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Abstract—Human Activity Recognition is a field of research
where input data can take many forms. Each of the possible
input modalities describes human behaviour in a different way,
and each has its own strengths and weaknesses. We explore
the hypothesis that leveraging multiple modalities can lead to
better recognition. Since manual annotation of input data is
expensive and time-consuming, the emphasis is made on self-
supervised methods which can learn useful feature represen-
tations without any ground truth labels. We extend a num-
ber of recent contrastive self-supervised approaches for the
task of Human Activity Recognition, leveraging inertial and
skeleton data. Furthermore, we propose a flexible, general-
purpose framework for performing multimodal self-supervised
learning, named Contrastive Multiview Coding with Cross-Modal
Knowledge Mining (CMC-CMKM). This framework exploits
modality-specific knowledge in order to mitigate the limitations
of typical self-supervised frameworks. The extensive experiments
on two widely-used datasets demonstrate that the suggested
framework significantly outperforms contrastive unimodal and
multimodal baselines on different scenarios, including fully-
supervised fine-tuning, activity retrieval and semi-supervised
learning. Furthermore, it shows performance competitive even
compared to supervised methods.

Index Terms—Human Activity Recognition, self-supervised
learning, multimodal fusion

I. INTRODUCTION

Human Activity Recognition (HAR) is a joint area of
research in the fields of Human-Centered Computing and
Human-Computer Interaction, with practical applications in
many areas, such as smart homes [1], [2], health monitoring
[3], manufacturing automation [4] and sport analytics [5].

The modalities which can be used for HAR include but are
not limited to RGB-D streams, skeleton data, wearable sensor
data (or inertial data). Different techniques can be employed
for HAR depending on the type of the input data, but each
modality comes with its own challenges and limitations [6].
Multimodal HAR methods aim to mitigate the shortcomings
of unimodal approaches by fusing information extracted from
different sources of data [7]. With the breakthrough success of
deep learning in the past years, various architectures of deep
neural networks have shown impressive performance in mul-
timodal HAR. Nevertheless, they have a common significant
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Fig. 1: Illustrated example of a false negative pair in con-
trastive learning for multimodal HAR. Even though both
examples belong to the waving activity class, they are treated
as a negative pair, since annotations are not available.

drawback, namely, they require vast amounts of labeled data
for training deep models.

Given that labeled data is limited and hard to generate,
being able to train a HAR model on unlabeled data could
have real practical applications. This is the idea behind the
self-supervised learning (SSL) paradigm. Specifically, SSL
models aim to learn robust feature representations by solving
an auxiliary task which can be defined entirely in the unlabeled
setting. This process is also known as self-supervised pre-
training, and the auxiliary tasks are commonly named pre-
text tasks. Then, during the fine-tuning stage, the obtained
representations are used to train a shallow classification model
for the original (downstream) task using limited amounts of
annotated data.

SSL methods have been successfully applied to HAR us-
ing individual modalities, but the multimodal setting is still
insufficiently explored. Most recent self-supervised models
in visual or sensor domains rely on a contrastive learning
objective that aims to project the raw inputs into a feature
space, such that similar, or positive, sample pairs have close
representations, while semantically different, or negative, pairs
are spaced apart. In multimodal settings, the Contrastive
Multiview Coding (CMC) framework [8] forms positive pairs
between the different modalities of each data sample, and
negative pairs between different modalities of different sam-
ples. Since the data is unannotated, this implies that datapoints
from negative pairs might correspond to the same class label
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in the downstream task [9]. The presence of these false
negatives is one of the major drawbacks of self-supervised
contrastive learning approaches which rely on negative pairs.
We visualize this limitation for inertial and skeleton modalities
in Figure 1. Furthermore, as evidenced in [10], CMC uses only
inter-modality negatives, although employing intra-modality
negatives as well might have a positive impact on the intra-
modal alignment of features.

In this paper, we aim not only to adapt contrastive learning
to multimodal Human Activity Recognition using wearable
sensor and skeletal data but also mitigate the limitations of
the classical contrastive learning approaches by introducing a
Contrastive Multiview Coding with Cross-Modal Knowledge
Mining (CMC-CMKM) framework. The main contributions of
this work are listed as follows:

• We implement the contrastive multiview coding (CMC)
algorithm [8] to extract robust feature representations
from inertial and skeleton data in the SSL settings.
Moreover, we compare the designed models with the
supervised and unimodal SSL approaches, namely Sim-
CLR, built for each modality independently.

• We address the problem of false negative samples by
introducing cross-modal knowledge mining techniques.
First, we propose using feature representations learnt by
unimodal encoders to mine additional positive pairs for
the CMC framework, assuming they might otherwise
represent false negatives. Besides, we propose using intra-
modality positives and negatives to enhance the intra-
modal alignment of features.

• Extensive experiments have been carried out on two open-
source datasets containing inertial and skeleton modali-
ties, namely UTD-MHAD [11] and MMAct [12].

II. RELATED WORK

A. Unimodal Human Activity Recognition

The most widely-used approaches for performing human
activity recognition on inertial data often use CNNs [13] or
RNNs [14] or a combination of these types of networks [15].
Recent works have also explored more advanced architectures
based on attention mechanisms [16], [17], and deep metric
learning, which attempt to learn robust feature embeddings
relying on various contrastive loss functions, such as triplet
loss [18], in a supervised manner.

Another widely-used input modality for HAR is skeleton
data. A powerful technique for processing skeleton data is
co-occurrence feature learning, which transposes the data in
different ways as it is passed through a CNN, to capture both
temporal and spatial relations between joints [19]. Recurrent
neural networks have also been proposed as an alternative
architecture for classifying skeleton sequences [20]. More
recently, a great deal of attention has been given to graph
convolutional networks, which explore the intuition of rep-
resenting spatial and temporal structure of skeleton data as
graphs [21]–[23].

B. Multimodal Human Activity Recognition

While promising results have been obtained by leveraging
individual modalities for HAR, each modality has its own
limitations. Then, combining multiple modalities should lead
to more robust predictions in practical use cases. One of the
main challenges in performing multimodal HAR is combining
(or fusing) all of this different information in a coherent way,
in order to provide a single prediction.

To account for the significant difference between input
modalities, many multimodal HAR works apply input, feature
or decision fusion in various architectures comprising of
multiple backbone networks suitable for individual modalities
[24]–[26]. More sophisticated recent works propose end-to-
end architectures designed specifically for multimodal HAR.
For example, Wang et al. propose a multi-view generative
framework where GANs are used to generate the feature
encodings of one view, given another [27]. This allows their
framework to be used for inference even when one of the
original modalities is unavailable. In [28], multiple multi-head
attention mechanisms are used to encode and fuse features
from different modalities. Liu et al. [29] proposed a framework
which preserves the semantics of the original data by distilling
knowledge from a teacher network which is trained on inertial
data, to a student network which only uses RGB data.

C. Contrastive learning for Human Activity Recognition

Recent contrastive SSL methods rely on maximising the
latent similarity of augmented views originating from the
same data sample [30], [31]. The main issue associated with
contrastive learning frameworks is their reliance on negative
pairs. Besides the fact that contrastive pre-text tasks which
use negative pairs normally require large batch sizes, there
is also the issue of false negative pairs which may harm
learning. While some works proposed using positive pairs only
by introducing additional constraints to avoid trivial solutions
[32], [33], others suggested different approaches to mitigate
the impact of false negatives [9], [10], [34].

In the field of HAR, contrastive SSL has mainly been
applied on individual data sources, such as sensors [35],
[36], skeleton data [34] or visual data [37]. Despite the large
number of supervised techniques which have achieved good
performance on multimodal HAR, very few works, to the best
of our knowledge, have addressed this problem using self-
supervised learning. Akbari et al. [38] introduced the VATT
framework that uses modality-specific and modality-agnostic
Transformer encoders for multimodal self-supervised learning
using video, audio and text modalities.

In this paper, we adapt the Contrastive Multiview Coding
framework [8], previously used in Computer Vision appli-
cations, to the problem of multimodal HAR using inertial
and skeleton data. Moreover, inspired by ideas suggested in
[34] and [10], we introduce a novel cross-modal knowledge
mining technique that can be easily plugged into the the CMC
framework (CMC-CMKM). It aims to mitigate the impact of
false negative pairs by using knowledge from each modality
to guide the training process.



(a) CMC pre-text task (b) Fine-tuning routine

Fig. 2: Multimodal Contrastive Learning stages: pre-training (a) - inertial and skeleton data examples are passed through the
modality-specific encoders and projection heads to generate representations used in contrastive loss; fine-tuning (b) - the pre-
trained frozen encoders produce features for labeled data, these features are then passed through a mapping linear layer and
classifier to get activity labels.

III. METHODOLOGY

A. Problem Definition

Multimodal Human Activity Recognition can be formulated
as a classification problem where, given a set of inputs
{Xm |m ∈ M} from a set of modalities M , the objective
is to predict the label y ∈ Y associated with these inputs. The
remainder of this paper will focus on two input modalities,
namely inertial (or sensor) data and skeleton data.

Inertial signals are generally obtained from wearable devices
such as accelerometers, magnetometers or gyroscopes, and
have the shape of multivariate time series. At any timestamp
t, the input signal xt = [x1t , x

2
t , . . . , x

S
t ] ∈ RS consists of S

values obtained from the S available sensor channels. In matrix
form, an inertial data sample recorded over T timestamps is
denoted as Xi = [x1,x2, . . . ,xT ] ∈ RT×S .

Skeleton data is generally provided as a set of 2D or
3D coordinates tracked over time for a number of keypoints
located on the human body. For any skeleton sequence, we
denote T as the number of frames in the sequence, J as the
number of joints and C as the number of data channels (2 or
3). Then, a skeleton sequence Xs ∈ RT×J×C consists of T
frames where the skeleton data for each frame is described by
P t = [p1

t ,p
2
t , . . . ,p

J
t ] and pjt ∈ RC is the position of joint j

at frame t.

B. Contrastive Learning for Multimodal HAR

The first contribution of this paper is the adaptation of
the widely-used Contrastive Multiview Coding framework to
the problem of multimodal HAR. It is a contrastive self-
supervised learning method which can be used when two
or more representations per example are available for each
sample [8]. Specifically, the proposed adaptation of CMC
contrasts between the feature embeddings obtained from the
inertial and skeleton modalities.

Formally, for each sample {Xi
j ,X

s
j} in a training batch

of size N (where i and s refer to the inertial and skeleton
modalities, respectively), the input data for each modality
is augmented with a random modality-specific augmentation,
generating X̃

i

j = tij(X
i
j) and X̃

s

j = tsj(X
s
j). For CMC, the

purpose of data augmentation is simply to improve learning by

extending the size of the dataset. Then, two modality-specific
encoders fθi , fθs and projection heads gθi , gθs are used to gen-
erate projections zij = gθi(fθi(X̃

i

j)) and zsj = gθs(fθs(X̃
s

j)).
These representations are then treated as a positive pair. This
process is illustrated in Figure 2a. The negative pairs are
formed by all inter-modal combinations of projections which
do not originate from the same input instance. Thus, the loss
obtained by treating Xi

j as an anchor and enumerating over
the representations of the other samples Xs

k is:

li→sj = −log
δ(zij , z

s
j )∑N

k=1 δ(z
i
j , z

s
k)
, (1)

where δ(zij , z
s
j ) = exp(s(zij , z

s
j ))/τ and s(·) is the cosine

similarity function.
The total loss accumulated over the training batch is calcu-

lated as follows:

L =

N∑
j=1

(li→sj + ls→ij ) (2)

The inertial and skeleton encoders pre-trained within the
CMC framework are then frozen and used in the fine-tuning
stage as shown in Figure 2b. Specifically, we map inertial and
skeleton features to the same size using a single fusion linear
layer, including batch normalization and ReLU, concatenate
the outputs and pass the resulting feature vector through the
classification model.

To provide a comparison with CMC, we have also im-
plemented the SimCLR [31] framework for both modalities
independently. Specifically, the pre-text task is performed
separately for the inertial and skeleton encoders. In this
framework, two random sets of augmentations are applied to
each input instance to create positive pairs.

C. Cross-Modal Knowledge Mining

Contrastive multiview coding is a powerful framework for
performing multimodal SSL. However, the training procedure
and the formulation of the loss function still rely on a set of
underlying assumptions which might have a negative impact
on the learned representations. First, CMC relies heavily on



Fig. 3: CMC with Cross-modal knowledge mining (CMKM). First, additional encoders are pre-trained separately using SimCLR.
Second, the additional encoders are used to guide additional positive mining within the CMC framework. Besides, CMC-
CMKM uses intra-modalilty negatives. Triangles and circles indicate skeleton and inertial features, respectively, while each
color corresponds to one instance. For the orange instance, a number of positive and negative relationships are shown.

negative pairs in its contrastive objective, which makes it more
sensitive to batch size. Furthermore, as ground-truth labels
are unavailable during the pre-training process, there is no
way to prevent the negative pairs from occasionally consisting
of false negatives. Finally, as CMC only contrasts between
representations from different modalities, the encoders are not
explicitly trained to preserve intra-modal similarities.

First, inspired by [34], we upgrade the CMC framework
with a novel method for cross-modal and intra-modal positive
mining. We take advantage of the cross-modal setting and use
knowledge from one modality to guide the training process
for the other. Intuitively, if two samples are very similar in
one modality, there is a chance that the samples might come
from the same underlying action class. Applying this intuition
to our framework, we use similarities between representations
learnt by encoders pre-trained separately using SimCLR to
mine additional positives. Specifically, for each modality, we
use a pre-trained encoder to compute a similarity matrix
containing the pair-wise similarity values for each pair of
sample encodings in a batch. For each instance, we select
the top-K most similar samples, for a fixed K value, and
we include these mined samples in the positive sets of the
instance, in both modalities.

More formally, given a training batch of size N , and intra-
modality similarity matrices Si and Ss for the inertial and
skeleton modalities, respectively, we define the positive and
negative sets as follows:

For the inertial modality:

P ij = {zsj} ∪ {zsl ∈ TopK(Ssj)} ∪ {zil ∈ TopK(Sij)}

N i
j = {zsk | 0 ≤ k ≤ N} \ P ij

For the skeleton modality:

P sj = {zij} ∪ {zil ∈ TopK(Sij)} ∪ {zsl ∈ TopK(Ssj)}

Ns
j = {zik | 0 ≤ k ≤ N} \ P sj

We note that both positive sets contain embeddings origi-
nating from both modalities. The respective loss term for each
sample in the inertial modality becomes:

li→sj = −log

∑
zmk ∈P

i
j
δ(zij , z

m
k )∑

zmk ∈P
i
j∪Ni

j
δ(zij , z

m
k )

(3)

The loss term for the skeleton modality is defined according
to the same logic.

Additionally, we exploit intra-modality negatives to encour-
age the model to better align features inside each modality.
This is done by adding the similarities of intra-modality
negatives to the denominator of the loss term. Finally, the
proposed loss function for each sample can be formally written
as follows:

li→sj = −log

∑
zmk ∈P

i
j
δ(zij , z

m
k )∑

zmk ∈P
i
j∪Ni

j
δ(zij , z

m
k ) +

∑
zik∈N

s
j
δ(zij , z

i
k)

(4)
We also note that the addition of intra-modality negatives is

consistent with positive mining, as the mined samples are also
implicitly excluded from the intra-modality negative sets. An
illustrative example of the proposed improvements is shown
in Figure 3. The whole pre-training routine is summarized in
Algorithm 1.

D. Backbone Models

The proposed framework requires two encoders to extract
features from inertial and skeleton signals. For inertial data,
the encoder fθi is the transformer-like encoder described in the
CSSHAR framework [36]. The input data is passed through a
one-dimensional CNN with batch normalization and a ReLU
non-linearity, then through a positional encoding layer and
a transformer encoder consisting of multiple self-attention
blocks, as described in the original Transformer architecture
[39].



Algorithm 1: Model pre-training using cross-modal
knowledge mining

Data: unlabelled dataset {Xi
k,X

s
k}Nk=1, where N is

the number of training samples
Input: inertial encoders f̂θi , fθi and projections heads

ĝθi , gθi , skeleton encoders f̂θs , fθs and
projections heads ĝθs , gθs

# stage 1: unimodal pre-training
pre-train encoder f̂θi and projection head ĝθi using

SimCLR, then discard ĝθi and freeze f̂θi ;
pre-train encoder f̂θs and projection head ĝθs using

SimCLR, then discard ĝθs and freeze f̂θs ;

# stage 2: main multimodal pre-training
for each training batch {Xi

k,X
s
k}nk=1 do

obtain augmented samples {X̃i

k, X̃
s

k}nk=1;
compute projections {zik}nk=1, {zsk}nk=1;

# positive mining
for k ∈ {1, ..., n}, l ∈ {1, ..., n}, compute
Sik,l = s(f̂θi(X̃

i

k), f̂θi(X̃
i

l)),
Ssk,l = s(f̂θs(X̃

s

k), f̂θs(X̃
s

l ));
define sets P ij , N

i
j , P

s
j , N

s
j ;

# contrastive loss
for k ∈ {1, ..., n} do

compute li→sk , ls→ik according to Equation 4;
end
compute total loss L =

∑N
k=1(l

i→s
k + ls→ik );

update fθi , gθi , fθs , gθs to minimize L;
end

For the skeleton modality, we picked the lightweight convo-
lutional co-occurrence feature learning network [19]. It uses a
two-stream input (of positions and motions) and comprises of
a series of convolutional blocks, with ReLU non-linearities
and max-pooling applied to certain layers. A key element
of this architecture is a transpose block which is inserted
into the network between two intermediate layers, and which
rearranges the data such that the joints become the input
channels of subsequent convolutions. This allows the network
to learn features in a hierarchical manner, from point-level
features describing each joint, to co-occurrence features which
capture the relationship between the different joints in a
sequence.

IV. IMPLEMENTATION DETAILS

A. Datasets

In this paper, two open-source multimodal datasets were
used to evaluate the performance of the proposed approaches,
namely UTD-MHAD [11] and MMAct [12]. Skeleton and
inertial modalities were extracted and used from both datasets.
UTD-MHAD. The dataset contains data collected by 10
subjects performing 27 activities, 4 trials for each. The three-
dimensional joint coordinates were recorded with a Kinect

camera, while the inertial data was collected using one wear-
able device with accelerometer and gyroscope. We follow the
original evaluation protocol, using odd-numbered subjects for
training and even-numbered subjects for testing and reporting
test accuracy.
MMAct. The dataset consists of 36 activities performed by 20
subjects in different scenes. For skeleton data, we employ the
2D keypoints present in the challenge version of the dataset1.
The sensor data comes from a smartwatch (accelerometer) and
a smartphone (accelerometer, gyroscope, orientation) located
in the subject’s pocket. We follow the cross-subject and cross-
scene evaluation protocols. Specifically, for the former we
use the samples from the first 16 subjects for training and
the others for testing, while for the latter we reserve all
samples collected in the occlusion scene for testing, and train
on all subjects and all other scenes. As per the authors’
recommendation, we report the F1 score obtained on the test
set.

B. Hyperparameters

In this subsection, we describe the hyperparameters used
to pre-train and fine-tune the proposed models as well as
specific details regarding the architectures of the modality-
specific encoders. To optimize the parameters of the models,
we use the Adam optimizer with a learning rate of 0.001 which
is reduced twice when learning stagnates for more than 20
epochs.
Inertial encoder. The inertial encoder implemented in this
paper is adapted from CSSHAR [36]. Specifically, first, input
data is passed through 3 one-dimensional CNN blocks con-
sisting of [32, 64, 128] feature maps with kernel size 5. The
obtained feature maps are then used as an input for 2 self-
attention blocks with 2 heads each.
Skeleton encoder. The skeleton encoder adopted for the
experiments follows a hierarchical co-occurrence learning
architecture [19]. We implement the model as described in
the original paper, only replacing dropout layers with batch
normalization layers.
Initial pre-processing. We re-sample all input sequences to
50 timesteps, for both inertial and skeleton data. Additionally,
we normalise joint positions in all skeleton sequences based
on the first frame of each sequence, following a standard
normalisation procedure [24].
Pre-training. Prior to pre-training the models, we apply
a set of random augmentations for inertial and skeleton
modalities. The inertial augmentations, as proposed in [36],
applied to each input instance are sampled randomly (with
75% probability) from the set of augmentations {jittering,
scaling, rotation} for UTD and {jittering, scaling, permutation,
channel shuffle} for MMAct. For the skeleton modality, we use
{jittering, random resized crops, scaling, rotation, shearing}
on both datasets. Jittering is always applied, while the other
augmentations are applied with a 75% probability. We pre-
train with SimCLR for 300 epochs, and with CMC-CMKM

1challenge dataset: https://mmact19.github.io/challenge/

https://mmact19.github.io/challenge/


UTD-MHAD MMAct (F1-score)
top-K (Accuracy) x-subject x-scene

0 94.88 83.36 79.06
1 97.67 84.51 82.91
2 96.05 81.92 81.73
3 96.05 82.41 82.77
4 94.65 82.64 81.4
5 94.88 82.96 82.84

TABLE I: Ablation for different k in cross-modal positive
mining. The row with k = 0 refers to the model using intra-
modality negatives only.

for 100 epochs. For the SimCLR experiments on inertial data,
we use batch sizes of 128 and 64 and temperature values of
0.05 and 0.2 for UTD-MHAD and MMAct, respectively. For
skeleton SimCLR, we use batches of 32 and 128 samples, and
temperatures of 0.5 and 0.2. For the multimodal experiments
using CMC-CMKM, we used a batch size of 64 for UTD-
MHAD and 128 for MMAct, and temperature values of 0.1
for both datasets.
Fine-tuning. For the fine-tuning routine, which remains the
same for all multimodal approaches (Figure 2b), we imple-
ment modality-specific fusion layers (1 layer per modality),
including batch normalization and ReLU, that map inertial and
skeleton embeddings to the same size of 256. The obtained
features are then concatenated and passed through a simple
linear classifier with softmax activation. We train the modality
specific fusion layers and linear classifier for 100 epochs using
the labels of the downstream task.

V. EVALUATIONS

Our code has been made publicly available on GitHub2. All
experiments have been run on a single Nvidia Quadro RTX
5000 card. One epoch of CMC pre-training on MMAct takes
approximately 8-9 seconds, while one epoch of CMC-CMKM
pre-training takes 14-15 seconds. It is also worth mentioning
that CMC-CMKM pre-training requires models pre-trained
in the unimodal settings, with unimodal pre-training taking
approximately 15-17 seconds per epoch. Finally, fine-tuning
for both CMC and CMC-CMKM takes approximately 4-5
seconds per epoch.

A. Learning Feature Representations

In order to evaluate the representations learnt by the pro-
posed multimodal approaches, we perform linear evaluation on
top of the fused features extracted by the pre-trained modality-
specific encoders. Specifically, the whole annotated datasets
are used to fine-tune the fusion layer and linear classifier as
shown in Figure 2b.
Number of mined positives. First, we explore how the
number of mined positives k affects the performance of models
in the proposed cross-modal knowledge mining protocol. The
results of this experiment are presented in Table I. In Table
I, when K is set to 0, only the intra-modality negatives are
used. As can be seen from the table, the proposed method

2https://github.com/razzu/cmc-cmkm

UTD-MHAD MMAct (F1-score)
Modality Approach (Accuracy) x-subject x-scene
Inertial SimCLR 72.09 52.89 59.23
Inertial Supervised 76.74 61.22 78.86

Skeleton SimCLR 95.11 75.82 67.80
Skeleton Supervised 94.65 82.50 70.58

Multimodal CMC 96.04 82.05 79.97
Multimodal CMC-CMKM 97.67 84.51 82.91
Multimodal Supervised 97.21 84.05 87.36

TABLE II: Linear evaluation results: the highest results are
highlighted in bold, the second highest are underlined.

Pre-text x-subject x-scene
inertial skeleton inertial skeleton

Unimodal SimCLR 51.77 66.37 52.98 66.81
CMC 55.26 73.98 57.33 74.26

CMC-CMKM 56.66 75.77 57.44 75.32

TABLE III: Activity retrieval accuracy scores on MMAct.

shows optimal performance in all three scenarios, when K is
equal to 1, meaning that one extra positive is mined from each
modality.
Comparison to baselines. In Table II, we also compare
the performance of the proposed CMC-CMKM approach to
other SSL models, pre-trained in the unimodal setting with
SimCLR and in the multimodal setting with standard CMC.
Additionally, we include the performance of identical encoders
trained in a supervised end-to-end manner.

According to the obtained performance scores, it is clear
that multimodal methods, both SSL and supervised, are much
more powerful than the unimodal ones. Furthermore, SSL
approaches on multimodal data outperform all the unimodal
models trained in the supervised settings. Besides this, the in-
troduced CMC-CMKM approach outperforms CMC by about
2% in all three scenarios. Moreover, it shows performance
comparable to the multimodal supervised model on UTD-
MHAD and MMAct (cross-subject) and outperforms it by
0.5%. For the cross-scene scenario on MMAct, the CMC-
CMKM is the closest one to the supervised model.
Activity retrieval. We employ an activity retrieval scenario for
modality-specific encoders pre-trained in unimodal and mul-
timodal manner on MMAct. Namely, given an input skeleton
or inertial signal stream from the test set, we aim to find the
most similar example of the same modality in the training set
using learnt feature representations. In this scenario, instead
of the default fine-tuning routine, we use kNN (k = 1) to
predict activities in the test set using inertial and skeleton
encoders pre-trained with the contrastive SSL approaches. In
other words, we match each feature embedding from the test
set with the closest one from the training set using cosine
similarity. The accuracy scores for this scenario are shown in
Table III. According to the obtained results, the encoders pre-
trained in multimodal settings significantly outperform models
pre-trained in the unimodal manner. Moreover, the proposed
CMC-CMKM methods demonstrates better performance than
the original CMC indicating improved intra-modal feature
alignment for both modalities.
Qualitative analysis of features. In order to assess the
separation between classes visually, we project the feature
embeddings into a two-dimensional space using t-SNE [40]
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Fig. 4: Average values of performance metrics with 95% confidence intervals for the semi-supervised learning scenario.

and visualize them in Figure 5. For the multimodal approach,
we concatenate inertial and skeleton features before feeding
them to the t-SNE. From the obtained diagrams, it is clear
that features learnt on multimodal data contribute to better
class separation.

Fig. 5: Visualization of the learnt representations using t-SNE.

B. Semi-supervised Learning Scenario

In a more realistic scenario, vast amounts of labeled train-
ing data might not be available. In this case, one can still
use the unannotated dataset to pre-train models in the SSL
manner. For semi-supervised learning evaluation, we limit
the amount of labels available for training. Specifically, we
perform an experiment where only a random percentage
p ∈ {1%, 2%, 5%, 10%, 25%, 50%} of labels is present. In
this experiment, we compare the performance of the proposed
multimodal SSL models to the supervised and random models.
Namely, we pre-train CMC and CMC-CMKM using the whole
unannotated dataset and fine-tune the fusion linear layers and
the linear classifier with annotated data. Besides, we train a
supervised multimodal model with identical encoders using
these data. Finally, we also fine-tune the fusion network and
the linear classifier for randomly initialized encoders. For
each value of p the experiment is repeated 10 times and the
average performance values with the corresponding confidence
intervals are presented in Figure 4. We also include, as a
horizontal dashed line, the performance of a fully supervised
multimodal network (p=100%).

According to the obtained figures, the multimodal SSL ap-
proaches are much more robust, especially when very limited
amounts of annotated data are available. For both datasets, the

the SSL models outperform the identical supervised models
by more than 10% when less than 10% of data is annotated.
What is more, the proposed SSL models almost reach the
performance of the fully supervised model when more than
25% of labeled data is available.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we adopted a set of modality-specific network
architectures for encoding inertial and skeleton data and im-
plemented modern unimodal and multimodal self-supervised
frameworks, adapting them to the problem of HAR. Further-
more, we proposed a novel framework named CMC-CMKM,
which addresses issues related to the CMC pre-training by
injecting modality-specific knowledge into the learning pro-
cess. Extensive experiments have shown that the proposed
multimodal SSL frameworks outperform unimodal supervised
approaches and show satisfactory performance comparing to
multimodal fully-supervised models.

As for the future work, additional data modalities can be
used in combination with different backbone architectures.
Moreover, while the problems related to negative pairs have
been mitigated to some extent using CMC-CMKM framework,
there is an entire class of self-supervised approaches which
does not rely on negative pairs and it might be useful to explore
how they can be adapted to multimodal settings.
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