 063, 2019.

[30] R. Mosli, M. Wright, B. Yuan, and Y. Pan, “They might not be
giants: Crafting black-box adversarial examples with fewer queries using
particle swarm optimization,” arXiv:1909.07490, 2019.

[31] R. Poli, “Analysis of the publications on the applications of particle
swarm optimisation,” J. Artif. Evol. Appl., vol. 2008, p. 685175, 2008.

[32] R. Eberhart and Y. Shi, “Particle swarm optimization: developments,
applications and resources,” in IEEE CEC, vol. 1, 2001, pp. 81–86.

[33] Y. Zhang, S. Wang, and G. Ji, “A comprehensive survey on particle
swarm optimization algorithm and its applications,” Mathematical Prob-
lems in Engineering, vol. 2015, p. 931256, 2015.

[34] G. Xu, Q. Cui, X. Shi, H. Ge, Z.-H. Zhan, H. P. Lee, Y. Liang, R. Tai,
and C. Wu, “Particle swarm optimization based on dimensional learning
strategy,” Swarm Evol. Comput., vol. 45, pp. 33–51, 2019.

[35] D. Meng, “Generating deep learning adversarial examples in black-box
scenario,” Electronic Design Engineering, vol. 26, pp. 164–173, 2018.

[36] D. Meng and H. Chen, “Magnet: a two-pronged defense against adver-
sarial examples,” in ACM SIGSAC CCS, 2017, pp. 135–147.

[37] A. Dabouei, S. Soleymani, F. Taherkhani, J. Dawson, and N. M.
Nasrabadi, “Exploiting joint robustness to adversarial perturbations,” in
CVPR, 2020, pp. 1122–1131.

	I Introduction
	II Method
	II-A Manifold-based Influence Measure
	II-B Particle Swarm Optimization
	II-C Adversarial Image Generation

	III Experiments
	III-A Illustration of the proposed mFI-PSO
	III-B Comparison with Related Methods

	IV Conclusion
	References

