
To appear at the 2022 International Joint Conference on Neural Networks (IJCNN),
at the 2022 IEEE World Congress on Computational Intelligence (WCCI), July 2022, Padua, Italy.

fakeWeather: Adversarial Attacks for Deep Neural
Networks Emulating Weather Conditions on the

Camera Lens of Autonomous Systems
Alberto Marchisio1,*, Giovanni Caramia2,*, Maurizio Martina2, Muhammad Shafique3

1Technische Universität Wien, Vienna, Austria 2Politecnico di Torino, Turin, Italy 3New York University, Abu Dhabi, UAE
Email: alberto.marchisio@tuwien.ac.at, giovanni.caramia@studenti.polito.it

maurizio.martina@polito.it, muhammad.shafique@nyu.edu

Abstract—Recently, Deep Neural Networks (DNNs) have
achieved remarkable performances in many applications, while
several studies have enhanced their vulnerabilities to malicious
attacks. In this paper, we emulate the effects of natural weather
conditions to introduce plausible perturbations that mislead the
DNNs. By observing the effects of such atmospheric perturbations
on the camera lenses, we model the patterns to create different
masks that fake the effects of rain, snow, and hail. Even though
the perturbations introduced by our attacks are visible, their
presence remains unnoticed due to their association with natural
events, which can be especially catastrophic for fully-autonomous
and unmanned vehicles. We test our proposed fakeWeather
attacks on multiple Convolutional Neural Network and Capsule
Network models, and report noticeable accuracy drops in the
presence of such adversarial perturbations. Our work introduces
a new security threat for DNNs, which is especially severe for
safety-critical applications and autonomous systems.

Index Terms—Deep Neural Networks, Adversarial Attacks,
Weather, Rain, Snow, Hail.

I. INTRODUCTION

In the last decade, Deep Neural Networks (DNNs)
have lifted groundbreaking advancements in several fields,
including object recognition [1], autonomous systems [2],
video, image, and signal processing [3], and achieving the
human-level or even more classification accuracy for certain
tasks [4]. However, despite their great success [5][6], DNNs
have been proven to be vulnerable to adversarial attacks,
which undermine their security since they maliciously subvert
the DNN predictions [7]. While several works of adversarial
machine learning have been proposed earlier [8][9], their
first application to DNN-based algorithms was conducted by
Szegedy et al. [10], who demonstrated that DNNs can easily be
fooled by injecting imperceptible perturbations into the input
images.

The usage of DNN-based algorithms for safety-critical
applications requires that the DNNs do not fail their
predictions under challenging conditions [11][12]. Such
situations can appear in many different forms, including
process variations that induce hardware faults, input pollution,
or poisoning that induce a misbehavior [13]. For instance, for
vision applications in smart transportation systems, the DNNs
should correctly work under different lights and atmospheric

*These authors contributed equally to this work.

phenomena. Hence, an image captured in such conditions
represents a plausible image that can be processed by the
DNN-based algorithm.

A. Target Research Problem and Associated Challenges

The key objective for an adversarial attack and its
applicability in practical use-cases consists of not being
recognized as adversarial, but rather as common/plausible. The
most intuitive approach is to inject a very limited amount of
perturbations, with the goal of making the differences between
the clean images and the adversarial images imperceptible
to the human eye. This approach has been adopted by
several works, including Luo et al. [14], Croce et al. [15],
and Marchisio et al. [16]. However, the attacker needs to
have access to a set of information, including DNN model
architecture and parameters, inputs, and outputs (i.e., in
white-box settings), or only inputs and outputs (in black-box
settings). Even the most advanced decision-based black-box
attacks such as HopSkipJumpAttack [17] and FaDeC [18] still
have access to the DNN predicted output class for each image.
However, in practical cases, it may be very complicated to
obtain such information, due to the protection mechanisms
applied by the DNN-based system developers [19]. Moreover,
another key limitation resides in the fact that even the most
query-efficient algorithms [20] need to perform a certain
number of queries (i.e., inference passes) to generate the
adversarial perturbation, which may not be practical in case of
stringent real-time constraints, because of the latency overhead
caused by the queries.

Due to these limitations of the adversarial attacks that aim
at introducing imperceptible perturbations compared to the
original images, our approach follows a different strategy (see
Figure 1). Our novel idea is to introduce perturbations to
the input image in such a way that it is not considered as
adversarial, since it resembles a natural condition captured
by the camera. While the differences between the clean image
and the adversarial image can be noticed, the adversarial
image itself is hardly categorized as “adversarial”, since it
simply captures a plausible natural condition. The reason is
based on the fact that traditional adversarial machine learning
takes into account the comparison between the adversarial
image and the original image. However, in real-world practice,

1

ar
X

iv
:2

20
5.

13
80

7v
1

 [
cs

.L
G

]
 2

7
M

ay
 2

02
2

it is impossible to obtain such a comparison, since the
only accessible image is the one recorded by the camera.
Noticeably, our approach is advantageous compared to
previous works, since it is conducted in what we call a true
black-box setting, i.e., in a scenario in which the attacker
has no information about the DNN model architecture and
parameters, nor its outputs. The only information required is
the size of the input image, for generating an adversarial mask
of that size. Moreover, our attack does not require any query,
Thus it can easily be applied at run time.

ship ✓

ship ✓

ship ✓

truck

automobile

truck

fakeRain

fakeSnow

fakeHail

+

+

+

=

=

=

Fig. 1. fakeWeather attacks functionality.

B. Our Novel Contributions

Towards this, we observe how natural weather conditions,
such as rain, snow, and hail, are perceived by the camera.
We exploit this observation by designing fakeWeather attack
algorithms that emulate these effects on the camera lens.
An overview of its functionality is shown in Figure 2. Our
methodology can be used not only as an adversarial attack to
mislead the DNN, but also as a data augmentation approach
for reinforcing the DNN training under these conditions. Our
contributions can be summarized as follows:

• We observe several images of natural weather events
that affect the camera (Section III-B), and identify the
patterns that are more commonly present in such images
(Section III-C).

• By only knowing the image size, we design three
fakeWeather masks that fake the effect of such weather
conditions on the camera lenses (Sections III-D, III-E,
and III-F).

• We evaluate the fakeWeather attacks on multiple DNN
models (LeNet-5, ResNet-32, CapsNet) for the CIFAR-10
dataset, and obtain a success rate of the attacks varying
between 30% and 82.5% (Section IV).

Observation
of Camera
Lens with

Atmospheric
Perturbations

Pattern
Extraction

Mask Generation
Rain Snow Hail

Trained
DNN Model

Dataset

High Accuracy for
Clean Images

High Attack
Success Rate for

Perturbed Images

fakeWeather Attacks Design (Sec. III) Evaluation (Sec. IV)

Fig. 2. Overview of our Novel Contributions.

Before proceeding to the technical sections, we provide an
overview of the adversarial attacks and the related works in
Section II.

II. BACKGROUND AND RELATED WORKS

The purpose of the most common adversarial attack
algorithms, such as gradient-based attacks [21], is to introduce
some perturbations that induce a decision boundary cross in
the DNNs, and therefore lead to a misclassification. Examples
of such attacks include the Fast-Gradient Sign Method
(FGSM) [22], DeepFool [23], the Projected Gradient Descent
(PGD) [24], and the Carlini & Wagner attack [25]. Other
classes of attacks in which the perturbations were inserted only
in a small set of pixels or only in one pixel were proposed
by Narodytska et al. [26] and Su et al. [27], respectively.
Concurrently, Moosavi-Dezfooli et al. [28] proposed image-
agnostic universal perturbations that are applied to every
sample, and Zhang et al. [29] generated different adversarial
perturbations for each target class.

In black-box settings, several works were conducted.
Kurakin et al. [22] proposed a method that crafts adversarial
examples in the physical world by taking the images from a
cell-phone camera. Moreover, taking into account the high-
saliency and low-distortion path, Gragnaniello et al. [30]
introduced an attack that improves the perceptual quality of
the adversarial image.

Several attacks have been designed for real-world settings
that incorporate so-called environmental perturbations. Brown
et al. [31] generated adversarial patches, i.e., image-
independent patches, to be placed anywhere inside the original
image to mislead the DNNs. Following a similar approach,
Eykholt et al. [32] added stickers to road signs to fool the
traffic sign recognition system, while Sharif et al. [33] added
glasses to faces to fool the face recognition system. Man et
al. [34] proposed GhostImage attacks, in which the adversarial
patterns are inserted into the camera systems through a
projector.

Focusing on more closely related approaches to our work,
other methods in which DNN models are fooled due to
atmospheric phenomena were proposed. Temel et al. [35]
analyzed several challenging conditions, including snow and
rain, for traffic sign detection systems, and collected them
into their proposed CURE-TSD-Real dataset. Zhai et al. [36]
simulated various rainy situations using a gradient-based
rain generation process. However, there are clear differences
compared to our fakeWeather attacks. Both these two related
works inject perturbations in the long-range, i.e., relatively

2

far from the camera, while our methodology introduces
perturbations in the close proximity of the camera lens.
Unlike other methods in the related works, our approach is
non-invasive, since it does not require any modification in
the real world, but it only modifies some pixel intensities
of the images without interfering with the underlying DNN
processing.

III. FAKEWEATHER ATTACK DESIGN

A. Problem Formulation and Assumptions

Taking into account the previous discussions, we
propose the fakeWeather methodology. An overview of
its functionality is shown in Figure 3. The final goal is to
generate a finite set of perturbations with certain patterns
which resemble the effect of natural weather events. Hence,
such patterns are crafted by faking that the camera lens is
dirty due to atmospheric conditions (such as rain, snow, and
hail). After observing their effects on several examples in the
real world, the common patterns are extracted and reproduced
to generate the perturbation masks. The attack is conducted
in what we call a true black-box setting, i.e., assuming that:

• the adversary has no information about the DNN model
architecture, its parameters, and its output;

• the only information available for the attacker is the size
of the input images.

P2 Pn

P1
P3

1) Observation of Weather Effects on Images

2) Extraction of Common Patterns

.

3) fakeWeather
Mask Generation:

combination of
many patterns

4) Image Perturbation

Predicted:
deer ✓

Predicted:
bird

Fig. 3. Overview of the fakeWeather attack methodology.

B. Observation of Weather Conditions

The fakeWeather attacks are performed through the
introduction of drops of water and snowflakes. A typical
water drop has a spherical shape, while a snowflake has
a hexagonal shape. However, in practical use-cases, these
weather conditions do not represent the main focus of the
camera. A camera captures the effects of rain and snow in a
different way, which results into a set of blurry dots that are
overlapped to the image. For instance, if we consider the use
case of vision for smart mobility, the camera can be placed
either outside of the vehicle (and hence exposed to the weather
conditions), or inside the vehicle but in close proximity to the
window. Without loss of generality, we can model a drop or
a snowflake as a single pixel w.r.t. the image of h · l pixels,
where h and l represent the height and length, respectively.

C. Pattern Extraction and Mask Generation

According to the previous considerations, the fakeWeather
methodology extends the formulation of the One Pixel
Attack [27], in which the perturbation of a single pixel is
defined as a tuple of 5 elements (x, y, r, g, b) where:

• (x, y) represent the coordinates of the pixel to be
modified;

• (r, g, b) indicate the color of the pixel in RGB format.
Therefore, an adversarial pattern combines multiple pixel

attacks, in which the perturbation introduced on the pixel i can
be written as in Equation 1. An example of the corresponding
mask of an adversarial pattern is shown in Figure 4.

pixeli = (xi, yi, ri, gi, bi) (1)

l

h

one pixel perturbation:

𝑝𝑖𝑥𝑒𝑙1 = (𝑥1, 𝑦1, 𝑟1, 𝑔1, 𝑏1)

𝑝𝑖𝑥𝑒𝑙1 = (𝑥1, 𝑦1, 𝑟1, 𝑔1, 𝑏1)
𝑝𝑖𝑥𝑒𝑙2 = (𝑥2, 𝑦2, 𝑟2, 𝑔2, 𝑏2)

𝑝𝑖𝑥𝑒𝑙𝑛 = (𝑥𝑛, 𝑦𝑛, 𝑟𝑛, 𝑔𝑛, 𝑏𝑛)

n-pixels perturbation:

Fig. 4. Encoding of pixel perturbations that form the adversarial pattern.

The colors, i.e., the values assumed by (ri, gi, bi), are
determined according to the weather condition:

• rain: (rr, gr, br) = (208, 209, 214)
• snow and hail: (rs, gs, bs) = (249, 242, 242)

For each type of fakeWeather attack (i.e., rain, snow, and
hail), specific patterns are generated. Common patterns are
extracted from real images and reproduced to form the set
of pixel coordinates (xi, yi) that belongs to the attack mask.
Once generated, the same mask is applied to all the images
under attack.

D. fakeRain Attack

The mask employed in the fakeRain attack is designed based
on the combination of several water drops. In the real world,
the camera lens can be soiled due to the rain, where the
water droplets make up different patterns. It is possible to
recognize three real-case scenarios, which can be categorized
as agglomerate of drops, drop patch, and drop lines. As shown
in Figure 5, the next step consists of modeling these patterns
in terms of pixel coordinates that are perturbed.

The Agglomerate Pattern can be modeled by combining
together 5 pixels to form a cross sign, according to the
sketch in Figure 6a and Algorithm 1. The Patch Pattern (see
Figure 6b) can have three different shapes, namely the vertical
patch, which can be modeled as two consecutive pixels that

3

i) agglomerate of drops ii) water drop patch iii) drop lines

Agglomerate Pattern Patch Patterns Line Pattern

Fig. 5. Several patterns of water drops observed from the real environment. i) agglomerate of drops, ii) water drop patch, iii) drop lines.

share the same x coordinate (lines 4-6 of Algorithm 2), the
diagonal patch, modeled as two pixels arranged to form a
diagonal (lines 10-17 of Algorithm 2, and the two dots patch,
in which two pixels are separated by a blank space (lines 20-
22 of Algorithm 2). The Line Pattern, shown in Figure 6c, is
modeled as a vertical line of n pixels (see Algorithm 3).

(a) (c)(b)

Fig. 6. A graphical representation of (a) Agglomerate
Pattern, (b) Patch Patterns, and (c) Line Pattern.

Fig. 7. V-shaped
fakeRain attack.

Moreover, in rainy conditions, we can notice that the water
drops tend to concentrate in the bottom corners of the image.
Hence, to emulate this effect, in the fakeRain attack, a V-
shape is created to divide the image into two regions (see
the example in Figure 7). Below the V, several agglomerate
patterns are densely concentrated. Above the V, path and line
patterns are more sparsely distributed. Algorithm 4 describes
the procedure for generating the fakeRain mask. Note that it is
a three-step process in which (i) several agglomerate patterns
are added (see line 2 of Algorithm 4), (ii) other agglomerate
patterns are added if the coordinate is below the V (line 5 of

Algorithm 1: Agglomerate Pattern
input : Coordinate (x0, y0)
output: Agglomerate Pattern Pa

1 Pa = ∅
2 k = 0
3 for i← 0 to 2 do
4 for j ← 0 to 2 do
5 if (i+ j = 0 ∨ i+ j = 2 ∨ i+ j = 4) then
6 Pa ← pixelk = (x0 + i, y0 + j, rr, gr, br)
7 k ← k + 1
8 end
9 end

10 end

Algorithm 4), and (iii) patch patterns of different types and
line patterns are added above the V (line 7 of Algorithm 4).

E. fakeSnow Attack

The design of the fakeSnow attack is based on the
assumption that a snowflake can be modeled as a single pixel,
since the dimension of each snowflake is relatively small,
as observed in Figure 8. According to these considerations,
the snow pattern Ps consists of a single pixel, which can
be modeled as in Equation 2, where (x0, y0) represents the
coordinate in which the snow pattern is constructed.

4

Algorithm 2: Patch Pattern
input : Coordinate (x0, y0), Type t
output: Patch Pattern Pp

1 Pp = ∅
2 switch t do
3 case 0 do // Vertical Patch
4 for j ← 0 to 1 do
5 Pp ← pixelj = (x0, y0 + j, rr, gr, br)
6 end
7 end
8 case 1 do // Diagonal Patch
9 k = 0

10 for i← 0 to 1 do
11 for j ← 0 to 1 do
12 if (i+ j = 1) then
13 Pp ← pixelk =

(x0 + i, y0 + j, rr, gr, br)
14 k ← k + 1
15 end
16 end
17 end
18 end
19 case 2 do // Two Dots Patch
20 for j ← 0 to 1 do
21 Pp ← pixelj = (x0, y0 + 2 · j, rr, gr, br)
22 end
23 end
24 end

Algorithm 3: Line Pattern
input : Coordinate (x0, y0), Length n
output: Line Pattern Pl

1 Pl = ∅
2 for j ← 0 to n− 1 do
3 Pl ← pixelj = (x0, y0 + j, rr, gr, br)
4 end

Ps ← pixel0(x0, y0, rs, gs, bs) (2)

Fig. 8. Several snowflakes observed, which can be modeled as single dots.

Another key feature noticed from the observation of real
images is that the snowflakes are more densely concentrated
in close proximity to the horizon line. In practice, this effect
can be modeled by cutting the image into three parts through

Algorithm 4: fakeRain Mask Generation
input : Image size: length l and hight h
output: fakeRain Mask Mr

1 Mr = ∅
2 Mr ← Pa({0, ..., l − 3}, 0)
// use many agglomerate patterns in

the first line
3 for (i, j) ∈ ({0, ..., l − 3}, {0, ..., h− 3}) do
4 if (i+ j < h+l

4) ∨ (l − i+ j < h+l
4) then

5 Mr ← Pa(i, j) ∨ {}
// sparsely add agglomerate

patterns below the V
6 else
7 Mr ← Pp(i, j, t) ∨ Pl(i, j, n) ∨ {}

// sparsely add patch patterns
or line patterns above the V

8 end

two horizontal lines, as shown in Figure 9, and placing more
dense snow patterns in the middle region, while maintaining
the top and the bottom of the image relatively less populated
by snow patterns. The generation of the mask for the fakeSnow
attack is described in Algorithm 5. It proceeds in different
ways based on the vertical coordinate j. In the middle part of
the image, equally-spaced dense snow patterns are added to
the fakeSnow mask (line 9 of Algorithm 5). In the upper part
and lower part of the image, alternating rows of dense and
sparse (i.e., largely spaced) snow patterns are added (lines 4-7
of Algorithm 5).

Algorithm 5: fakeSnow Mask Generation
input : Image size: length l and hight h
output: fakeSnow Mask Ms

1 Ms = ∅
2 for j,∈ {0, 2, 4, ..., h− 2}) do
3 if (j < h

3 − 1) ∨ j > 2h
3 − 1) then

// upper and lower parts
4 if j ≡ 0 mod 4 then
5 Ms ← Ps({0, 3, 6, 9, ..., l − 2}, j + 1)
6 else // skip some snow patterns
7 Ms ← Ps({0, 6, 12, ..., l − 2}, j + 1)
8 else // middle part
9 Ms ← Ps({0, 3, 6, 9, ..., l − 2}, j + 1)

// add dense snow patterns
10 end

F. fakeHail Attack

Compared to the snow, a hail scenario produce relatively
larger ice balls perceived by the camera, as shown in Figure 10.
Hence, the hail pattern is not modeled as a single pixel, but
as an agglomerate of 8 pixels, as described in Algorithm 6.

Since the hail patterns appear irregularly, the fakeHail mask
can be generated through a collection of hail patterns, as

5

(i)
Upper Part:
Less dense

(ii)
Middle Part:
More dense

(iii)
Lower Part:
Less dense

Fig. 9. Mask for the fakeSnow attack, divided into three parts.

Hail Pattern

Fig. 10. Observation of hail conditions, which lead to the design of the hail
pattern.

described in Algorithm 7. Note that the hail patterns are
sparsely added, since, for each coordinate of the mask, the hail
pattern can be added to the mask or not (line 3 of Algorithm 7).

IV. EVALUATING THE WEATHER ATTACK

A. Experimental Setup

We conducted the experiments on three different DNN
models, which are the LeNet-5 [37], the ResNet-32 [4] and
the CapsNet [38], trained for the CIFAR-10 dataset [39]. It
is a collection of 50, 000 training images and 10, 000 testing
images of size 32 × 32 × 3, divided into 10 classes. An
overview of the setup and tool-flow employed for conducting
the experiments is shown in Figure 11.

Algorithm 6: Hail Pattern
input : Coordinate (x0, y0)
output: Hail Pattern Ph

1 Ph = ∅
2 k = 0
3 for i← 0 to 3 do
4 for j ← 0 to 3 do
5 if

(i = j∧i < 2)∨(i+j = 3)∨(i = 2∧j 6= 2)
then

6 Ph ← pixelk = (x0 + i, y0 + j, rs, gs, bs)
7 k ← k + 1
8 end
9 end

10 end

Algorithm 7: fakeHail Mask Generation
input : Image size: length l and hight h
output: fakeHail Mask Mh

1 Mh = ∅
2 for (i, j) ∈ ({0, ..., l − 4}, {0, ..., h− 4}) do
3 Mh ← Ph(i, j) ∨ {}
4 end

The LeNet, which is composed of two convolutional layers
and two fully-connected layers followed by a softmax layer,
has been trained for 200 epochs, using a batch size of
128, weight decay 0.0001, and a learning rate scheduler that
progressively reduces its value from 0.05 to 0.0004. The
32-layer ResNet has been trained for 200 epochs, using a batch
size of 128, weight decay 0.0001, and a learning rate scheduled
to decrease from 0.1 to 0.001. The CapsNet, composed of a
convolutional layer, a primary capsule layer, and a dynamic
routing layer, has been trained for 200 epochs with a batch
size of 64 and a learning rate equal to 0.001. For clean test
images, we measure the accuracy values of 74.88%, 92.31%,
and 79.82%, for the LeNet, ResNet, and CapsNet, respectively.

Afterwards, the fakeWeather masks have been applied to
200 testing samples and the attack success rate has been
evaluated for every attack type (i.e., fakeRain, fakeSnow
and fakeHail) and every DNN model. The training, as
well as the implementation of the fakeWeather attacks and
their evaluation, has been carried out using the Keras
framework [40] with the TensorFlow [41] back-end, and
executed on an ML-workstation equipped with two Nvidia
GeForce RTX 2080 Ti GPUs.

fakeWeather Mask

Rain Snow Hail

DNN Models

Dataset
+

DNN
Training

Trained DNN
Models

fakeWeather Attack
Success Rate

Evaluation

Fig. 11. Experimental setup and tool-flow for conducting our experiments.

B. fakeWeather Attacks Evaluation

Table I reports the results for the fakeRain, fakeSnow and
fakeHail attacks in terms of Adversarial Success Rate (ASR),
which corresponds to the ratio between the misclassified
examples and all the tested examples. The results are compared
with the state-of-the-art 1-pixel, 3-pixel, and 5-pixel attacks
proposed by Su et al. [27]. Moreover, Figure 12 shows
a collection of adversarial examples generated with the
fakeWeather attacks.
fakeRain Evaluation

The fakeRain attack is successful for the LeNet and the
ResNet, since their ASRs are 72% and 67%, respectively. The

6

TABLE I
EVALUATION OF THE ADVERSARIAL SUCCESS RATE (ASR) FOR THE THE
LENET, THE RESNET, AND THE CAPSNET ON THE CIFAR-10 DATASET.
OUR PROPOSED fakeWeather ATTACKS HAVE BEEN COMPARED TO THE

1-PIXEL, 3-PIXEL, AND 5-PIXEL ATTACKS [27].

ASR on Attack LeNet ResNet CapsNet

1-pixel [27] 63% 34% 19%

3-pixel [27] 92% 79% 39%

5-pixel [27] 93% 79% 36%

fakeRain (ours) 72% 67% 36%

fakeSnow (ours) 75.5% 79.5% 30%

fakeHail (ours) 82.5% 78.5% 63%

fakeRain Attack fakeSnow Attack fakeHail Attack

(a) (b) (c)

(d) (e) (f)

Fig. 12. Examples of a few images of the CIFAR-10 dataset on which the
fakeWeather attacks are applied. (a) and (d): fakeRain adversarial examples.
(b) and (e): fakeSnow adversarial examples. (c) and (f): fakeHail adversarial
examples.

ResNet results slightly more robust than the LeNet, due to
its deeper structure. The ASR falls to 36% for the CapsNet,
since its architecture that groups the neurons into capsules,
along with the dynamic routing, helps to better encode the
spatial relations between features of the images. The example
in Figure 12a shows the image of a deer on which the fakeRain
mask is applied. All the three DNN models erroneously
classify it as a “bird”, while its clean version is correctly
classified as a “deer”. Similarly, the image in Figure 12d is
incorrectly classified as a “truck” by the LeNet and the ResNet,
while its clean version is correctly classified as a “ship”.
However, the CapsNet still classifies this adversarial example
as a “ship”.

fakeSnow Evaluation
For the fakeSnow attack, the relations between the ASRs of

the three DNN models are similar to the observations made for
the fakeRain attack, in which the CapsNet is more robust than
the other CNNs. However, the ASR results are higher for the

ResNet, compared to the LeNet. The example in Figure 12b
showing a frog with the fakeSnow mask is correctly classified
by the CapsNet, while it is incorrectly classified as a “cat” by
the ResNet and as a “truck” by the LeNet. Its clean version
is correctly classified as a “frog” by all the DNNs. The horse
in Figure 12e is correctly classified by the ResNet and the
CapsNet, while the LeNet classifies it as a “deer”.

fakeHail Evaluation
The ASR relative to the fakeHail attack is significantly

higher than the previous attacks, in particular for the CapsNet.
Due to the relatively large perturbations imposed by the hail
patterns (i.e., 8-pixel perturbations), the fakeHail mask can
break the spatial relations learned by the CapsNet and lead
to many misclassified samples. The example in Figure 12c
represents a ship with the fakeHail mask that is incorrectly
classified as an “airplane” by the LeNet and CapsNet, and as
a “truck” by the ResNet. The image in Figure 12f is incorrectly
classified as a “cat” by the LeNet, as a “deer” by the ResNet,
and as a “frog” by the CapsNet, despite showing an airplane.

C. Case Studies: Output Probability Variations under
fakeWeather attacks.

Towards a more comprehensive evaluation, we analyze
the output probability variations when different types of
fakeWeather attacks are applied to the LeNet, ResNet,
and CapsNet models. For reference, the 10 classes of the
CIFAR-10 dataset are associated with a digit 0− 9 according
to the convention in Table II.

TABLE II
CLASS LABELS FOR THE CIFAR-10 DATASET [39].

Class

0 airplane

1 automobile

2 bird

3 cat

4 deer

5 dog

6 frog

7 horse

8 ship

9 truck

Figure 13 shows how the image of a “truck” of the CIFAR-
10 dataset is classified, for different fakeWeather attacks and
different DNN models. The clean image is correctly classified
as the class 9, i.e.,“truck” by the LeNet, despite having a
relatively low confidence (see pointer 1 in Figure 13b).
When each of the fakeWeather masks is applied, the LeNet
predicts the image as a “frog” with quite high confidence (see
pointer 2 in Figure 13b). The probability variations for the
ResNet assume a different behavior. While the clean image
is correctly classified with high confidence (see pointer 3

7

 (a) (b) (c) (d)

1
2 3

5
6 4

78

Fig. 13. Example showing a “truck” to which the fakeWeather attacks are applied. (a) Clean image, fakeRain image, fakeSnow image, and fakeHail image.
(b) Output probabilities for the LeNet. (c) Output probabilities for the ResNet. (d) Output probabilities for the CapsNet.

2

31

(b)

 (a) (d)

7 89

 (c)

4
56

Fig. 14. Example showing a “bird” to which the fakeWeather attacks are applied. (a) Clean image, fakeRain image, fakeSnow image, and fakeHail image.
(b) Output probabilities for the LeNet. (c) Output probabilities for the ResNet. (d) Output probabilities for the CapsNet.

in Figure 13c), the fakeWeather attacks produce different
outcomes. With the fakeRain mask the image is classified as
an “automobile” by the ResNet (see pointer 4 in Figure 13c),
with the fakeSnow mask the highest probability belongs to the
class “bird” (see pointer 5 in Figure 13c), and the adversarial
fakeHail image is classified as an “airplane” by the ResNet
(see pointer 6 in Figure 13c). The output probabilities for
the CapsNet, while they are more concentrated in the middle
values, i.e., 1/10, show that the clean image is correctly
classified (see pointer 7 in Figure 13d), while for all the
fakeWeather attacks, the highest probability belongs to the
class “horse” (see pointer 8 in Figure 13d).

Figure 14 shows the output probability variations associated
to a “bird” image of the CIFAR-10 dataset. The clean image
is already incorrectly classified as an “airplane” by the LeNet
(see pointer 1 in Figure 14b). With the fakeRain or the
fakeHail mask, the LeNet classifies the adversarial image as
a “frog” (see pointer 2 in Figure 14b), while the adversarial
fakeSnow image is classified as a “truck” (see pointer 3 in
Figure 14b). The ResNet correctly classifies the clean image as
a “bird” with high confidence (see pointer 4 in Figure 14c).
The fakeRain and fakeHail adversarial images are classified
as a “cat” (see pointer 5 in Figure 14c), while the fakeSnow
is unsuccessful, since the image is still correctly classified by
the ResNet (see pointer 6 in Figure 14c), even though with
lower confidence than the clean image. The CapsNet correctly
classifies the clean image with very narrow difference w.r.t. the
other classes (see pointer 7 in Figure 14d). The fakeRain and
fakeSnow attacks produce adversarial images that are classified
as a “frog” by the CapsNet (see pointer 8 in Figure 14d),
while the image with the fakeHail mask is correctly classified
by the CapsNet (see pointer 9 in Figure 14d).

D. Results Discussion and Comparison

To summarize, given the above-discussed results, we can
make the following considerations:

• All the fakeWeather attacks produce a high ASR for the
LeNet and ResNet (ASR > 65%).

• The fakeHail attack is the strongest, since it achieves an
ASR equal to 63% for the CapsNet and higher for the
other DNNs.

Compared to the methods of Su et al. [27], our fakeWeather
methods have higher ASR than the 1-pixel attack for every
DNN model (see Table I). However, the 3-pixel and 5-pixel
attacks have higher ASR than our methods. Note that the
approach used by Su et al. is based on an evolutionary
algorithm that requires several queries, while our methodology
does not require any query. Yet, the ASR relative to the
CapsNet for the fakeHail attack is 27% higher than the 5-pixel
attack.

E. Future Outlooks and Applicability

From another perspective, our contributions, other than a
methodology for generating adversarial attacks in real-time
without queries, can be viewed as a data augmentation
methodology for generating synthetic samples of weather
conditions. We envision the possibility of enlarging the
dataset with images that contain fakeWeather masks and train
DNN-based classifiers more robustly to such atmospheric
phenomena, in a similar way as the adversarial training’s
functionality [24]. Since the only information required is the
image size, its high scalability makes our fakeWeather attack
methodology suitable to any vision-based outdoor application.

8

V. CONCLUSION

In this paper, we presented fakeWeather attacks, adversarial
attacks for DNNs that emulate the natural weather conditions.
Our methodology consists of observing a series of images
that capture the effects of such conditions perceived by the
camera lens, and modeling a set of patterns to create dedicated
fakeRain, fakeSnow, and fakeHail masks as a collection of
these patterns. Hence, these sets of perturbations make the
adversarial image a plausible input to the DNN. Our proposed
attack is conducted in true black-box settings, in which the
adversary has no access to the DNN model, its parameters, and
its output. The evaluation of fakeWeather attacks on different
DNN models (Convolutional Neural Networks and Capsule
Networks) highlights noticeable adversarial success rates.

ACKNOWLEDGMENT

This work has been supported in part by the Doctoral
College Resilient Embedded Systems, which is run jointly by
the TU Wien’s Faculty of Informatics and the UAS Technikum
Wien. This work was also supported in parts by the NYUAD
Center for Interacting Urban Networks (CITIES), funded by
Tamkeen under the NYUAD Research Institute Award CG001,
Center for CyberSecurity (CCS), funded by Tamkeen under
the NYUAD Research Institute Award G1104, and Center
for Artificial Intelligence and Robotics (CAIR), funded by
Tamkeen under the NYUAD Research Institute Award CG010.

REFERENCES

[1] L. Jiao et al., “A survey of deep learning-based object
detection,” IEEE Access, 2019.

[2] S. Kuutti et al., “A survey of deep learning applications to
autonomous vehicle control,” arXiv, 2019.

[3] R. Lee et al., “Deep neural network–based enhancement for
image and video streaming systems: A survey and future
directions,” ACM Comput. Surv., 2021.

[4] K. He et al., “Deep residual learning for image recognition,”
in CVPR, 2016.

[5] M. Capra et al., “Hardware and software optimizations for
accelerating deep neural networks: Survey of current trends,
challenges, and the road ahead,” IEEE Access, 2020.

[6] M. Capra et al., “An updated survey of efficient hardware
architectures for accelerating deep convolutional neural
networks,” Future Internet, 2020.

[7] B. Biggio and F. Roli, “Wild patterns: Ten years after the rise
of adversarial machine learning,” in CCS, 2018.

[8] N. Dalvi et al., “Adversarial classification,” in KDD, 2004.
[9] D. Lowd and C. Meek, “Adversarial learning,” in KDD, 2005.

[10] C. Szegedy et al., “Intriguing properties of neural networks,”
in ICLR, 2014.

[11] M. Shafique et al., “Towards energy-efficient and secure edge
AI: A cross-layer framework ICCAD special session paper,”
in ICCAD, 2021.

[12] S. Dave et al., “Special session: Towards an agile design
methodology for efficient, reliable, and secure ML systems,”
in VTS, 2022.

[13] M. Shafique et al., “Robust machine learning systems:
Challenges,current trends, perspectives, and the road ahead,”
IEEE Design & Test, 2020.

[14] B. Luo et al., “Towards imperceptible and robust adversarial
example attacks against neural networks,” in AAAI, 2018.

[15] F. Croce and M. Hein, “Sparse and imperceivable adversarial
attacks,” in ICCV, 2019.

[16] A. Marchisio et al., “Capsattacks: Robust and imperceptible
adversarial attacks on capsule networks,” arXiv, 2019.

[17] J. Chen et al., “Hopskipjumpattack: A query-efficient
decision-based attack,” in SP, 2020.

[18] F. Khalid et al., “Fadec: A fast decision-based attack for
adversarial machine learning,” in IJCNN, 2020.

[19] M. Xue et al., DNN Intellectual Property Protection:
Taxonomy, Attacks and Evaluations (Invited Paper). 2021.

[20] D. Willmott et al., “You only query once: Effective black box
adversarial attacks with minimal repeated queries,” arXiv,
2021.

[21] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and
harnessing adversarial examples,” in ICLR, 2015.

[22] A. Kurakin, I. J. Goodfellow, and S. Bengio, “Adversarial
examples in the physical world,” arXiv, 2016.

[23] S.-M. Moosavi-Dezfooli et al., “Deepfool: A simple and
accurate method to fool deep neural networks,” in CVPR,
2016.

[24] A. Madry et al., “Towards deep learning models resistant to
adversarial attacks,” in ICLR, 2018.

[25] N. Carlini and D. A. Wagner, “Towards evaluating the
robustness of neural networks,” arXiv, 2016.

[26] N. Narodytska and S. Kasiviswanathan, “Simple black-box
adversarial attacks on deep neural networks,” in CVPRW,
2017.

[27] J. Su, D. V. Vargas, and K. Sakurai, “One pixel attack for
fooling deep neural networks,” arXiv, 2017.

[28] S.-M. Moosavi-Dezfooli et al., “Universal adversarial
perturbations,” in CVPR, 2017.

[29] C. Zhang et al., “CD-UAP: class discriminative universal
adversarial perturbation,” in AAAI, 2020.

[30] D. Gragnaniello et al., “Perceptual quality-preserving black-
box attack against deep learning image classifiers,” arXiv,
2019.

[31] T. B. Brown et al., “Adversarial patch,” arXiv, 2017.
[32] K. Eykholt et al., “Robust physical-world attacks on deep

learning visual classification,” in CVPR, 2018.
[33] M. Sharif et al., “Accessorize to a crime: Real and stealthy

attacks on state-of-the-art face recognition,” in CCS, 2016.
[34] Y. Man, M. Li, and R. Gerdes, “Ghostimage: Remote

perception domain attacks against camera-based image
classification systems,” in USENIX RAID, 2020.

[35] D. Temel, M.-H. Chen, and G. AlRegib, “Traffic sign
detection under challenging conditions: A deeper look into
performance variations and spectral characteristics,” in IEEE
TITS, 2019.

[36] L. Zhai et al., “It’s raining cats or dogs? adversarial rain
attack on DNN perception,” arXiv, 2020.

[37] Y. Lecun et al., “Gradient-based learning applied to
document recognition,” IEEE, 1998.

[38] S. Sabour, N. Frosst, and G. E. Hinton, “Dynamic routing
between capsules,” in NeurIPS, 2017.

[39] A. Krizhevsky, “Learning multiple layers of features from
tiny images,” Tech. Report, 2009.

[40] F. Chollet et al., “Keras,” GitHub, 2015.
[41] M. Abadi et al., “Tensorflow: A system for large-scale

machine learning,” in OSDI, 2016.

9

	I Introduction
	I-A Target Research Problem and Associated Challenges
	I-B Our Novel Contributions

	II Background and Related Works
	III fakeWeather Attack Design
	III-A Problem Formulation and Assumptions
	III-B Observation of Weather Conditions
	III-C Pattern Extraction and Mask Generation
	III-D fakeRain Attack
	III-E fakeSnow Attack
	III-F fakeHail Attack

	IV Evaluating the Weather Attack
	IV-A Experimental Setup
	IV-B fakeWeather Attacks Evaluation
	IV-C Case Studies: Output Probability Variations under fakeWeather attacks.
	IV-D Results Discussion and Comparison
	IV-E Future Outlooks and Applicability

	V Conclusion

