
Concurrent Credit Assignment for Data-efficient
Reinforcement Learning

Emmanuel Daucé
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Abstract—The capability to widely sample the state and
action spaces is a key ingredient toward building effective
reinforcement learning algorithms. The variational optimization
principles exposed in this paper emphasize the importance of
an occupancy model to synthesizes the general distribution of
the agent’s environmental states over which it can act (defining
a virtual “territory”). The occupancy model is the subject of
frequent updates as the exploration progresses and that new
states are undisclosed during the course of the training. By
making a uniform prior assumption, the resulting objective
expresses a balance between two concurrent tendencies, namely
the widening of the occupancy space and the maximization of
the rewards, reminding of the classical exploration/exploitation
trade-off. Implemented on an actor-critic off-policy on classic
continuous action benchmarks, it is shown to provide significant
increase in the sampling efficacy, that is reflected in a reduced
training time and higher returns, in both the dense and the sparse
rewards cases.

I. PROBLEM STATEMENT

Online learning in the real world implies dealing with very
large, potentially unlimited environments, over which the data
to collect is seemingly infinite. Efficient exploration is thus
one of the key aspects of open-ended learning [1], when no
final model of the environment can feasibly be expected to
be engineered or trained. On the one hand, having access to
unlimited data is very beneficial for the training of complex
multi-layered perceptrons, for they are known to rely on large
datasets to improve their performance. On the other hand, the
circular dependence between the learning algorithm and the data
on which it operates renders the learning very tricky, at high
risk of data overfitting and trapping in local optima. The open-
ended learning problem is generally addressed through the lens
of the reinforcement learning framework [2], where rewards
are collected during the interaction, and the selection of action
is fit so as to maximize the total number of positive rewards,
and prevent the encounter of negative ones. Fitting behaviour to
rewards is however at the risk of ignoring important data from
the rest of the environment, where putatively more rewarding
regions may be neglected. The agreement of reward-seeking
(that is exploitation) with data collecting (that is exploration),
is still one of the fundamental issues of modern artificial
intelligence.
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An important effort has recently been put on reframing the
reinforcement learning setup into a more general probabilistic
inference framework, allowing to link rewards seeking and
data modelling under a single perspective [3], [4], [5], [6], [7].
This greater focus over the data collection problem conducts
to the development of learning algorithms containing some
forms of exploration bonuses, including “curiosity” drives
[8], [9], intrinsic rewards [10] and pseudo-counts [11], [12].
However, if optimizing on rewards alone comes with a well-
defined Bellman optimum, there is still no consensus about the
objective followed when optimizing both the rewards and the
data collection [13]. The data collection problem is effectively
shadowed by the reward maximization objective, and is still
considered as a side component of the learning procedure.
An important body of work has recently been devoted to
addressing the data collection problem as such, with the notable
design of the MaxEnt algorithm [14] and State Marginal
Matching [15] that aim at fitting the distribution of the states
encountered to a uniform distribution, in the absence of definite
rewards. This is here referred as a MaxEnt-on-state principle
(or MaxEnt to be short), not to be confounded with the MaxEnt-
on-actions principle implemented in the soft actor critic [5]
for instance. Following a MaxEnt objective means optimizing
the policy so as the states visited are maximally variable,
ideally following a uniform distribution. We develop in the
following a possible generalization of the MaxEnt principle,
that brings a considerable simplification in the expression
of the evidence lower bound (ELBO) with regards with the
existing literature [3], [6], [7]. In contrast to pure MaxEnt, our
approach provides a way to combine the MaxEnt objective with
a reward maximization objective, under a variational inference
perspective. This gives ways toward optimizing the policy with
respect to the distribution of the data, and provides a principled
justification to the use of intrinsic rewards in the design of
reinforcement learning algorithms.

II. PRINCIPLES

A. Density matching RL

Consider an agent acting in a fully observable environment.
The state of the environment is given by the observation variable
(or vector) s ∈ S, with S the set of all possible states. The
agent exerts a control on the environment through its actuators.
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Let a ∈ A a command sent to the actuators, with A the set
of all motor commands. The interaction of the agent with its
environment is organized as follows: at each time step t, a
data sample st ∈ S is observed, and an action at is emitted.
It is supposed here, for simplicity, that the dynamics of the
environment is Markovian, i.e. the state observed at time t
only depends on the previous observation st−1 and previous
action at−1. Moreover, the environment provides at each time
step a scalar value called the reward, i.e. rt ∈ R.

The decision of which action to choose relies on a policy
π, that maps the current observation to the action space. For
generality, we consider the policy as a conditional probability
π(A = a|S = s) (or π(a|s) in short). The capital letters
S and A are then random variables on S and A, and the
lower cases s and a are some specific realizations of the
corresponding random variables. The series of states visited
during the interaction of the agent with its environment forms
a sequence τ = (s0, ..., st, ...), with s0 the initial observation.
During this visit, a certain number of rewards are collected,
and R(τ) is the total (discounted) return obtained over τ , i.e.
R(τ) =

∑
t γ

trt, with γ ∈ [0, 1[ a discounting factor that sums
up the rewards up to an “horizon” of the order of 1

1−γ .
The learning objective we address in this paper is the the

“density matching” (or probability matching) objective [16].
A reward should indicate in which proportion the different
states (and actions) should be visited (and selected) during
trials (with the idea that the states providing high return should
be visited more often than the ones providing low returns).
Solving the reinforcement learning problem then means to
match the external cue to an actual distribution of visit over
states and actions, where a differential in rewards only indicates
a difference in the number of visits, allowing to seek rewards in
a flexible way (so it is also referred as to “soft” reinforcement
learning [5]). This idea stems back from empirical observations
on human and animal behaviors, and was coined the “matching
law” in the operant conditioning literature [17], [13].

In short, the density matching framework considers the
reinforcement learning in the terms a control problem. Let
s be the current observation, a the action chosen, τ the issuing
trajectory. Consider each trajectory τ as the realization of
a certain conditional distribution qπ(τ |s, a), that depends on
the current policy π. Note Qπ(s, a) = Eτ∼qπ(τ |s,a)R(τ) the
expected discounted sum of rewards collected after (s, a). The
function Q, that maps S×A to R, is known as the action-value
or “critic”. In our specific probabilistic setup, Qπ(s, a) is more-
over interpreted as a log probability π̂(a|s) ∝ exp(Qπ(s, a))
that reflects the frequency at which a current action a should be
selected in the context s. The general objective of the density
matching optimization is:

min
π∈Π

EsDKL(π(.|s)||π̂(.|s))

≡ min
π∈Π

Es,a,τ log π(a|s)−R(τ) (1)

The equivalence of the first and the second objective comes
from the specific probabilistic design of π̂(a|s). Importantly,

this objective does not coincide with the mainstream Bellman
objective [18], that is to find:

max
π∈Π

Es,a,τR(τ) (2)

Both are however strongly consistent, referred as the “soft”
versus ”hard” formulations of the problem. The main difference
is that the soft optimization is expected promote multimodal
responses and allow for a better exploration of the different
options at stake [5]. Moreover, the optimum of the soft
optimization problem is generally a non-deterministic policy.

B. Sample efficacy and the exploration objective

One important component of the soft optimization problem
(eq. 1) is the maximum entropy maxπ∈Π−Es,a log π(a|s) on
actions that conduct to select more varied action samples
during the optimization. Specifically, in the absence of rewards,
it consists to select the actions uniformly. One can remark,
however [19], that such a uniform selection on actions is not
equivalent to a uniform exploration of the possible states of the
environment. Indeed, in the absence of rewards, the maximal
sample efficacy is attained when the trajectories uniformly
cover the state space. This objective is known as the maximum
entropy on states objective [14], [15].

Take any trajectory τ sampled from the controlled environ-
ment and select any s ∈ τ , then the maximum entropy objective
assumes that the distribution of s is uniform over the state
space. This objective distribution is noted p∗(s). Take now any
s′ ∈ τ and and ρπ(s′) the marginal over all τ ’s. The maximum
entropy on states objective can now be formally defined as:
maxπ∈Π−Es′∼ρπ(s′) log ρπ(s′). More generally, taking p∗(s)
a uniform distribution as a baseline, the maximum entropy
objective can be framed as a density matching objective like:

max
π∈Π

Es′ − log ρπ(s′) + log p∗(s′) (3)

This objective is known as the State Marginal Matching (SMM)
in the literature [15]. The SMM objective is not supposed
equal the policy matching (eq. 1) or even the Bellman (eq. 2)
objectives. Following this exploration objective requires the
use of a model of the controlled system. For instance, one may
build a data model ρ̃π from sampling states from the visited
trajectories, from an explicit occurrence count in the discrete
case, or with a parametric or non-parametric estimator. The
density of visits over the state space reflects more generally
the state domain over which the data is collected, that is used
in return to implement the control policy.

It is classical, in the literature, to interpret the SMM objective
(3) as an intrinsic reward attached to the state s′, that can
take the form of a state count in the discrete case [11], or a
non-parametric model in the continuous case [15]. In the last
case, the total reward used in the optimization is r(s, a, s′) ≡
r(s, a) − log ρπ(s′), that is the sum of an extrinsic and an
intrinsic reward, that reflects the “surprise” of visiting s′ after
(s, a). This construction needs to be considered cautiously,
for this sort of intrinsic reward is non stationary with regards
to policy updates. On contrary, each update of the policy



modifies in return the marginal distribution ρπ, which may
conduct to instabilities and cycles in the optimization process.
In consequence, the intrinsic rewards are implemented in the
form of an “exploration bonus”, that is supposed to vanish
during the course of the training, without clear convergence
guarantees.

C. Occupancy models

Let us first consider in more detail the data model ρπ , con-
structed from trajectory samples of the controlled environment.
This model reflects a complex process of data generation that
starts with observing a state s, choosing an action a, and then
observing both a trajectory τ and a return R(τ). The state data
{..., s′, ...} is collected through the different trajectories visited
during this process. Let ρπ be the actual trajectory distribution,
as it is sampled from the environment, and ρ̃π a statistical
model constructed from observing the data. Both distributions
are non stationary, i.e. vary according to the policy updates. We
thus need a way to express more precisely this dependency, and
then include the changes of ρ in a more general optimization
objective.

1) State occupancy: Dating back from [20], an occupancy
distribution is a distribution on states, designed so as to match
with the distribution measured over the trajectories of the MDP.
Importantly, it ignores the time order at which the different
states are visited. For instance, following the definitions of
[26], [27], [14], a γ-absorbing state occupancy of a Markov
Decision process (with a policy π) is the (discounted) density
of visit of the states of the environment when starting from
the initial distribution p(S0). It is defined, as:

ρπ(s) = (1− γ)p0(s) + γ
∑
s′,a′

p(s|s′, a′)π(a′|s′)ρπ(s′) (4)

so that any policy π settled on an MDP defines an occupancy
on the states of that MDP.

2) Conditional occupancy: Following the same reasoning,
let ρπ(S′|s, a) the conditional occupancy be defined recursively,
as the occupancy on the states s′ that follow (s, a) in the
iteration of the dynamics. This conditional distribution provides
a description of the “future” of s, that is the distribution of
states that will most probably follow s. It can be seen as an
instance of the “successor” representation of states initially
proposed by [20], with s′ being the state measured “further
away in time”.

3) Total return estimator: One can then construct an
estimator of the total discounted return (that is : the discounted
sum of rewards observed over the whole trajectory) from
observing a single state sample over this trajectory. Consider
for instance the series of rewards encountered when following
τ . It comes that ∀s′ ∈ τ , R̃(s′) = Ea′∼π(A|s′)

r(s′,a′)
1−γ is an

estimator of R(τ), so that:

Q(st, at) = Eτ :st,at∈τ
∑
t′>t

γ(t′−t)rt′

≈ Es′∼ρπ(S′|st,at)
a′∼π(A|s′)

∑
t′>t

γ(t′−t)r(s′, a′)

= Es′∼ρπ(S′|st,at)
a′∼π(A|s′)

r(s′, a′)

1− γ

, Es′∼ρπ(S′|st,at)R̃(s′) (5)

D. Evidence Lower Bound

We now come to the main argument: in the general case, the
sample efficacy and the reward maximization objectives are
considered separately from each other. We assume here that
both optimizations need to be done concurrently in order to
attain a final control policy that explicitly implements a trade-
off between the exploration and the exploitation objectives. We
thus develop in the following an original optimization objective
that implements this concurrent optimization in a principled
way.

The main probabilistic model to consider for the optimization
is the policy, πθ(.|s), that is a conditional probability, i.e. a
stochastic mapping from the observation space to the action
space. The parameters of the model are optimized according
to the loss function considered, e.g. from stochastic gradient
descent if the mapping is differentiable. Let θ be the parameters
of the policy. Those parameters can be seen as the realization
of a policy model θ ∼ p(Θ). Examples of policy parameters
are the look-up tables θ = {Q(s, a)}s,a in the discrete case.
The intervention of πθ in the data generation process provokes
a dependence, so that ρπ now writes ρ(.|θ) and ρ̃π writes
ρ̃(.|θ).

The policy model p(Θ) is unknown, but it can be approached
by the following approximate evidence lower bound (ELBO):

log p(θ) ≥ Es′∼ρ(.|θ) log p(θ|s′)− log ρ̃(s′|θ) + log p∗(s′)
(6)

with p(θ|s′) being the likelihood of the parameters of the policy
an p∗(s′) being a prior distribution on the trajectories of the
controlled environment. Finding the most likely parameters
of the policy now relies on a dual objective, that is both
maximizing the likelihood of the parameters and maximizing
the fitting of the data with the prior. The two objectives
are connected by a common sampling ρ(.|θ), and the non-
stationarity of the data distribution becomes an explicit result
of the optimization on ρ.

This ELBO synthesizes the main elements of this concurrent
optimization process. On the one hand, the likelihood of
the parameters is involved, directly or indirectly, by the
measure of the rewards obtained over the different trajectory
samples, reflecting the reward maximization objective (Bellman
objective). On the other hand, the matching of the posterior
ρ̃ with a prior p∗ is consistent with the pursuit of a specific
control objective. This provides a way, for instance, to inject
the MaxEnt principle in the equation (that is maximizing the



sampling efficacy), in which case p∗ is a uniform distribution
on the trajectories, and would play the same role than the
Gaussian prior in variational auto-encoders [21]. This ELBO is
approximate because the true distribution ρπ that is the actual
sampling of s′ under π is different from the data model ρ̃ that
is constructed from a mere observation of those samples. The
accuracy of the ELBO is thus dependent on the quality of the
model and the diversity of the data actually sampled from π.

The idea to express the reinforcement learning problems
in terms of variational optimization is not new, and has been
the subject of an abundant literature [3], [4], [5], [6], [7], in
which the learner aims at predicting a latent objective from its
interactions with the environment. One recent example is for
instance inferring a “task” (or even a “sub-task”) from non-
rewarded interactions with the environment, in a pre-training
phase [22]. Another body of work considers instead an objective
of maximizing a (behavioral) mutual information between a
policy and a model [23], [24] etc. A neat difference here is
the fact that s′ (the “data”), that takes the place of the latent
variable, is not inferred from θ, but merely sampled from
the environment (and the policy). This conducts to the fact
that our variational optimization setup is non-inferential, on
contrary to the mainstream variational inference. This sort of
non-inferential/variational presentation of the training objective
can be found, to some extent, in the stochastic control literature
[4].

E. Implementation

We have seen that the optimization should rely on two
main components, namely (i) an occupancy model ρ̃ and (ii) a
parametric policy πθ, both being distributions of probabilities,
with the data model being optimized from observing the data
samples. The data consists of all the past observations, that can
be seen as a set of trajectories D = {τ, τ ′, τ ′′, ...}, and the state
occupancy model ρ̃D is a distribution of probability, that can
be constructed explicitly from the transition probabilities, or
estimated directly from the data. The empirical occupancy
distribution ρ̃D synthesizes the general distribution of the
agent’s environmental states over which it can act (defining
a virtual “territory”). The occupancy model is the subject of
frequent updates as the exploration progresses and that new
states are undisclosed during the course of the training.

With a parametric policy and a state occupancy model in
hand, one can now implement a stochastic gradient descent
over the parameters of the policy. Consider first the look-up
table case where S and A are discrete and θ = {Q(s, a)}s,a
is a table of parameters. Consider each observation (s, a) as a
sample. From each (s, a), one can record a trajectory τ , read
s′ ∈ τ and obtain a return R̃(s′), making a total data sample
(s, a, s′). Assume now that:

• πθ(a|s) ∝ exp(βQ(s, a)) (Softmax decision with β the
“inverse temperature”), with Q(s, a) the critic, and assume
θ(s, a) = Q(s, a).

• The likelihood of θ, that is sampled independently
at each (s, a), is supposed to follow a normal law

Es,a,s′p(θ|s′) = Es,a,s′N (θ(s, a)|R̃(s′), 1
λ ) with λ a

fixed “precision” parameter.
Then, each sample (s, a, s′) provides an ELBO sample:

ELBO = Es,a,s′ELBO(s, a, s′)

≡ Es,a,s′ −
λ

2
(Q(s, a)− R̃(s′))2 − log ρ̃D(s′) + log p∗(s′)

(7)

F. Optimization
Then a policy gradient ascent [25] on Q can be implemented

over these samples. Assuming p∗(s) a constant for simplicity,
the policy gradient measured at (s, a) is:

∇QEs,a,s′ELBO(s, a, s′) ≡ Es,a,s′λ(R̃(s′)−Q(s, a))

+
1

β
∇βQ(s,.) log πθ(a|s)ELBO(s, a, s′) (8)

The gradient estimator interestingly combines two terms
that reflect the two main (and concurrent) influences of the
ELBO objective. The first term, that is the gradient of the
likelihood with regards to θ, is the classical “reward prediction
error” update of the action-value found in the majority of
RL algorithms. The second term interestingly reflects an
“amortized” policy gradient, that conducts to treat − log ρ̃(s′)
as an intrinsic reward, with a correction term that moderates
the update for it may not deviate too much from the current
estimate. Finally, in the case of the classic Monte Carlo
sampling of trajectories, this conducts to repeat the following
steps:

1) run an experiment with π
2) add the trajectory τ to the dataset D
3) take some samples s, a, s′ ∈ τ , and do policy gradient

ascent on ELBO(s, a, s′)
4) (periodically) update ρ̃D with the new data

G. Online setup and Bellman recurrence
In the online case, a last element of implementation is con-

sidering the Bellman recurrence [33], that rests on estimating
the cumulative R(τ) with the sum of the current reward rt
plus its best (γ-discounted) proximal estimate. In our case, two
separate estimators QR and QS need to be set up, with QR
estimating the total return and QS estimating −Es′ log ρ̃(s′)
over the full trajectory, with:

QR(st, at) ' r(st, at) + γQR(st+1, at+1) (9)
QS(st, at) ' −(1− γ) log ρ̃D(st+1) + γQS(st+1, at+1)

(10)

ELBO(st, at) ' −
λ

2
(Q(st, at)−QR(st, at))

2 +QS(st, at)

(11)

Then Es′R̃(s′) is ‘replaced” by QR(s, a) and Es′−log ρ̃D(s′) is
“replaced” by QS(s, a) in the ELBO formulas. Each state-action
value function implements a distinct objective, with QR(s, a)
heading toward maximizing the reward, and QS(s, a) heading
toward the maximization of the entropy of the occupancy. Each
objective being followed concurrently, our method was named
the “Concurrent Credit Assignment” (CCA) method.



III. SIMPLE EXAMPLE

Let us now consider a simple setup that illustrates the method.
Let the environment be a grid world with 18 discrete states
organized in two rooms, with a single transition allowing to
pass from room A to room B (see figure 1a). Let A a control
space accounting for a single degree of freedom (here a discrete
set of actions i.e. A = {E,S,W,N}). Importantly, the agent
always starts in the upper left corner of room A, and can only
execute 7 moves. The final state s′ = s7 attained after the 7
moves reflects, to some point, the result, or the outcome, of
the control. Moreover, a reward of 1 is given when the agent
reaches the lower right corner, and 0 otherwise. By construction,
when acting at random under this 7-steps path length constraint,
the chance to end-up in the first room is significantly higher
than the chance to end up in the second room. The environment
is indeed constructed in such a way that some final states (for
instance upper right and lower right corners) are very unlikely
to be reached when acting in a purely random manner.

The agent has to train a policy π and an occupancy model
ρ̃(s′), with s′ the final state obtained at the end of the control.
There are two task at hand. A first task is a simple exploration
task and the objective is to uniformly sample the final state
space. A second task consists in maximizing the total rewards
obtained. From a practical standpoint, the training requires to
find the parameters θ = {Qθ(s, a)}s∈S,a∈A. Let p∗(s′) = 1

|S|
be a constant with |S| the cardinal of S . Let ns′ be the number
of times that the final state s′ was reached from the beginning
of the learning session, and ρ̃(s′) = ns′∑

u′ nu′
the empirical

density of visit. In this specific implementation, the occupancy
model is updated in a “leaky” way, with a leak parameter η, in
order to adapt faster to the changes occurring in the distribution
(see algorithm 1). The general idea is to adapt the occupancy
model a little more “faster” than the policy, for the policy
gradient to follow the distribution changes as they are recorded
in the model. The update procedure is provided in algorithm
1.

When the reward is not considered (that is λ = 0), the ELBO
drive contributes to progressively “expand” the visiting territory,
with any peripheral state attained increasing the probability
to reach its further neighbors, recursively, up to the final
limit of the state space. In small environment like the one
proposed here, the limit is rapidly attained and an approximate
uniform alternation of visits is observed over the full state
space. The final distribution of states is compared in figure 1c
between the initial phase and the permanent regime attained
after approximately 1000 trials. In the starting phase, a strong
bias in favor of the first room is observed (states 1-3;7-9;13-15,
see figure 1d). In contrast, a time consistent uniform pattern of
visit is observed in the permanent regime, that illustrates the
capability of the CCA method to construct policies specifically
devoted to the wide exploration of the environment (figure 1e).

Taking λ > 0 implies that extrinsic rewards are now
considered in the update formula. For illustrative purpose,
a high β value (β = 100) is taken here, in order to render the
agent maximally sensitive to these extrinsic rewards, allowing
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Figure 1. Task 1 : reward-agnostic setting (λ = 0) a. A two-rooms
environment. Starting from the upper-left corner, the agent has to execute a
sequence of 7 elementary actions a1, ..., a7, each elementary action being in
(E,S,W,N). The reward is equal to 1 if the final state is the lower-right corner
(s′ = 18), and 0 otherwise. b. Environment states. c. Series of final states
attained during the first 1250 trials. d. Empirical distribution of final states
for #trial < 250 (warm-up phase). d. Empirical distribution of final states for
t > 1000 (permanent regime). Discrete CCA algorithm. α = 0.3, β = 1,
η = 0.005.

Algorithm 1 Discrete Concurrent Credit Assignment
Require: α, β, η, λ
Q← ~0|S|×|A|
ρ← Uniform
while number of trials not exceeded do

sample τ1:n ∼ π
read sn, R(sn)
RS = − log ρ̃D(sn)
ρ← (1− η)ρ+ η1S=sn

for i ∈ 1..n− 1 do
QR(si, ai)← (1− α)QR(si, ai) + αR(sn)
QS(si, ai)← (1− α)QS(si, ai) + αRS
Q(si, ai)← (1− αλ)Q(si, ai) + αλQR(si, ai)
Q(si, ai)← Q(si, ai) + α

β ELBO(si, ai)
for a ∈ A do
Q(si, a)← Q(si, a)− απθ(a|si)

β ELBO(si, ai)
end for

end for
end while

to make a comparison with state-of-the art off-policy/epsilon
greedy method (figure 2). With that setting, any reward
encountered tends to dominate the initial exploration drive,
providing a firm tendency toward an reward-seeking policy. In
contrast, a pure random/ε-greedy exploration method would
only reach the rewarding state “by chance”, at variable delay.
This illustrates the capability of our method to both provide
an efficient exploration method when the rewards are sparse,
and follow an efficient reward-seeking strategy when positive
rewards are obtained.
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Figure 2. Task 2 : Methods comparison (CCA (λ > 0) and Q-learning).
A reward r = 1 is provided when the agent reaches the lower-right corner
(s′ = 18). a. Final states attained during the first 5000 trials, CCA method. b.
Final states attained during the first 5000 trials, Q-learning method. c. The CCA
algorithm is compared with Q-learning epsilon-greedy update. Cumulative sum
of rewards over 5000 trials, on 10 training sessions each. α = 0.03, β = 100,
λ = 0.1, η = 0.005, ε = 0.1.

IV. CONTINUOUS CONTROL

Then we scale up the model towards more challenging tasks,
with continuous states and actions. Our method is tested over
several benchmark environments, as provided by the “Gym”
suite [30]. Our implementation is moreover drawn over the
“spinning-up” open source framework [31], allowing for a direct
comparison with the state of the art (here the soft actor-critic
method (SAC) [5], proximal policy optimization (PPO) [28] and
TD3 [29]). The optimization is carried out on a parameterized
policy πθ (said the “actor”) and two parameterized action value
function QR and QELBO (said the concurrent “critics”). Both
the actor and the critics consist of multi-layered perceptrons,
containing many parameters and organized in layered weights,
over which a gradient descent is operated on losses expressed
as negative objectives.

Assuming an off-policy approach, we consider a replay
buffer containing many samples of states, actions and re-
wards as observed from interacting with the environment
B = {..., (s, a, r, s′, a′), ...}. The estimation of ρπ is obtained
from a non-parametric estimator, with the help of a kernel-
based density estimation method [32]. The log-occupancy is
calculated on-the-fly from a sample of the replay buffer at
each start of an update sequence. This sample remains quite
limited in number (about 1000) in order to avoid unnecessary
computer overload.

Assume two parameterize Q-function, i.e. QR the cumulative
rewards and QELBO implementing the ELBO. The policy
parameters follow both a matching objective QR − 1

β log πθ,
and a policy gradient over QELBO. This sketch of idea implies
the use Mean-Square Bellman Errors (MSBE) to update the
Q-functions, i.e. considering (s, a, r, s′, a′) a sample,

LR =
λ

2
(QR(s, a)− r − γQR(s

′, a′))2 (12)

LELBO =
1

2
(QELBO(s, a)−

(1− γ)
β

(LR + log ρD(s′))

− γQELBO(s
′, a′))2 (13)

Algorithm 2 Actor-Critic Concurrent Credit Assignment
Require: πθ (actor), QR, QELBO (critic), B (replay buffer), β, γ, λ

(hyperparameters)
while number of trials not exceeded do

initialize the environment
while trial not terminated do

observe s
choose a ∼ πθ(A|s)
read s′, r
store (s, a, r, s′) in B

end while
if B is full enough then

randomly sample a batch of (next) states {s′, ...} from B.
estimate ρ̃ with a nonparametric method.
while number of batch updates not exceeded do

randomly sample a batch of transitions
b = {(s, a, r, s′), ...} from B.
for all (s, a, r, s′) ∈ b do

sample a′ ∼ πθ(A|s′)
calculate LR(s, a, r, s

′) and LELBO(s, a, r, s
′)

end for
update the critics QR and QELBO by gradient descent over
the batch.
for all s ∈ b do

sample a ∼ πθ(A|s)
calculate Lact = −QR(s, a) + 1

β
log πθ(a|s) −

QELBO(s, a)
end for
update the actor πθ by gradient descent over the batch.

end while
end if

end while

The main lines of our implementation are provided in
algorithm 2, that fits the pursuit of the ELBO objective in an
actor-critic setup. It relies on a wide use replay buffers [34] to
regularize the gradient over batches that mix the samples from
many different trials. In order to reach state-of-the art efficacy,
many algorithmic improvements are included in supplement to
the baseline algorithm1, and omitted here for conciseness. This
concerns in particular the use of target Q-networks updated at
slower pace [34], and the clipped double-Q trick [29].

The different setups are compared on the basis of the returns
collected during training. This is expressed as average return
(that is the total sum of rewards gathered at the end of an
episode), the average reward (total rewards collected divided
by the episode length) and cumulative rewards (the total sum of
rewards collected at a given stage of the training). The width of
the occupancy over the state space is not compared here, for the
other frameworks are not designed to optimize it. The different
environments differ in scale, difficulty and rewards density. All
continuous problems proposed in the library provide dense
rewards, that are a compound of negatively and positively
weighted extrinsic informations, like the energy consumption,
the speed of the agent or its elevation. The problems separate
in two broad categories. A first class of problems provides only
dense rewards. A second class of problems have, in addition,
a supplementary sparse reward taking the form of an “end-of-

1code freely available at https://github.com/edauce/IJCNN-CCA.
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Figure 3. Methods comparison. Average episode rewards, average rewards
and cumulative rewards are compared in the course of learning for the CCA
(ours), SAC, PPO and TD3 frameworks, on 5 continuous state/continuous
control problems. Row 1: Gym Continuous Mountain Car problem. β =
10, λ = 0.1, γ = 0.99, 2 hidden layers with N = 32 neurons. 5 seeds.
Row 2: Gym/MuJoCo Swimmer problem. β = 30, λ = 0.3, γ = 0.995, 2
hidden layers with N = 32 neurons. 5 seeds. Row 3: Gym/Box2D Bipedal
Walker. β = 30, λ = 1, γ = 0.99, 2 hidden layers with N = 64 neurons.
5 seeds. Row 4: Gym/MuJoCo Ant. β = 10, λ = 0.3, γ = 0.99, 2 hidden
layers with N = 256 neurons. 5 seeds. Row 5: Gym/MuJoCo Humanoid.
β = 10, λ = 3, γ = 0.98, 2 hidden layers with N = 256 neurons. 1 seed.

episode” bonus or penalty. In that case, the dense rewards may
(or may not) contain relevant information with regards to the
task at hand.

From that prospect, the most adverse problem is the
Continuous Mountain Car problem (first row of figure 3). Here
the dense rewards only rely on a (negative) energy consumption,
at the exception of a +100 end-of-episode bonus obtained at the
hilltop. This inevitably conducts baseline algorithms to remain
stucked at the bottom of the hill, where the energy consumption
is low. Only our concurrent approach, that contains an explicit
incentive for widening the occupancy of the state space, has the
capability to reach the most rewarding states, finally providing
a policy that solves the task.

The swimmer task (second row) is concerned with the
development of a locomotion pattern that is swimming in
a liquid medium. The reward is only the speed at which an eel-
like agent manage to swim over the place (that is coordinating
segments in a periodic manner). This tasks contain a local
optimum that corresponds to a rower pattern that coordinates
the extremal segments, and a global optimum that corresponds
to a classic swimming ripple from the head toward the tail.
Despite its apparent simplicity, only an extensive exploration
such as the one provided by our approach allows to reach the
optimum.

The Bipedal Walker (third row of figure 3) is a problem that
combines dense and sparse rewards. A negative (-100) reward
is undergone when the agent falls down, and a positive (+100)
reward is gained when the agent reaches the end of the track.
The continual dense rewards provide an incentive for staying
upright and increase the velocity. This task reveals more tricky
to train than expected, and contains enough variability for the
agent to develop various gaits and locomotion patterns over
the course of learning. Like in the Mountain car, the problem
is about reaching a final (distal) end-of-path objective, from
which a strong bonus allows to ”freeze” the behavior in a
favorable locomotion pattern. Our approach shows here a clear
advantage over the SAC and the TD3, and close-call with the
PPO. . When comparing with the SAC, the difference in the
two methods is principally the time at which a valid locomotion
pattern is attained, that is about 2×105 interactions in the first
case, and more than 106 in the second.

The fourth task, known as the ”ant” aims at controlling
the locomotion of a 4-legged agent. The state space contains
a detailed account of joint angle and torque moments plus
contact sensors in a 111 dimension observation vector [35],
but the control space is more reduced (8 DOFs). Here again
the displacement speed is the main incentive, with a survival
bonus, and an energy cost penalty. All 3 actor critic frameworks
(namely CCA, SAC and CCA) are here capable to reach a
decent locomotion pattern in about 400000 iterations of the
dynamics, which can be considered data efficient here. No
clear advantage is found here for our approach.

Last, the humanoid task shows a large number of degrees of
freedom, and the unbounded number of possible locomotion
patterns often result in strange-looking final gaits. Only the SAC
and the CCA methods allow here to reach a valid locomotion
patterns in the limited number of steps considered. When
looking in detail, the close-call advantage observed for the
SAC algorithm on the average episode return is reversed when
considering the average return. This apparent contradiction is
explained when looking at the detailed behavior. Here, the
high-speed risky locomotion patterns developed in the CCA
framework result in a higher number of early failures. This is
not related to a risk-seeking incentive, but is rather explained
by a tendency to maintain a high diversity of behavior while
pursuing the reward-guided objective, which reveals to be more
risky when the balance of the body needs to be maintained
over time.



V. DISCUSSION

This work participates to a general trend toward the devel-
opment of data models in reinforcement learning, that provide
ways to help the agent toward better exploring the world. This
was still largely exploited in a large family of curiosity-driven
and maximum-entropy algorithms. Our contribution here is to
provide a more detailed appraisal of the theoretical premises
of such a construct. It is shown here to frame into a larger
Bayesian/variational optimization setup, where the observations
model is the variational distribution from which an evidence
lower bound is maximized through gradient ascent over the
policy parameters. The general principles exposed point to the
importance of this variational occupancy model that synthesizes
the general distribution of the agent’s observation states, over
which it can act (defining a virtual “territory”). This occupancy
models is the subject of frequent updates as the exploration
progresses, and that new states are undisclosed through the
course of training. Making a uniform prior assumption on
the occupancy results in a balance between two concurrent
tendencies, namely the widening of the occupancy space and
the maximization of the rewards, reminding of the classical
exploration/exploitation trade-off. The consequence is a shift
in the target occupancy pursued, that relaxes the constraint
on fitting the initial Bellman objective. Both are embodied
in a MSBE Loss operating on two separate Q-functions in
our implementation (though this is not necessary the case).
Computer simulations illustrate the benefit of our conceptual
developments, both in the case of sparse and dense rewards.
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