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Abstract—Deep neural networks have become popular in many
supervised learning tasks, but they may suffer from overfitting
when the training dataset is limited. To mitigate this, many
researchers use data augmentation, which is a widely used and
effective method for increasing the variety of datasets. How-
ever, the randomness introduced by data augmentation causes
inevitable inconsistency between training and inference, which
leads to poor improvement. In this paper, we propose a con-
sistency regularization framework based on data augmentation,
called CR-Aug, which forces the output distributions of different
sub models generated by data augmentation to be consistent
with each other. Specifically, CR-Aug evaluates the discrepancy
between the output distributions of two augmented versions of
each sample, and it utilizes a stop-gradient operation to minimize
the consistency loss. We implement CR-Aug to image and audio
classification tasks and conduct extensive experiments to verify its
effectiveness in improving the generalization ability of classifiers.
Our CR-Aug framework is ready-to-use, it can be easily adapted
to many state-of-the-art network architectures. Our empirical
results show that CR-Aug outperforms baseline methods by a
significant margin.

Index Terms—consistency regularization, data augmentation,
over-fitting, stop-gradient

I. INTRODUCTION

Deep Learning (DL) methods have received wide attention
due to their powerful capability and good performance. Many
deep neural network (DNN) architectures, including ResNet
[1l], Transformer [2], BERT [3] and gMLP [4], have shown
great promise in computer vision (CV), audio processing and
natural language processing (NLP). However, most models
rely on a large amount of labeled data to learn parameters
when training or fine-tuning [5], which may subject to over-
fitting or weak generalization performance in low-resource
datasets.

To alleviate overfitting and enhance the generalization abil-
ity of deep learning models, many methods have been pro-
posed, such as data augmentation [6]], dropout [7]], batch nor-
malization [8]], weight decay [9], pretraining [10], variational
information bottleneck [[11], etc. The most recently developed
method is R-Drop [12]], which forces the output distributions of
two different sub-networks generated from dropout by utilizing
Kullback-Leibler (KL) divergence [13] in the training stage to
be consistent. And R-drop achieves substantial improvements
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on 5 NLP and CV tasks by adding a KL-divergence loss
without modifying the structure.

Data augmentation is a very common method to mitigate
model overfitting for its effectiveness, and has good compat-
ibility with other regularization methods. To the best of our
knowledge, most researchers only focus on studying how to
design good data augmentation methods for certain tasks at
the data level, and almost no one studies data augmentation
at the model output level. Inspired by R-Drop, we argue
that a good DNN-based classifier should yield predictions
that are invariant to multiple data augmentations since data
augmentation simply morphs the data without affecting its
character. Furthermore, there are a variety of augmentation
strategies for different data that will create useful sampled
data for the regularized DNN model rather than generating
random model parameters like R-Drop. As a result, we propose
that data augmentation-based regularization can constrain deep
models more effectively than R-Drop, particularly in datasets
with limited resources.

In this paper, we develop a framework, called CR-Aug, short
for consistency regularization based on data augmentations.
Specifically, our framework proceeds as follows. Firstly, for
each input sample, we perform data augmentation twice to
obtain a pair of augmented samples; then we feed the pair
to the deep encoder, which predicts two output distributions.
Subsequently, we compute the consistency loss between the
two output distributions for each pair of augmented data,
which forms the total loss with cross-entropy loss of the
pair. When optimizing the loss, we implement stop-gradient
operation to the consistency loss to avoid collapsing solutions.
Stop-gradient operation has been shown beneficial to the
training of DNNs in many aspects, for instance, in Siamese
representation learning [14] and in a multi-task setting [15].
Experiments show that CR-Aug outperforms several regu-
larization methods (such as R-Drop), demonstrating that it
is a good regularization method capable of alleviating the
overfitting problem in classification.

Though our CR-Aug framework is straightforward, we find
it surprisingly effective through experiments on both image
and audio datasets.

Our main contributions can be summarized as follows:

« We propose CR-Aug, a simple yet effective data augmen-



tation regularization framework, which can be widely used
in deep learning classification tasks.

« We conduct extensive experiments on both audio and
image datasets with two popular network architectures to
verify the effectiveness of our method in comparison with
other baseline methods.

o A comprehensive ablation study reveals that stop-gradient
operation and consistency loss function plays a critical role
in the performance of CR-Aug.

II. RELATED WORKS
A. Data Augmentation Regularization Methods

Deep models bring better performance as moving toward
large parameter models, especially some large pre-trained
models like BERT, Vision Transformer [16], GPT family
[L7, (18], etc. But with that comes overfitting when the training
dataset is limited, which requires regularization to reduce
it. At present, there are some regularization methods, such
as batch normalization, weight decay, efc. Among them, the
most commonly used method is data augmentation, which is
widely used successfully in many neural network architectures,
such as convolutional neural networks (CNN), recurrent neural
networks (RNN), Transformer. Its success can be interpreted
as randomly cropping, scaling, and rotating the data in the
data dimension to increase the training data and make the
training data as diverse as possible, which makes the trained
model have stronger generalization ability. For images, a
recently developed method is random erasing [19], which
randomly selects a rectangular area and erases pixel values
with random numbers. Doing so can get a lot of occluded
training data, which is helpful for training. Therefore, the
trained model is able to mitigate overfitting and be robust
to occluded images. For audio, a recently developed method
is the ensemble of different data augmentation [20], which
improves the diversity of training data by integrating multiple
audio data augmentation methods. Compared with the method
without data augmentation, the accuracy of this method on
animal audio classification is greatly improved.

Unlike previous studies that sought to design specifically
data augmentation methods to improve classification accuracy,
we further investigate regularization models in the context
of the success of data augmentation. Specifically, by using
cosine similarity to drive data-augmented sub-models for each
input data to produce similar predictions, that is, we perform
a regularization operation at the model output level. Doing so
not only increases the randomness of the data but also reduces
the parameter freedom of the sub-model, which improves the
generalization performance of the model during the inference
phase.

B. Consistency Regularization

The main idea behind consistency regularization is that its
predictions should be consistent with small perturbations in
the input [21]. This method is widely used in semi-supervised

and self-supervised learning because it can learn a good
representation of the input data [22]. The perturbation is
generally performed on the model and the data, and dropout
is commonly used for the model. FD [23] trains two copies of
the same model with different dropout masks, using Ly loss to
minimize the difference between their predictions, this method
performs well in both NLP and CV. Data augmentation is
frequently used at the data level. Cutoff [24]] accomplishes the
goal of augmenting data by deleting some pixels of the data.
Then performing Consistency training on both the original
and augmented data. UDA [25] emphasizes regularization
training on semi-supervised learning using the state-of-the-
art data augmentation methods. However, these methods only
focused on the data augmentation method and did not dis-
cover the link between data augmentation and consistency
regularization. We propose CR-Aug, which employs cosine
similarity to constrain data that has undergone multiple data
augmentation and sampling to generate consistency predictions
to mine the relationship of data augmentation with consistency
regularization. The effectiveness of CR-Aug as a consistency
regularization method is demonstrated by theoretical analysis
and experimental verification.

III. METHODOLOGY

In this section, we elaborate on the details of how CR-Aug
works. Firstly, we detailedly introduce the architecture and the
algorithm of our framework and explain its principles. Then
we cover the objective loss functions in our paper.
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Figure 1. The overall architecture of our CR-Aug framework for classification.

A. CR-Aug

The overall architecture of CR-Aug is shown in Figure ??.
For each input data x, we first perform data augmentation to
obtain x; and x2, and then feed these two augmented data into
the same deep neural networks (DNN) backbone (an encoder,
such as ResNet18). Subsequently, we have the logits from the
encoder and pass them to a Softmax layer to yield the output
distributions y; and y». Finally, we calculate the consistency
loss between the distributions y; and ys, plus the cross-entropy
loss between the output distribution and ground-truth label y.

Following [14], we utilize the stop-gradient operation to
prevent collapsing when minimizing the consistency loss. For
clarity, the pseudo-code of CR-Aug is presented in Algorithm
The key of CR-Aug lies in the consistency loss between
the output distributions of two augmented samples for each



Algorithm 1 CR-Aug, PyTorch-like

# £ 50, gMLP t models)

# Lc yLOS

# Los 1

for x, y in loader: # load a minibatch x with n

samples

x1l, x2 = aug(x), aug(x) # random augmentation

vl, y2 = f£f(x1), f£(x2) # n-by-d

L = Lossl(yl, y) + Lossl(y2, y) + alphaxLoss2(
yl, y2.detach()) #loss and stop-gradient

L.backward() # back-propagate

update (f) # SGD update

input sample. Essentially, this loss ensures that a good en-
coder should produce output distribution invariant to the data
augmentations.

Introducing the consistent loss may yield insignificant im-
provement in model performance. Therefore, we deploy stop-
gradient operation (the detach function in the Algorithm [I),
which is shown useful to the training of DNNs in the literature.

The specific principle of how stop-gradient works is as
follows: the purpose of our consistency losss is to constrain
the network to learn meaningful representations, which can be
defined as the following form:

L(0,n) = Eo r[[| Fo(I'(x)) — nell2] (1

Where I' represents data augmentation, Fy represents the
encoder function, and 7, represents the representation of the
input x. £ is the expectation of x and data augmentation
(that is, the sum of the expected loss of all inputs and data
augmentation). For the convenience of analysis, the equivalent
form of cosine similarity MSE [26] is used to represent the
similarity. Then the optimization objective can be simplified
as:

minL(6,n) 2)

0,

The form of this optimization objective is similar to the k-
means [27] algorithm. Among them, the variable 6 is similar
to the cluster center, which are the learnable parameters of the
encoder. The variable 7 is similar to the embedding vector of
the sampling point, which is the representation of the input x.
Then CR-Aug can be solved by an EM iterative algorithm [28]]
like the k-means algorithm, fixing one variable and estimating
another variable. Formally, it can be written as the following
two sub-problems:

0" < argmeinL(Q,ntfl) 3)
n' < argmin L(6",7) 4)
7

Where t represents the iteration round. It can be solved by
SGD [29] or ADAM [30]]. In this process, stop-gradient is
employed, that is, using detach function on y. The detach
function will cut the data and no backward propagation would
be conducted, which plays the role of fixing n¢~1. If there is

no stop-gradient, equation (3) has two variables and cannot
be solved, which will result in collapsing solutions and bring
poor results.

After solving 6, there is only one variable left in equation
. Substituting 6 into the loss function, the second sub-
problem becomes:

nt argmgnIEp[H Fo: (T(x)) — nz]|2) 5)

Finally, the image x representation that is vital for downstream
tasks after t iterations can be obtained by solving:

1 = Ep[Fpe (T(2))] (6)

It is worth noting that the effect of stop-gradient operation
on any output is essentially unchanged (y2 in our experiment)
since the encoder part of the model is the same (shared param-
eters). Besides, our experiments also verify the effectiveness
of stop-gradient in the CR-Aug framework later.

B. Loss Function

Here we cover the objective functions in the CR-Aug
framework. The consistency loss between output distributions
measures the discrepancy between two categorical distribu-
tions. Usually, the following three kinds of loss are commonly
used: cosine similarity, KL-divergence and Jenson’s Shannon
(JS) divergence.

The cosine similarity in our experiment is defined as fol-

lows:
p q

2l flally’

D(p,q) =1~ @)
where ||-||,, is £2-norm. This is equivalent to the mean squared
error of /s-normalized vectors [31]. And the value of the
cosine similarity is between O and 2 after adding 1.

Kullback-Leibler (KL) divergence and Jenson Shannon (JS)
divergence [32] are defined as follows:

KLollo) = [ plo)tos (2. ®
IS@la) = SKLGIESD) + S KL 5T o)

where p and ¢ are two output distributions. It should be noted
that JS divergence is a variant of KL divergence, which solves
the problem of asymmetry of KL divergence.

We calculate the cross-entropy loss of the two output
distributions (y1, y2) with the real label (y) for classification,
and calculate the consistency loss of y; and y, for consis-
tency training. Therefore for each input sample, the total loss
function is

L= Lee(,y)+ Lee(yz,y) + a- Loon(y1,y2),  (10)

where the Lcon (Y1, y2) is the consistency loss between y; and
Y2, and it can be chosen from Cosine distance, KL divergence
and JS distance. The « is the weight of consistency loss.



IV. EXPERIMENT SUTUP

In this section, we describe how we conduct experiments to
verify the superiority of our CR-Aug framework in comparison
with other baseline methods. Also, we present an extensive
ablation study to show the source of the improvements.

A. Configuration

We used the Pytorch framework to conduct experiments
on two classification tasks, including one image dataset and
two audio datasets. For image classification, we used the
ResNet18 and gMLP model as the backbone of our structure.
For audio classification, we used ResNet50 as the backbone of
our structure. For comparison, we set a few baseline methods
are as follows:

o Without data augmentation (w/o Aug): This is a generic
classification with just one cross-entropy loss. And there
is no augmentation and regularization method used in this
method.

e R-Dropout: R-Dropout is a recently developed method,
which forces the output distributions of different sub-
models generated by dropout to be consistent with each
other. It can be seen as an enhanced variant of dropout.
And we use the rates of dropout with the same value (0.3,
0.3). See [I12] for details.

o Weight Decay: This is a common regularization technique
by adding a small penalty to improve generalization [33]].
We implement the weight decay of 0.1 in the SGD
optimizer.

In order to better compare the effect of various regularization
methods, we remove all the tricks and regularization of the
original state-of-the-art method. This is the reason why the
accuracy of the latter baseline method is lower than that of
the existing methods.

Metrics For both the image and audio datasets, because the
datasets are balanced, we utilize accuracy as the performance
metric.

Training details In the experiment phase, for both CR-
Aug and baseline methods, the data is divide into training
set, validation set and test set at a ratio of 8:1:1. The SGD
algorithm is employed as the optimizer with the default
parameters. The model is trained with a learning rate of 0.001
for CIFAR-10 and 0.01 for other datasets. Batch size is set to
32 and training epoch is set to 60 for all datasets. And we use
Tesla-V100 with 16G memory to experiment.

B. Data Augmentation

Because we use audio and image datasets in our experi-
ments, we introduce data augmentation methods on audio and
images separately.

1) data augmentation for images: For images, there are
many kinds of data augmentation methods and they can be
directly accessed in the Pytorch framework. Here are the aug-
mentations we used: 1.) Flip [34]: randomly flipping the image

5 degrees in our experiments. Do not set more than 10 degrees,
it will lead to poor results otherwise; 2.) Adding Gaussian
noise (AN) [3S]: superimposing random noise with Gaussian
distribution on pixels; 3.) color jitter [35]: randomly change
the exposure, saturation and hue of the image to form pictures
under different lighting and colors; 4.) Randomly Resizing
Cropping (RRC) [5]: specifically, first expanding the size of
the image data to 224 x 224, and then randomly cropping it.
Note that the cropping ratio here cannot be too large, otherwise
it will lead to lower model accuracy. In our experiment, we
used a size of 0.2%1.0. For obtaining more abundant training
data, we combined two or more methods above introduced
on each mini-batch to obtain different augmentation schemes,
such as the combination of RRC and Flip.

2) data augmentation for audio: There are many com-
monly used data augmentation methods for audio datasets,
such as, time stretch (TS) [36], pitch shifting (PS) [36]], adding
Gaussian noise (AN) [36], random masking (RM) [37], add
impulse response [38] and so on. In our experiments, we chose
four commonly used data augmentation methods: TS, PS, AN,
and RM. The method TS is the slowdown or speed up the
audio sample while keeping the pitch unchanged. The method
PS is that raise or lower the pitch of the audio sample without
changing the duration. The method AN is that randomly
adds Gaussian noise to the audio sample. The method RM
is to randomly set the value in a few percent (five in our
experiments) of audio samples to 0. In order to generate more
diverse data augmentation schemes and obtain more abundant
training data, we also combined two or more of the above
methods, which could get more satisfactory results in the next
experiments.

V. EXPERIMENTAL RESULTS

A. Application To Image Classification

Dataset and Backbone For image classification, we con-
duct experiments on one widely used benchmark dataset,
that is CIFAR-10 [39] dataset. CIFAR-10 dataset consists of
60000 32 x 32 images of 10 classes, and there are 6000
images per class. We divide these 60000 images into training
set, validation set and test set at a ratio of 8:1:1. We used
two different DNN models (ResNet18 and gMLP [4]) as the
backbone of our framework in the experiments.

Results and Analysis Table [I] displays the classification ac-
curacy of various methods on CIFAR-10 dataset. The method
with mixed augmentation (we marked it as Mixed Aug)
outperforms the w/o aug baseline method by about 16% on
gMLP backbone. The Mixed Aug method is the combination
of multiple data augmentation methods (including RRC, flip,
and color jitter), which brings rich images to make CR-Aug
robustly help improve the model generalization and model
performance. And it can be seen that RRC is the most
effective single data augmentation method. R-dropout does not
perform better than weight decay in ResNet backbone for that
dropout is not suitable for applying to ResNet [40]. Noting
that our results achieve 93.41% accuracy for ResNet-18 on



CIFAR-10, which is lower than the state-of-the-art results. This
is because our model uses only data augmentation without
any other regularization methods, whereas the state-of-the-
art model uses lots of tricks and regularization methods that
can improve generalization performance. By comparing the
baseline method and our methods (RRC, flip, AN, RRC+lip,
and Mixed Aug), we not only concluded the superiority of
our method but also discovered the combination of several
data augmentation methods work better than single data aug-
mentation for image classification.

Table 1
THE CLASSIFICATION ACCURACY OF VARIOUS METHODS ON CIFAR-10
DATASET USING TWO NETWORK BACKBONES. RRC: RANDOM RESIZE
CROPING. RD: R-DROPOUT. AN: ADD GAUSSIAN NOISE. MIXED AUG:
THE BEST COMBINATION OF DATA AUGMENTATIONS.

Backbone
ResNet18 gMLP

Method

w/o aug 81.7140.07 68.4210.32
+RD 82.1340.16 70.65+0.22
+Weight Decay 83.9640.31 70.6410.05
+RRC 91.7140.15 79.18+1.25
+lip 84.8810.56 74.72+0.08
+AN 85.9540.12 71.584+0.58
+RRC+Hlip 93.2440.11 80.0640.75
+Mixed Aug 93.411+0.27 84.141+-0.43

B. Application To Audio Classification

Dataset and Backbone We conduct experiments on two
audio datasets to verify the wide applicability of our frame-
work. That is the Google Speech Commands dataset v0.01
[41] and the Audio-MNIST dataset [42]]. The Google Speech
Commands dataset has 64720 one-second long utterances of
30 short words. These words are from a small set of commands
and are spoken by a variety of different speakers. We load the
data at a sampling rate of 16000. The Audio-MNIST consists
of 30000 audio samples of spoken digits (0-9) of 60 different
speakers [42]. Every sample is only 0.5-seconds-long. We use
it to do 60 classification tasks. And ResNet50 as the backbone
of our framework.

Results and Analysis Table [II| displays the classification
accuracy of various datasets on Resnet50 backbone. The
results show that our methods (TS, PS, AN, RM, TS+PS,
and Mixed Aug) can improve the model’s accuracy on the
Speech Commands dataset and Audio-MNIST dataset, ex-
hibiting improved generalization performance. Since different
data augmentation methods have different effects on different
datasets, we only find the +RM method can outperform all
baseline methods (but all higher w/o aug). But the accuracy
of the combination of multiple data augmentation methods
is better than baseline methods. And the best result Mixed
Aug method (including RM, TS, and AN) achieved more than
1.2% accuracy than R-drop baseline on the Speech Commands
dataset, which proves that our CR-Aug is a practical and ready-
to-use regularization method.

VI. ABLATION STUDY

To explore the source of the effect of CR-Aug on mitigating
overfitting, We did an extensive ablation study to analyze the
effect of each part of our framework on improving accuracy.
For image classification, we use ResNetl8 as our backbone,
and the dataset is CIFAR-10, the data augmentation method is
flip. For audio classification, we use ResNet50 backbone and
Audio-MNIST dataset to conduct experiments. And the data
augmentation method is RM. The influence of stop-gradient,
loss function, and consistency loss coefficient o on accuracy
are analyzed in detail as follows.

Table 11
THE CLASSIFICATION ACCURACY ON TWO AUDIO DATASETS WITH
RESNETS50 BACKBONE. TS: TIME STRETCHING. PS: PITCH SHIFTING. AN:
ADD GAUSSIAN NOISE. RM: RANDOM MASK. RD: R-DROPOUT. MIXED
AUG: THE BEST COMBINATION OF DATA AUGMENTATION

Dataset
Speech Commands | Audio-MNIST

Method

w/o aug 94.12+1.52 95.45+0.27
+RD 96.52+0.99 98.35+0.32
+Weight Decay 96.65+0.16 99.36+0.21
+TS 96.07£0.55 98.96+0.13
+PS 96.25+0.66 99.06+£0.21
+AN 96.02+0.82 98.62+0.33
+RM 96.66+0.58 99.41+0.21
+TS+PS 96.63+0.81 99.35+0.18
+Mixed Aug 97.21+0.69 99.51+0.18

1) the effect of the stop-gradient: During our experiment,
we found that the classification accuracy of the model sud-
denly becomes very low (almost zero). We argue that the
gradient disappeared or collapsing solutions appeared. Inspired
by [14]], we used the stop-gradient to deal above situations. We
did an ablation study to prove the effect of introducing stop-
gradient. As shown in figure 2| The classification accuracy
becomes O after 5 epochs, which is not the case for experi-
ments with stop-gradient. As quantified in Table [III} even if
there is no collapse solution, stop-gradient can improve the
classification accuracy. The results show that the introduction
of stop-gradient can not only mitigate the collapsing solutions
but also improve the accuracy of classification tasks. And the
principle can be seen in the section

Table III
THE RESULTS OF EFFECT OF STOP-GRADIENT.

w/o stop-grad.
83.2140.17
97.45+0.29

w/ stop-grad.
84.881+0.56
99.41+0.21

CIFAR-10
Audio-MNIST

2) the effect of the loss function: We compare the cosine
distance with KL divergence and JS divergence in this part.
For convenience, we utilize ’div’ to represent divergence in
the following table. Following Siamese [14]], we apply stop-
gradient to avoid collapsing solutions when minimizing the
consistency loss (the effectiveness was analyzed in [VI-T). The
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results of table [[V] show that the cosine distance is more
suitable for the structure.

Table IV
THE RESULTS OF THE EFFECT OF THE LOSS FUNCTION
kl div JS div cosine distance
CIFAR-10 84.184+0.54 | 84.32+0.63 84.88+0.56
Audio-MNIST | 97.13+1.08 | 96.43+1.11 99.414+0.21

3) the effect of the consistency loss coefficient a: To explore
the effectiveness of the weight of o, we increase the weight
of consistent loss from 0.1 to 1.0. As shown in table [V] As
« increases, it works best on the Audio-MNIST dataset when
it is equal to 0.2, and it has been decreasing since then. For
the CIFAR-10 dataset, the effect is best when arises to 0.5,
and then the accuracy gradually decreases. & = 0.2 is more
suitable for audio, o = 0.5 is more suitable for images. This
means that « should be adjusted accordingly for different
datasets. For different tasks, it is more appropriate to select
different coefficients.

Table V
THE EFFECT OF THE CONSISTENCY LOSS COEFFICIENT «

o' Audio-NMIST CIFAR-10

0.1 99.03+0.12 84.05+0.32
0.2 99.45+0.18 84.3240.67
0.5 99.41+0.21 84.88+0.56
0.6 99.35+0.13 83.95+0.88
0.8 99.21+0.22 84.35+0.73
1.0 99.18+0.14 84.21£0.72

VII. CONCLUSION

We propose CR-Aug, a simple yet effective data augmen-
tation regularization framework to address overfitting when

training DL classifiers on image and audio datasets. Constrain-
ing the two augmented data by using cosine distance produces
consistent predictions, and then using stop-gradient to mitigate
collapsing solutions. Different data augmentation methods
are given for different datasets. We verify the effectiveness
and universality of the framework through experiments. This
method is not limited to the above backbone and it can be
easily applied to other models. So CR-Aug has huge potential
in DL.

In future work, we will further research the effectiveness of
our algorithm in the medical dataset. It is known that medical
images are harder to augment as compared to natural images
due to the TB-consistent findings and the ROI spans for a
relatively smaller portion of the whole image. We’ll try to
come up with a good CR-Aug data augmentation solution for
medical images.
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