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Abstract—Sound event detection is to infer the event by
understanding the surrounding environmental sounds. Due to
the scarcity of rare sound events, it becomes challenging for
the well-trained detectors which have learned too much prior
knowledge. Meanwhile, few-shot learning methods promise a
good generalization ability when facing a new limited-data task.
Recent approaches have achieved promising results in this field.
However, these approaches treat each support example indepen-
dently, ignoring the information of other examples from the whole
task. Because of this, most of previous methods are constrained to
generate a same feature embedding for all test-time tasks, which
is not adaptive to each inputted data. In this work, we propose
a novel task-adaptive module which is easy to plant into any
metric-based few-shot learning frameworks. The module could
identify the task-relevant feature dimension. Incorporating our
module improves the performance considerably on two datasets
over baseline methods, especially for the transductive propagation
network. Such as +6.8% for 5-way 1-shot accuracy on ESC-50,
and +5.9% on noiseESC-50. We investigate our approach in the
domain-mismatch setting and also achieve better results than
previous methods.

Index Terms—Sound event detection, Few-shot learning, Data
augmentation, Deep learning

I. INTRODUCTION

Automatic environmental sound event detection has received
increasing attention in recent years [1], [2]. It deals with audios
detecting and classifying, which leads to multi-form applica-
tions in industry. Environmental sound is naturally different
from other audios. It doesn’t exhibit any stationary patterns
like phoneme in speech [3], [4] or rhythm in music. In contrast,
sound event contains very complex temporal structure [5]–
[7] that may be continues (e.g. rains), abrupt (e.g. thunder
storm) or periodic (e.g. clock tick). Moreover, speech [8], [9]
and music usually distribute on a relatively fixed frequency
bandwidth, but sound event spans a wide frequency range
where different sound’s frequency may distribute in different
range that leads to various patterns, such as the ”Airplane”
and ”Dog” sounds’ frequency differs a lot. The information
contained in temporal patterns and frequency bins of the sound
event could be massive [10].

To date, many deep-learning (DL) methods greatly im-
proved detection performance [11]–[16]. However, they typ-
ically require large amounts of labeled data, which limits
the generalization ability to limited-data tasks due to the
annotation cost. In contrast, children can recognize new things
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Fig. 1. An toy example to illustrate the motivation. (a) defines a 5-way 1-
shot task. There’re three features: Tone, Timbre and loudness. Different color
means different value of the feature, same color adds the similarity score by
1; (b) In the k-shot (k=3) setting, all examples of class c3 share the same
value of Tone even though their Timbre and loudness are different.

quickly with proper guidance, even they only see the examples
few times. These motivate the study of Few-shot learning.
Meantime, this method has also been introduced in [17]–[21]
which concerning rare sound event detection and achieved
promising results. Few-shot model promises alleviating the
problem of data deficit and cold start. It usually follows the
episodic training strategy [17], [22], which considers an N -
way K-shot (e.g 5 way, 1 shot means there’re 5 classes, each
contains 1 support example) classification task in each episode.

In the few-shot learning setting, a model is first trained
on labeled data with base classes. Then, model generalization
is evaluated on few-shot tasks, composed of unlabeled sam-
ples from novel classes unseen during training (query set),
assuming only one or a few labeled samples (support set)
are given per novel class. All metric-based few-shot learning
frameworks [20], [21], [23]–[25] compute similarity between
each support (training) example and the query example inde-
pendently, resulting in the correlation among support examples
being missed. Figure 1 illustrates our motivation of the task-
adaptive module. The goal of this task is to correctly classify
the query example. In Figure 1 (a), we could notice that each
support example has different Tone, but may have same Timbre
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and loudness with others. During the similarity computation,
the score between support example (c1, c3, c5) and the query
example are all 2, making it hard to classify the query example.
Moreover, in multi-shot setting like Figure 1 (b) shows, most
of class c3 have the same Tone but various Timbre and
loudness. So it’s obvious that the critical feature in this task
should be Tone thus the label of the query example should be
c3. Such an phenomenon occurs especially when K is low,
which motivates us incorporating the context of all categories
in each task to find the relevant features. Our task-adaptive
module aims to integrate all support examples’ information to
value the commonality within per class and the uniqueness
among all classes, thus to find the critical features.

Our contributions are as follows:
(1) We introduce a feature encoder integrating attention

mechanism to capture the temporal&channel context. In ad-
dition, a sound event-oriented data augmentaion strategy is
introduced to alleviate the data-shortage problem.

(2) We extend metric-based few-shot learning frameworks
with a task-adaptive module to identify the uniqueness among
classes and the commonality within per class of the whole
support set. The output of this module combines both support
set and query set, making the subsequent feature embedding
more effective.

(3) We evaluated our model on two benchmarks. Results
verify the superiority of our model over previous methods.
Besides, our model also achieves better performance in the
setting of domain mismatch.

II. PRELIMINARY AND RELATED WORKS

A. Few-shot sound event detection

Recent approaches [13], [17], [19] adopt the prototypical
networks [23] and graph neural networks [26] for few-shot
sound event detection. Few-shot sound event detection aims
to correctly classify unseen sounds with a few support labeled
examples to finetune the model.

Few-shot learning follows the episodic training paradigm
that used in previous literature [23], [27]. Supposing there’re
two non-overlapping datasets of classes (events) Ctrain and
Ctest, where Ctrain ∩ Ctest = ∅. There are also two
procedures: Meta-training and Meta-testing. In each episode
of training, we randomly sample N classes (a small subset)
from Ctrain to construct support set S and query set Q. A
simple N -way K-shot task denotes as follow: S is denoted
as S = {x11, ..., x1K , .., xN1 , .., xNK}, where K is the number of
samples in per class. The query set Q = {x∗1, ..., x∗T } contains
various examples from the same N classes. Thus, there are
N ∗ K samples in S and T samples in Q. The support set
and query set composed a multi-label classification task here.
During the procedure of meta-testing, S and Q sampled from
Ctest , and few-shot method is required to predict on query
set (no label) given the support set (with label).

B. Metric-based learning methods

Few-shot learning methods can be divided into three
branches: metric-based, optimization-based and data

Fig. 2. Two metric-based few-shot learning methods.

augmentation-based [28]–[30]. In this paper, we mainly
focus on metric-based learning. The metric-based methods
could be categorized into inductive and transductive, and two
representative methods are prototypical network [23] and
transductive propagation network [21], as shown in Figure 2.
Given a N -way K-shot task T = (S,Q), and the feature
encoder fϕ decided by its internal parameter ϕ.
Prototypical network (ProtoNet): this approach simply in-
tegrate nerual network (NN) baseline into the end-to-end
meta-learning framework. It takes the average of the learned
representations of a few examples for each class as class-wise
representations C, and then classifies an unlabeled instance by
calculating the Euclidean distance between the input and the
class-wise representations. xsi ∈ S and xq ∈ Q, and M is a
pair-wise feature distance function. The distance measure is
as follows:

fsim(xs, xq;S,Q, ϕ) =M(
1

K

K∑
i=1

fϕ(x
s
i ), fϕ(x

q)) (1)

Transductive propagation network (TPN): this approach
utilizes the entire test set for transductive inference, which is to
consider the relationships among testset and thus predict them
as a whole. Transductive inference has shown to outperform
inductive methods [31]–[33]. TPN propose to learn to propa-
gate labels via episodic paradigm. During the propagation, a
distance measurement and example-wise length scale parame-
ter were adopted to obtain a proper neighborhood graph. After
the graph construction, label propagation determines the labels
of the query set. The distance measure is as follows:

fsim(xi, xj ;S,Q, ϕ, φ) = exp(−1

2
M(

f(xi)

σi
,
f(xj)

σj
)) (2)

where φ is the parameters generating example-wise length-
scale parameter (σi, σj). xi, xj ∈ S ∪ Q.

III. APPROACH

The overview of the proposed learning framework is shown
in Figure 3. In this section, we first introduce how to mask
and mixup for augmenting the training data, then use class
prototypes to build a classifier and update the classifier with
transductive inference. After that, we discuss how to make
use of the intergreted class prototypes to fine-tune the feature
extractor. Lastly, we summarize the core idea of task-aware
learning framework.

A. Masked mixup

To avoid possible overfitting caused by limited trained data,
we adopt time and frequency masking [34] and mix-up as the



Fig. 3. (a). The overall framework of our model, it is composed of three parts: feature encoder, task-adaptive module and metric-based few-shot learning
network. (b). The temporal&channel attention mechanism. Ach is the channel attention, Ate is the temporal attention. (c). Data augmentation pipeline for
the input log mel-spectrogram.

data augmentation strategy, which is simple but effective [35].
The strategy adopt multiple time and frequency masks on
input spectrogram to generate multi-masked spectrograms and
then randomly mixes two masked samples, increasing the
diversity of samples by the way. As shown in Figure 3 (c),
given a spectrogram x with T frames and F frequency bins.
The first step is to use multiple time masking and frequency
masking, generating M masked samples x∗. To be specific,
Masknum assigns t consecutive time frames [t0 : t0 + t) and
f consecutive frequency bins [f0 : f0 + f) value to 0, and
num denotes the number of multiple masking. t is chosen
from a uniform distribution from 0 to the time parameter τ ,
t0 is chosen from [0, T − t), f is chosen from a uniform
distribution from 0 to the frequency parameter υ, f0 is chosen
from [0, F − f). Secondly, the mixup step conducts a convex
combination of two randomly selected (x∗i , yi) and (x∗j , yj)
from all masked samples:

x∗ ← x�Masknum (3)
x̃ = λx∗i + (1− λ)x∗j (4)

ỹ = λyi + (1− λ)yj (5)

where yi and yj are one-hot encoded class labels, (x̃, ỹ) being
the new sample. λ ∈ [0, 1] is acquired by sampling from a
beta distribution Beta(α, α) with α being a hyperparameter.
Feature encoder: After data augmentation, the samples first
encoded by a ConvNet fϕ as same as [17], but the CNN layer
replaced with a temporal&channel attention CNN layer [34] as
shown in Figure 3 (b). The architecture of ConvNet contains
five blocks and a fully-connected layer, and the first two block

includes a 3 × 3 convolutional layer, a batch normalization
layer, a ReLU activation layer and a 4× 4 max-pooling layer,
and the last block is same as the former except the last 1× 1
max-pooling layer.

B. Task-adaptive module

This module contains three parts and leverages the fϕ(.) as
input, and outputs the task-adapted feature embedding, which
will be passed to subsequent metric-based learning network.
Task-adaptive-extractor for commonality among classes:
Task-adaptive-extractor (TAE) aims to find the commonality
among all instances within a class. Denote the output shape
from feature encoder fϕ as (N × K,m1, w1, h1), where
m1, w1, h1 indicate the number of channel and spatial size
respectively. TAE is defined as follows:

fϕ(S) : (N ×K,m1, w1, h1)
TAE−→ o : (N,m2, w2, h2) (6)

where m2, w2, h2 denote the output number of channel and
spatial size. In this part, we first utilize a simple CNN layer
to perform the dimension reduction. Then the samples in each
class are averaged to a final output o. The purpose of TAE
is to extract the commonality among a category. Specifically,
for 1-shot setting, there is no average operation. The purpose
of TAE is to eliminate the differences among instances and
extract the commonalities in the same category.

We intend to make use of o denoting the mean of the
learned representation of the support samples on the support
set to represent the learned representation of query samples.
N denotes the number of query samples. In our experiments,



sim stands for cosine similarity. We do not use M for the
reason that query sample is randomly chosen.
Projector for characteristics among classes: The goal of the
second component namely projector is to find the character-
istics of various classes. Projector takes the output of TAE as
input and produce a mask for the support and query set by
observing all the support classes at the same time.

o : (N,m2, w2, h2)
reshape−→ ô

CNN−→ p : (1,m3, w3, h3) (7)

During the projector process, firstly, we reshape the o :
(N,m2, w2, h2) into ô : (1, N × m2, w2, h2), then a small
CNN is applied to ô, producing the mask p : (1,m3, w3, h3).
Finally, a softmax is also applied to the dimension m3. For
making the output of projector p influence the feature encoder
output fϕ(.), we need to match the shape between p and fϕ(.).
This could be achieved as follows:

fϕ(.)
Reshaper−→ r(.) : (N ×K,m3, w3, h3) (8)

where Reshaper means a light-weight CNN network, and r(.)
is regarded as the Reshaper network.

This idea is inspired by [36], which aims to maximize the
mutual information between the query features and their label
predictions for a few-shot task at inference. It means that
the model has seen these unlabeled data before making final
prediction.
Portable to metric-based backbone: The task-adaptive mod-
ule is portable, which could be easily integrated with any
metric-based few-shot learning methods. In this paper, we
investigate two classical metric-based methods: prototypical
network (inductive) and transductive propagation network
(transductive) in Sec II-B, both do not consider the whole
support set at the same time. For support set, mask p directly
onto the embedding. For the query set, � stands for broad-
casting the value of p along the sample dimension (NK) in
Q. So the distance measurement could be modified as follows.
Specifically, θ is a model parameter in TPN.

fsim(S,Q, ϕ, θ) =M(p� r(fϕ(S)), p� r(fϕ(Q))) (9)

Our loss function is based on the cross entropy following most
of state-of-the-art methods:

L =
exp(

∑K
j fsim(xj , xq))∑N

i=1 exp(
∑K

j fsim(xij , xq))
(10)

where xij , xq denoting support and query examples respec-
tively.

IV. EXPERIMENTS

A. Experimental setting

Data preparation: We utlize ESC-50 and noiseESC-50
datasets in this work, which is from DCASE2021 task 5 [37].
The ESC-50 dataset contains 2,000 5-seconds audio clips that
belonged to 50 classes, each having 40 examples. The sound
categories cover sounds of human behaviors (sneezing, crying,
laughing), animals (bird, dog, sheep), machine sounds (train,
clock-alarm, airplane). Our work also follows [17] to evaluate

the performance under noise condition called noiseESC-50
that selected from audio recordings of 15 different acoustic
scenes. So, the performance on ESC-50 and noiseESC-50
would reflect the generalization ability of the model in real-
world applications. What’s more, although ESC-50 is rela-
tively smaller than AudioSet, which suffers from the class
imbalance problem, this also is the reason for our choice. To
directly compare our model with other baselines, we follow the
setting of [22] as same as [17]. Two datasets are divided into
35 classes for training, 10 classes for test and other classes for
validation. All audio clips are down-sampled from 44.1kHz to
16kHz. 128-bin log mel-spectrogram of raw audio is extracted
as the input.
Implentation detail: We list the model arcgitecture in Table II.
The librosa [39] is used for feature extraction. During the
episodic training, for each task, we only perform the mixup on
the query set Q. Empirically, τ = 24, υ = 36 and num = 2
are used for time and frequency masking, and α = 0.2 is
used for masked mixup. We conduct Adam optimization with
stochastic gradient descent algorithm in all experiments with
an initial learning rate of 0.0001. The model is trained by
using back-propagation with cross entropy loss function as
we mentioned before. The network is trained for a max of 60
epochs and a decaying factor 0.01 is set for the learning rate
to avoid overfitting.
Data augmentation: We utilize SpecAug, a cheap yet effec-
tive data augmentation method for spectrograms, has been in-
troduced [31]. SpecAug randomly sets time-frequency regions
to zero within an input log-Mel spectrogram with D (here 64)
number of frequency bins and T frames. Time modification
is applied by masking yt times xt consecutive time frames,
where xt is chosen to be uniformly distributed between [ t0, t0
+ xt ] and t0 is uniformly distributed. Frequency modification
is applied by masking yf times consecutive frequency bins[ f0,
f0 + xf ), where randomly chosen from a uniform distribution
in the range and f0 is uniformly chosen. For all experiments
we set yt = 2, yf = 2.

B. Performance on ESC-50 and noiseESC-50

Experimental results are shown in Table I. Our model
outperforms the previous model on two datasets. As shown
in Table I, the absolute improvement of our best model
(TA+TPN+DA (temporal&channel)) over published SOTA
(TPN) is +6.8% in 5-way 1-shot, +8.4% in 10-way 1-shot
on ESC-50. On noiseESC-50, +5.9% in 5-way 1-shot and
+7.8% in 10-way 1-shot. At the same time, on ESC-50, we
also notice that the performance gains slightly improvement
than the SOTA, +0.1% in 10-way 5-shot, 0.3% in 5-way 5-
shot on ESC-50, +3.8% in 10-way 5-shot, +1.0% in 5-way
5-shot on noiseESC-50. Obviously, our model gains more
improvement in 1-shot setting. Two metric-based methods can
be continuously improved by integrating TA. Specifically, the
experiment results of TPN on two datasets is produced by
ourself. All results are averaged over 1000 Meta-train & Meta-
test episodes.



TABLE I
THE RESULT OF SOUND DETECTION (IN %) ON ESC-50 AND NOISEESC-50. ALL BASELINES REPORTED HERE ARE DIRECTLY REPRINT THE

EXPERIMENTAL RESULTS FROM THE LITERATURE [17]. TA MEANS THE TASK-ADAPTIVE MODULE. DA MEANS THE DATA AUGMENTATION METHOD.

Model
ESC-50 noiseESC-50

5-way acc 10-way acc 5-way acc 10-way acc
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

MatchingNet [22] 53.7% 67.0% 34.5% 47.9% 51.0% 61.5% 31.7% 43.0%

RelationNet [24] 60.0% 70.3% 41.7% 52.0% 56.2% 74.5% 39.2% 52.5%

SimilarityEmbeddingNet [38] 61.0% 78.1% 45.2% 65.7% 63.2% 78.5% 44.2% 62.0%

ProtoNet [23] 67.9% 83.0% 46.2% 74.2% 66.2% 83.0% 46.5% 72.2%

ProtoNet + AS [17] 74.0% 87.7% 55.0% 76.5% 69.7% 85.7% 51.5% 73.5%

TPN [21] 74.2% 86.9% 55.2% 76.7% 72.7% 86.1% 52.7% 72.9%

ProtoNet+DA 70.5% 83.3% 48.9% 74.7% 69.8% 83.3% 47.7% 72.1%

TA+ProtoNet 70.2% 84.0% 48.6% 74.8% 69.5% 83.5% 50.1% 72.4%

TA+ProtoNet+DA 70.8% 84.6% 50.9% 75.3% 71.5% 84.8% 50.2% 72.3%

TA+ProtoNet+DA (temporal&channel) 71.6% 85.2% 51.5% 75.7% 72.1% 85.2% 51.3% 72.9%

TPN+DA 77.3% 86.5% 60.1% 75.7% 77.1% 86.6% 55.9% 73.1%

TA+TPN 76.5% 87.1% 57.8% 76.9% 76.3% 86.3% 57.3% 73.2%

TA+TPN+DA 80.2% 86.4% 62.3% 76.1% 77.9% 86.8% 59.3% 76.1%

TA+TPN+DA (temporal&channel) 81.0% 87.2% 63.6% 76.8% 78.6% 87.1% 60.5% 76.7%

TABLE II
ARCHITECTURE OF CONVBLOCK LAYER OF TAE AND ENCODER

ARCHITECTURE.

ConvBlock Architecture Encoder Architecture
Sub-Layer 1 Conv2D Layer 1 ConvBlock 128
Sub-Layer 2 BatchNorm Layer 2 ConvBlock 128
Sub-Layer 3 ReLU Layer 3 ConvBlock 128
Sub-Layer 4 MaxPool2D((2,2)) Layer 4 Flatten

From the statistics of Table I, data augmentation and tem-
poral&channel attention mechanism are also contributive. The
data augmentation strategy could continuously improve the
effect of various few-shot models. The enhancement is more
obvious of TA+TPN, 2.7% for 5-way 1-shot and 2.0% for 10-
way 1-shot. The improvement brought by data augmentation
and novel attention mechanism illustrate that the performance
of baseline methods is severely underestimated.

C. Analysis of experimental results

First, the temporal&channel attention can significantly im-
prove the sound’s representation, thus promote model’s perfor-
mances. It is acknowledged that temporal&channel attention
and data augmentation strategy could reduce the intra-class
variation [40]. With regarding the noise, the performance
on ESC-50 is inferior to noiseESC-50. In addition, another
significant observation is that 5-shot is less significantly im-
proved than 1-shot. For example, in 5-way of ESC-50, the
performance of our model over published state-of-the-art is
0.3% for 5-shot but 6.8% for 1-shot. Moreover, the margin
of the various model decreases with the increasing of shots is
because more labeled data are used. The superiority of task-
adaptive module and other modules will be decreased when
more labeled data are available. In this paper, We also make
detail experiments (5-way k-shot k ∈ {1, 2, ..., 10}) of various

model, and the results are presented in Figure 4 and Figure 5,
which verify the viewpoints above. This gives a qualitative
comparison of the result of the prototypical network with
and without attentional similarity for 3 query examples from
the noiseESC-50 test set. Those picked by the model without
attentional similarity (marked in cyan) do not share the same
class as the queries; they are picked possibly because both the
query and the picked one have a long silence. In contrast,
the model with attentional similarity finds correct matches
(marked in red).

As this sample shows, the TPN model is indeed capable
of sound localization, specifically for events with a duration
information, such as “gun shot”. However, it seems to struggle
with longer events, such as “dog bark,” at which it exhibits
a peaking behavior, chunking the event into small pieces. On
the contrary, TA can predict and localize both short and long
events for this sample. Specifically, TA + TPN was unable to
notice the short event, yet predicted its presence. We believe
that this is due to the low time-resolution could skip over the
presence of short events.

D. Analysis of domain mismatch

During this subsection, we follow the setting created
by [41]. While the current evaluation focus on recognizing
novel class with limited training examples, these novel classes
are sampled from the same domain. So, we follow the exper-
iments from [41], such a out-of-domain testing could display
the ability of few-shot learning methods to generalize [42],
[43]. Following the previous setup, the selected AudioSet [44]
with 99 events for meta-train, meta-validation with 21 events
and meta-test with 21 events. In addition, the pre-processing
are same as the previous description about the setup of [17].
The number of ways is set to 5, and we rerun the experiments:
ProtoNet, ProtoNet+AS and TPN. For the domain mismatch
setting, we experiments ”Music” and ”Animals” domain as



Fig. 4. 5-way performance on ESC-50 with various training/test shots

Fig. 5. 5-way performance on noiseESC-50 with various training/test shots

same as [41]. The events and associated audios from the two
domains are removed from train set.

Results on ProtoNet are slightly better than those on TPN,
which is mainly because in Audioset music sounds are com-
mon and some patterns exist in other sounds as well such as
bell ringing. On the other hand animal sounds such as “dog
growling” rarely resemble other sounds. The gain of meta-
learning approaches over supervised baselines are diminished
due to domain mismatch. This implies the potential overfitting
issue in meta-learning. Meta-learning models learn to utilize
the correlation between classes. However, if all training classes
come from one domain, the model tends to overfit to that
domain and performance on new domain would drop.

V. CONCLUSION

In this paper, we proposed a task-adaptive module for
few-shot sound event detection. The module contains a task-
adaptive extractor (TAE) and a projector. By considering
all support examples at same time, TAE could extract the

TABLE III
THE RESULT OF FEW-SHOT SOUND DETECTION IN DOMAIN MISMATCH.

THE AUC (AREA UNDER CURVE) IS USED FOR EVALUATION.

Model 1-shot 5-shot
Music Animal Music Animal

ProtoNet [23] 0.712 0.644 0.824 0.729

ProtoNet+AS [17] 0.736 0.677 0.839 0.750

TPN [21] 0.747 0.685 0.843 0.748

ProtoNet+DA 0.752 0.680 0.836 0.739

TA+ProtoNet 0.759 0.691 0.851 0.763

TA+ProtoNet+DA 0.762 0.694 0.854 0.761

TA+ProtoNet+DA(temporal&channel) 0.779 0.705 0.857 0.768

TPN+DA 0.755 0.693 0.848 0.751

TA+TPN 0.762 0.691 0.854 0.753

TA+TPN + DA 0.768 0.696 0.850 0.754

TA+TPN+DA(temporal&channel) 0.779 0.705 0.857 0.761

inner-class commonality and the projector could find cross-
class characteristic features. Besides, the data augmentation
strategy and the novel attention mechanism could further
improve model’s performance. We demonstrated that it sig-
nificantly improved accuracy on two benchmarks (ESC-50
and noiseESC-50), achieving state-of-the-art performance. In
addition, we compared with several baselines under the exper-
imental domain mismatch setting, our model could also gain
improvement over baselines.

In future work we plan to further analyze why adaptive
training of current state-of-the-art models does not yield
substantial improvements in the multi-shots setting. We would
also like to devise a method that will perform better in fast
adaptation and unsupervised adaptation. Finally, we plan to
evaluate our method on more challenge tasks such as domain
adaptation or language adaptation of ASR models.
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