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Abstract—The Euler State Network (EuSN) is a recently
proposed Reservoir Computing (RC) model where the fixed state
dynamics are obtained by discretizing an ordinary differential
equation under stability and non-dissipative conditions. As a
result, the model is able to effectively propagate input information
over time, hugely improving the performance of RC models in
tasks requiring long-term memory.

Aiming at both reducing the complexity of the reservoir
structure and further improving its efficiency, in this paper we
propose a minimalistic EuSN architecture where the reservoir
is constrained to a fixed bi-directional chain structure. We
explore progressive simplifications where the recurrent and the
input connections of the reservoir are fully described by a
single weight value. While reducing the complexity of the base
EuSN, the proposed minimal EuSN approach shows comparable
performance on several tasks on time-series classification, thus
offering considerable potential advantages, especially in embed-
ded applications and physical implementations.

Index Terms—Reservoir Computing, Euler State Networks,
Recurrent Neural Networks

I. INTRODUCTION

Reservoir Computing (RC) [1], [2] is a powerful method-
ology for efficiently training Recurrent Neural Networks
(RNNs). The approach basically exploits the architectural
bias of stable neural dynamics, with a fixed (i.e., untrained)
recurrent reservoir layer, and a trainable readout for the output
computation. Over the years, RC has proven to be particularly
effective in applications, in particular for the implementation
of distributed learning functionalities in embedded systems [3],
[4], and as a reference paradigm for neuromorphic hardware
implementations of recurrent models [5], [6].

Crucial to the operating principles of RC is that the un-
trained reservoir needs to develop stable dynamics according
to a global asymptotic stability property, that – in the context
of the widely known Echo State Network (ESN) [7], [8] – is
called the Echo State Property. According to this characteriza-
tion, the reservoir develops stable dynamics, but at the same
time it is constrained to have fading memory and a consequent
state space structure that limits the capability of transmitting
the input information through several time-steps.

To overcome these inherent limitations, a new RC approach
has been recently proposed in which the reservoir is obtained
by discretizing an Ordinary Differential Equation (ODE) under
appropriate constraints of stability and non-dissipation [9]. As
the resulting reservoir dynamics are computed as the forward
Euler solution of an ODE, the model has been called the
Euler State Network (EuSN). Differently from standard ESNs,
EuSNs dynamics are neither lossy nor unstable, making it
possible to effectively preserve input information over time,
and thus being more suitable for addressing tasks involving
long-term memorization. The concrete advantages of the EuSN

approach on time-series classification tasks have been already
pointed out in [9], in which it has been shown that EuSNs,
significantly exceeding the accuracy of ESNs, are able to reach
comparable levels of performance to fully trainable state-of-
the-art RNN models, while still maintaining the striking RC
efficiency advantage. Interestingly, a key aspect of the EuSN
model is to make use of antisymmetric recurrent matrices.
However, the study of the pattern of connectivity among the
reservoir neurons in EuSNs remains until now unexplored.

In this paper, we go deeper in investigating the architectural
organization of the reservoir layer in EuSNs. Taking inspira-
tion from the works in [10], [11], we present progressive sim-
plifications, both in the recurrent and in the input structure, that
aim at lowering the overall reservoir complexity. Our analysis
addresses the resulting efficiency benefits and, through exper-
iments on several real-world datasets, comparatively assesses
the efficacy of the proposed minimal EuSNs in applications.

The rest of this paper is organized as follows. In Section II,
after a brief recap on ESN, we present the key concepts of
EuSN processing. We introduce our architectural simplifica-
tions to EuSN in Section III. In Section IV we provide our
experimental analysis. Finally, Section V concludes the paper.

II. ECHO AND EULER STATE NETWORKS

Reservoir Computing (RC) [1], [2] indicates a class of
recurrent neural models in which the recurrent hidden layer,
i.e., the reservoir, is featured by fixed connections, and only
a readout output layer is trained. In the following, within
such a class, we consider the widely popular Echo State
Network (ESN) [7], [8], and the recently introduced Euler
State Network (EuSN) [9].

We fix our notation by considering N reservoir neurons
and X input units. The reservoir state and the external input
at time-step t are denoted, respectively, by h(t) ∈ RN , and
x(t) ∈ RH .

Echo State Network (ESN) – Reservoir dynamics are ruled
by the following state transition function, where we consider
the general formulation with leaky-integrator neurons [12]:

h(t) = (1−α)h(t−1)+α tanh
(
Whh(t−1)+Wxx(t)+b

)
,

(1)
in which α ∈ (0, 1] is the leaking rate, Wh ∈ RN×N

is the recurrent weight matrix, Wx ∈ RX×H is the input
weight matrix, b ∈ RN is a bias vector, and tanh(·) indicates
the element-wise application of the hyperbolic tangent non-
linearity.

The weight values in Wh, Wx and b are kept fixed after
initialization in accordance with a global asymptotic stability



condition known as the Echo State Property (ESP) [13]. In
practice, the recurrent weights in Wh are randomly drawn
from a uniform distribution, e.g., over (−1, 1), and then re-
scaled in order to control the resulting spectral radius1 ρ(Wh),
typically limiting it to values smaller than 1. The value of
ρ(Wh) is treated as a crucial hyper-parameter of the reservoir,
and takes a major role in determining the nature of the
developed state dynamics. Similarly, the input weight matrix
and the bias vector are initialized randomly, e.g., from uniform
distributions over (−ωx, ωx) and (−ωb, ωb), respectively. The
values of ωx and ωb play the role of input and bias scaling
coefficients, respectively, and are considered as further hyper-
parameters of the model.

The network’s architecture comprises a trainable dense read-
out layer that, in the case of time-series classification tasks, is
fed by the last reservoir state computed in correspondence to
each input time-series.

As mentioned above, crucial to the operation of the ESN
model is the ESP stability property that is used to constrain
the reservoir dynamics. Essentially, when this property holds
and the network is driven by a long input time-series, then
the initial state conditions (or equivalently, input perturbations
far in the past) are progressively forgotten, and the state
encoding developed by the reservoir is stable. However, this
characterization is related to the properties of fading memory
and suffix-based Markovian organization of the reservoir
state space (see, e.g., [14]–[16]), which make it difficult to
effectively propagate information across several time-steps,
thereby intrinsically limiting the efficacy of ESNs in tasks
requiring long-term memorization abilities.

Euler State Network (EuSN) – Reservoir dynamics are
obtained by discretizing an ODE subject to conditions of
being stable and non-dissipative. Specifically, we start from
the continuous-time dynamics given by:

h′(t) = tanh(Whh(t) +Wxx(t) + b), (2)

and require that the Jacobian of the above eq. 2 has eigenvalues
with ≈ 0 real parts. This, on the one hand, entails stable
dynamics and, on the other, that the dynamical system is
not lossy, making it able to effectively propagate the input
information across the time-steps [17], [18]. A simple architec-
tural way of meeting such a critical condition on the Jacobian
consists in using an antisymmetric recurrent weight matrix,
i.e., Wh = −WT

h . In fact, in this case, the eigenvalues of
both Wh and of the Jacobian of eq. 2 are purely imaginary
[18]. Crucially, as noted in [9], such a property is not required
to be learned from the data. Hence, taking an RC approach,
we can consider all the weights in Wh, Wx and b to be fixed,
provided that the antisymmetric property of Wh is satisfied.

Discretizing the system in eq. 2 using the forward Euler
method, we finally get the reservoir state transition equation:

h(t) = h(t−1)+ε tanh
(
(Wh−γI)h(t−1)+Wxx(t)+b

)
,

(3)

1The maximum among the eigenvalues in modulus.

where Wh, Wx and b are as in eq. 2, and Wh is anti-
symmetric. Moreover, ε and γ are both small positive values
that represent, respectively, the step size of the discretization,
and the diffusion coefficient for stabilizing the forward Euler
solution. Both ε and γ are treated as model’s hyper-parameters.

Denoting by J(t) the Jacobian of the reservoir in eq. 3, we
can derive that

J(t) = I+ εD(t)Wh − εγD(t), (4)

where D(t) is a diagonal matrix with entries given by the
elements of tanh′

(
(Wh − γI)h(t − 1) + Wxx(t) + b

)
.

Relevantly, recalling that both ε and γ take small positive
values, we can observe that the right-hand side of eq. 4 is
dominated by the I term. This means that all the eigenvalues of
J(t) are intrinsically ≈ 1, hence the local Lyapunov exponents
of the reservoir [1], [19], [20] are all ≈ 0, and the system
is biased towards edge-of-stability dynamics [21]. Moreover,
the reservoir operation tend to preserve all the components
of the state, while performing infinitesimal rotations due to
the antisymmetric structure of Wh. The resulting qualitatively
different behavior between an ESN and an EuSN is illustrated
in Fig. 1, which shows examples of state trajectories developed
by 2-dimensional autonomous reservoirs (i.e., with zero input
and bias) starting from different initial conditions around the
origin. As it can be seen, for ESNs the origin is an attractor
(Fig.1a) or a repeller (Fig.1b), depending on whether the ESP
is valid or not. Instead, for EuSN (Figure 1c) the states rotate
around the origin without being attracted or repelled, and the
distances between the trajectories are conserved, reflecting
the differences between the initial conditions. In other words,
external input perturbations to the state are preserved without
either exploding or vanishing, thereby enabling an effective
propagation of the information over time.

From eq. 4, we can notice that the actual weight values of
Wh only have a minor influence on the eigenvalues of J(t),
hence on the dynamical behavior of the reservoir. In fact, the
Wh contribution to J(t) is modulated by ε, which is small by
definition, and by D(t), whose diagonal entries are in (0, 1)
due to the contractive properties of tanh. Moreover, when the
system is studied under common autonomous RC settings and
linearized around origin (thereby setting D(t) = I in eq. 4),
we can see that the effective spectral radius of the reservoir
is given by ρ((1− εγ)I+ εWh), which is naturally confined
to a neighborhood of 1. At initialization, we can therefore
avoid re-scaling the weights of Wh to control its spectral
radius, in contrast to what happens with ESNs. As proposed
in [9], we can limit ourselves to simply considering a scaling
factor of the weights to take into account the modulation of
the different contributions in eq. 3 (previous state, new input,
and bias). Wx and b are initialized as described above for
the case of ESNs. To initialize Wh, we start with a random
matrix W with values drawn from a uniform distribution over
(−ωr, ωr), and then set Wh = W−WT , which satisfies the
antisymmetric constraint by construction. Here, ωr denotes a
recurrent weight scaling coefficient, which – together with ωx

and ωb – is treated as a hyper-parameter.



(a) ESN with ESP. (b) ESN without ESP. (c) EuSN.

Fig. 1: Examples of 2-dimensional autonomous reservoir dynamics visualized around the origin for instances of: (a) ESN
with ESP, (b) ESN without ESP, and (c) EuSN. The same three initial conditions are used in all the cases, shown as full
stars with different colors: [0.1, 0.1]T in blue, [−0.3, 0.1]T in red, and [0,−0.5]T in green. Trajectories are shown by points
of different shapes, with more transparent colors indicating earlier time-steps. (a): Wh =

[
[0.8, 0.1]T , [−0.1, 0.8]T

]
. (b):

Wh =
[
[1.3, 0.1]T , [−0.1, 1.3]T

]
. (c): Wh =

[
[0, 1.4]T , [−1.4, 0]T

]
, with ε, γ = 0.001.

The network is complemented by a readout layer whose
settings are as in the case of ESN.

III. MINIMAL EUSN ARCHITECTURES

In this section, we introduce our proposed EuSN
architectures, specifically aimed at reducing the complexity
of reservoir topology, network parametrization, and state
computations. We progressively introduce two types of
simplifications. First, we restrict the reservoir topology to
have a deterministic bi-directional chain structure. Then,
to further minimize the architectural design, we add a
deterministic structure also to the input weights.

Simple Antisymmetric Reservoir – We start by noticing
that, due to the antisymmetric constraint, the recurrent weight
matrix of an N -dimensional EuSN reservoir is determined
by N(N−1)

2 parameters, i.e., the number of entries below (or
above) the main diagonal. Therefore, if we want to transmit
the reservoir over a network (e.g., in embedded applications),
we need to transfer a number of O(N2) recurrent weights.
Moreover, due to the dense reservoir structure, the time
complexity of state computation in eq. 3 also scales as O(N2).

To reduce the quadratic costs, we introduce a simple orga-
nization of the recurrent topology, which is both deterministic
and sparse. Specifically, we consider a bi-directional chain
reservoir architecture, such that every internal neuron i has
only two outgoing recurrent connections, one to the preceding
neuron i− 1 and one to the subsequent neuron i+1, and two
incoming connections from the same neurons. Moreover, we
impose to use a single absolute weight value, say ωr > 0,
that is shared among all neurons, and is used to describe the
strength of all the recurrent connections. Finally, to respect the
antisymmetric constraint, we assume that all the connections
pointing to the preceding neuron have negative sign (i.e.,
−ωr), while those pointing to the subsequent neuron have
positive sign (i.e., +ωr). The achieved architectural organiza-
tion of the reservoir is illustrated in Fig. 2. Correspondingly,
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Fig. 2: Simple antisymmetric reservoir topology.

the recurrent weight matrix Wh has a peculiar antisymmetric
structure with non-zero elements only on the sub and the super
diagonals, as follows:

Wh =



0 −ωr 0 0 . . . 0
ωr 0 −ωr 0 . . . 0
0 ωr 0 −ωr . . . 0
...

. . . . . . . . . . . .
...

0 . . . 0 ωr 0 −ωr

0 . . . 0 0 ωr 0


. (5)

Notice that, given the fixed reservoir architecture, the whole
recurrent weight matrix Wh can be described by just 1
parameter, i.e., ωr, as opposed to O(N2) as for the base
EuSN. Moreover, given the value of the recurrent scaling ωr,
the recurrent weight matrix is deterministically constructed,
without requiring randomization. In addition, due to the high
degree of sparsity in Wh, the complexity of state computation
reduces from O(N2) to O(N).



TABLE I: Complexity of EuSN compared to M-EuSNH and
M-EuSNH,X . We report the number of parameters required
to describe the recurrent weight matrix (#Par. Wh), the input
weight matrix (#Par. Wx), and the bias vector (#Par. b). The
last line gives the time complexity of the state update (eq. 3).

EuSN M-EuSNH M-EuSNH,X

#Par. Wh O(N2) 1 1
#Par. Wx O(N X) 1 1
#Par. b O(N) 1 1
State Update O(N2) O(N) O(N)

As a side observation, it is also interesting to see that when
Wh follows the organization in eq. 5, it can be described
as a tridiagonal Toeplitz matrix with constantly zero diagonal
values. As a consequence, its eigenvalues are symmetrically
arranged on the imaginary axis, such that ∀i = 1, . . . , N ,
eigi(Wh) = ι 2ωr cos iπ

N+1 .
In the following, we refer to a minimal EuSN architecture

featured by the simple antisymmetric reservoir structure
described above as M-EuSNH .

Deterministic Input Connections – Inspired by [10], we
consider a further architectural simplification, this time applied
to the input connections. In particular, we consider all weights
in Wx to have the same absolute value ωx, and, similarly,
all weights in b to have the same absolute value ωb. The
sign of each weight is determined by the decimal expansion
of π, where a digit ≥ 5 implies a positive sign, and a
digit < 5 implies a negative one. If this simplification is
applied, the number of parameters needed to describe Wx

and b reduces from O(N X) and O(N), respectively, to 1.
Moreover, the initialization process for both Wx and b is
completely deterministic.

In the following, when in addition to the simple reservoir
structure in eq. 5 and Fig. 2, our minimal EuSN architecture
is featured by deterministically constructed input and bias
weights, as illustrated here, we denote it by M-EuSNH,X .

To wrap up, by the introduced architectural constraints, the
complexity of the EuSN is progressively reduced in M-EuSNH

and M-EuSNH,X , both in terms of parametrization and time
complexity for state computation, as summarized in Table I.
Finally, notice that in the rest of the paper, we will use M-
EuSN when generally referring to any of the minimal EuSN
architectures introduced in this section.

IV. EXPERIMENTS

In this section, we describe the datasets, the experimental
settings, and the numerical results achieved in our analysis.

Datasets - We have considered 8 datasets for time-series
classification, from diverse application areas and featured by
a diverse nature of the input features. The first 7 come from
the UEA & UCR time-series classification repository [22],
namely: Adiac [23], CharacterTrajectories [24], HandOutlines

TABLE II: Information on the used datasets for time-series
classification. Specifically, we report the size of the training
(#Seq Tr) and of the test set (#Seq Ts), the length of the times-
series (Length), the number of input features (Feat.)), and the
number of class labels (Classes).

Name #Seq Tr #Seq Ts Length Feat. Classes
Adiac 390 391 176 1 37
CharacterTrajectories 1422 1436 182 3 20
HandOutlines 1000 370 2709 1 2
Handwriting 150 850 152 3 26
Libras 180 180 45 2 15
Reuters 8982 2246 200 32 46
ShapesAll 600 600 512 1 60
SpokenArabicDigits 6599 2199 93 13 10

[25], Handwriting [26], Libras [27], ShapesAll [28], and Spo-
kenArabicDigits [29]. As a further dataset, we have considered
the Reuters newswire classification dataset from UCI [30].
This last dataset was considered in the parsed version which
is publicly available online2. In addition, we have applied a
pre-processing phase to represent each sentence by a sequence
of 32-dimensional words embeddings3.

A summary of the relevant information for each dataset
is reported in Table II. For each dataset, we have used the
original data separation into training and test, as indicated
in Table II, with a further stratified splitting of the original
training data into training (66%) and validation (33%) sets.

Experimental Settings - We assessed the performance
achieved by the introduced M-EuSN models, comparatively
with EuSN and standard ESN. For all models, the values of
the hyper-parameters were chosen by model selection on the
validation set, using KerasTuner4 with Hyperband [31]. We
explored reservoir configurations with ωx and ωb in (0.01, 1.5)
with linear sampling. For EuSN and M-EuSNs, we considered
values of ωr in (0.01, 1.5), with linear sampling, and values
of ε and γ in (10−5, 10−1) with logarithmic sampling. For
ESN, we explored values of ρ(Wh) from (0.01, 1.5), and of
α from (0.01, 1), with linear sampling. In all cases, the readout
was implemented by a dense layer. Depending on the number
of target classes, the readout contained units with sigmoid or
softmax activation, and was trained using binary or categorical
cross-entropy as loss function. We used the Adam optimizer
for a maximum number of 500 epochs, and early stopping
with patience 10. The value of the learning rate was treated
as a further hyper-parameter, exploring values in the range
(10−5, 10−1) with logarithmic sampling. We ran experiments

2https://keras.io/api/datasets/reuters/
3First, each sentence was represented by a sequence of words among the

10000 most frequent ones in the whole database, with truncation to the
maximum length of 200. Then, word embeddings were obtained by training
an MLP with a preliminary embedding layer with 32 units, a hidden layer
containing 128 units with ReLU activation, and a final dense output layer with
46 units and softmax activation. The MLP architecture has been trained with
RMSProp for 100 epochs, using categorical cross-entropy as loss function,
and early stopping with patience 10 on a validation set containing the 33% of
the original training data. The output of the embedding layer on the sentences
in the dataset is then used to obtain the input features for our experiments.

4https://keras.io/keras tuner/

https://keras.io/api/datasets/reuters/
https://keras.io/keras_tuner/


with increasing reservoir sizes N = 25, 50, 75, 100. For every
model and reservoir size, after model selection, 10 instances
(i.e., random guesses) of the network with the best hyper-
parameters configuration were trained on the training set and
evaluated on the test set. The presented results were then
obtained by averaging (and computing the std on) the test set
accuracy over the 10 guesses. As an additional comparative
step, we also performed a final model selection phase (on the
validation set) to fine-tune the reservoir size individually for
each model.

The code for our experiments is written in Keras, and is
publicly available online5.

Results - The achieved results are given in Fig. 3, which
shows the test accuracy on the time-series classification tasks
(different plots) obtained by the considered models at in-
creasing values of the reservoir size (horizontal axis in each
plot). Results clearly show the advantages of the EuSN ap-
proach over the standard ESN. In fact, all versions of EuSNs,
including the M-EuSNs, generally outperform ESNs on all
tasks and for all reservoir dimensions. Interestingly, in some
cases (e.g., Adiac and HandOutlines) the performance of ESNs
never approaches that one achievable by EuSNs, even for the
maximum number of reservoir units considered. In other cases,
when the performance of the ESNs grows up to approach that
one reachable with the models within the EuSN class (e.g.,
Reuters, ShapesAll, and SpokenArabicDigits), the latter are
able to obtain a performance in line with the highest achievable
by the ESNs, already with the smallest reservoir sizes.

Relevantly, comparing the results of EuSN with those of
M-EuSNs in Fig. 3, we can observe that the minimal variants
achieve a comparable level of accuracy, showing only a minor
decrease in performance. This is confirmed by the results in
Table III, which show the test accuracy after the final step
of model selection on the reservoir size. As it can be seen,
the class of M-EuSN variants reaches a performance that is
generally in line with that of the base EuSNs, in some cases
even reaching the top accuracy level overall. Narrowing the
focus to the minimal EuSN architectures, we can observe that
in most cases M-EuSNH leads to a better performance than
M-EuSNH,X . We can speculate that this can be interpreted
as an effect of the variability of input weights in M-EuSNH ,
which is absent in M-EuSNH,X .

Overall, our experimental analysis pointed out the efficacy
of minimal EuSN architectures, which were able to reach a
comparable level of accuracy to base EuSNs, at the same time
granting the efficiency advantages presented in Section III,
both in terms of parametrization and time complexity of state
computations (see Table I).

V. CONCLUSIONS

In this paper, we delved into the architectural construction
of the reservoir layer of an Euler State Network (EuSN), a

5A GitHub repository with the code will be made public after acceptance.
A preliminary anonymized version is available at https://www.dropbox.com/
sh/rico9vtvt3rhiju/AAC3TI7i6O0bSpvmPAP63JFha?dl=0.

recently introduced class of RC models whose dynamics are
obtained by discretizing an ODE subject to stability and non-
dissipation constraints.

Aiming at reducing the complexity of base EuSNs in
terms of topology, parametrization and state computations, we
have introduced two minimal EuSN architectures. The first
one presents a simple antisymmetric reservoir in which the
recurrent neurons are arranged according to a bi-directional
chain. All the non-zero recurrent connections share the same
absolute weight value, leading to a deterministic construction
of the recurrent weight matrix. The second proposed archi-
tecture further extends the simplified structure to the input
weight matrix and the bias vector, which are constructed
in a deterministic fashion, using a single weight value and
signs from a decimal expansion of the irrational number π.
Overall, we were able to reduce the number of parameters
required to fully describe each weight matrix involved in the
reservoir state computation to just 1 number, leading to evident
efficiency advantages. Experiments performed on several real-
world time-series classification tasks highlighted that, despite
the introduced simplifications, minimal EuSNs are able to
achieve a comparable performance to base EuSNs, and a neat
improvement in comparison to standard ESNs.

In conclusion, the study presented in this paper showed
the potentialities of simple and efficient EuSN architectures,
aiming to pave the way for future exploitations of this new
paradigm, especially in embedded applications and implemen-
tations in neuromorphic hardware.
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