
Goal-Aware Neural SAT Solver
Emils Ozolins, Karlis Freivalds, Andis Draguns,

Eliza Gaile, Ronalds Zakovskis, Sergejs Kozlovics
Institute of Mathematics and Computer Science

University of Latvia
ozolinsemils@gmail.com, karlis.freivalds@lumii.lv

Abstract—Modern neural networks obtain information about
the problem and calculate the output solely from the input
values. We argue that it is not always optimal, and the network’s
performance can be significantly improved by augmenting it with
a query mechanism that allows the network at run time to make
several solution trials and get feedback on the loss value on each
trial. To demonstrate the capabilities of the query mechanism, we
formulate an unsupervised (not depending on labels) loss function
for Boolean Satisfiability Problem (SAT) and theoretically show
that it allows the network to extract rich information about the
problem. We then propose a neural SAT solver with a query
mechanism called QuerySAT and show that it outperforms the
neural baseline on a wide range of SAT tasks.

I. INTRODUCTION

Boolean Satisfiability Problem (SAT) is a significant NP-
complete problem with numerous practical applications –
product configuration, hardware verification, and software
package management, to name a few. There is no single efficient
algorithm that solves every SAT problem, but heuristics have
been developed that are sufficient for solving many real-life
tasks.

Neural networks have demonstrated superior performance
on many complex tasks, e.g., image and language processing,
protein folding, and playing board and computer games. So
we may expect that, in the long run, neural networks could
also replace handcrafted heuristics for SAT problems.

There are attempts for applying neural networks to solve
SAT by integrating them in contemporary solvers or replacing
them altogether. [1] proposes training NeuroSAT architecture
with single-bit supervision, predicting whether the SAT in-
stance is satisfiable. Yet, it does not directly produce variable
assignments and requires labels for the training that may be
troublesome to obtain. [2] introduces unsupervised loss for
training a neural network to solve a related Circuit-SAT problem
without requiring labels. They use differentiable constraint
relaxation to evaluate the network output and penalise the
network for violating constraints. That leads to successful
training for Circuit-SAT problems.

Usually, neural networks are trained by minimizing the loss
which is obtained at the final layer. We ask whether it is
beneficial to let the network know the loss it is currently
producing and adapting its output correspondingly. That is
not possible with the traditional supervised losses since labels
are not available at the inference time. Yet, such an approach
is sound for an unsupervised loss and, indeed, provides an
excellent basis for designing a neural SAT solver.

NNA NNB

Fig. 1: The proposed query mechanism works by producing a
query, evaluating it using an unsupervised loss function, and
passing the resulting value back to the neural network for
interpretation. It allows the model to obtain the structure and
meaning of the solvable instance and information about the
expected model output. The same unsupervised loss can be
used for evaluating the query and for training.

In this paper, we introduce a step-wise recurrent neural SAT
solver that at each step comes up with a query of variable
assignments, evaluates it with an unsupervised loss, and updates
its state based on the evaluation results. At every step, it outputs
a target solution that may contain information from all the
queries performed so far.

We prove that the proposed query mechanism employing
unsupervised loss function as query evaluator can provide the
neural network with information about (a) satisfiability status
of a solution if queried at integer points, (b) reveal the structure
of the problem instance if queried at fractional (real) points.
That provides rich information about the structure, meaning of
the problem, and its solution.

The proposed architecture is evaluated on several SAT
problems, and it outperforms the neural baseline on all of them.
We also compare it with classical SAT solvers (Glucose 4 and
GSAT) on 3-SAT and SHA-1 preimage attack tasks. Appendix
of this paper is available on https://github.com/LUMII-Syslab/
QuerySAT/blob/master/appendix.pdf.

II. QUERY MECHANISM

We hypothesize that allowing a neural network to make
several solution trials at the runtime and getting feedback about
them can significantly improve network capabilities in some
cases. It is easy to implement almost for any neural network, yet
depending on the unsupervised loss function, some networks
can be especially suitable for such augmentation.

ar
X

iv
:2

10
6.

07
16

2v
2

 [
cs

.L
G

]
 3

0
M

ay
 2

02
2

https://github.com/LUMII-Syslab/QuerySAT/blob/master/appendix.pdf
https://github.com/LUMII-Syslab/QuerySAT/blob/master/appendix.pdf

The simplest such implementation (depicted in Fig. 1)
consists of two different neural network layers. The first layer
(NNA) is given the current state (sr) and it outputs a query
(q) and some hidden state (h). We then use the unsupervised
loss function (loss) to evaluate the query and obtain evaluation
results (e). It is important to use a loss function that does
not require labels for evaluation, as they may not be available
at the test time. The evaluation results (e) together with the
hidden state (h) are then passed as the input for the second
layer (NNB) that is responsible for interpreting the evaluated
query and producing the next state (sr+1) and output logits (l).
We can calculate the gradient of the evaluation results (e) with
respect to query (q). The gradient can be optionally added as
the third input for the second layer to show the network the
direction for decreasing the loss [3]. The query mechanism is
conceptually shown in Fig. 1 and can be defined as follows:

q, h = NNA(sr)

e = loss(q)

sr+1, l = NNB(h, e, ∇qe)
L = loss(l).

Calculating output logits and loss L at every step is not
noteworthy per se but merely demonstrates that the same loss
function can be used for both – query evaluation and model
training. The training loss in principle could be evaluated only
once – at the network’s final layer and can be different from the
loss used for the query evaluation. Nevertheless, it is essential
not to merge the loss (and logits) used for query with those
used for training. Although constructed similarly, their meaning
and functioning are different (see Appendix C).

III. QUERY MECHANISM FOR SAT

We use the Boolean Satisfiability Problem (SAT) as the
testbed for validating the benefits of the query mechanism. To
this end, we propose an unsupervised loss function for SAT
problems in conjunctive normal form and theoretically show
that the query mechanism is indeed beneficial – it gives the
model access to the problem structure and contributes to the
performance of the model.

A. Boolean Satisfiability Problem

Boolean Satisfiability Problem (SAT) questions whether there
exists an interpretation (True or False assignments to the vari-
ables) that satisfies the given Boolean formula. We undertake
a related problem – finding a set of variable assignments that
satisfies the given Boolean formula. Throughout the paper,
we stick to common practice [4] and represent SAT formulas
solely in a conjunctive normal form (CNF) – conjunction of
one or more clauses where a clause is a disjunction of literals.

Any SAT formula can be naturally represented as a bipartite
variables-clauses graph, likewise known as an SAT factor graph
[4]. In such a graph, the edge between variables and clauses
graph exists whenever the variable is present in the clause.
Two types of edges are used to distinguish a variable from
its negation. Variables-clauses graph of SAT formula with n

variables and m clauses can be represented as a sparse n×m
adjacency matrix. In order to perform batching, several SAT
instances can be placed into a single factor graph yielding a
single adjacency matrix for the whole batch.

B. Unsupervised SAT loss

A common way to train neural networks is by using a
supervised loss, such as cross-entropy, which matches the
network outputs with the correct labels. But such an approach
does not work for training variable assignment for SAT due
to several possible satisfying assignments for a single SAT
instance. Also, obtaining labels involve SAT solving, which is
time-consuming for large instances. Moreover, as we want to
integrate the loss function into the neural network as a query
mechanism, it has to be differentiable and cannot rely on labels
as they are not available at the test time.

Therefore, we design a differentiable unsupervised loss
function that directly optimizes towards finding a satisfiable
variable assignment of the Boolean formula without knowing
a correct solution. To this end, we relax the Boolean domain
to continuous variables in the range [0, 1] where 0 corresponds
to False and 1 to True. The vector of all variable values in
the assignment is denoted by x. The value Vc for a clause c
is obtained by multiplying together negations of all literals in
the clause and negating the result and the loss value Lφ for a
formula φ by multiplying all the clause values of φ together:

Vc(x) = 1−
∏
i∈c+

(1− xi)
∏
i∈c−

xi,

Lφ(x) =
∏
c∈φ

Vc(x),

where xi is the value of i-th variable and c+ gives the set
of variables that occur in the clause c in the positive form
and c− in the negated form. The values Vc(x) and Lφ(x) are
equal to 1 if and only if x is a satisfying assignment of clause
c or formula φ, respectively, and strictly smaller otherwise.
So by maximizing Lφ(x) we can hope to find a satisfying
assignment to the variables. But this function is not usable in
practice since it often yields zero value in machine precision
due to multiplying together many clause values, which are all
less than one. Therefore, we use the negative logarithm of Lφ
and minimize it:

Llog
φ (x) = − log(Lφ(x)) = −

∑
c∈φ

log(Vc(x)).

Taking the logarithm of the loss does not change its mini-
mum/maximum structure, so minimizing Llog

φ is equivalent of
maximizing Lφ.

A model trained by minimizing Llog
φ produces “soft” variable

assignments in the range [0, 1]. We experimentally observe that
when the network can find a solution, it is close to binary and
rounding the values to the nearest integer produces excellent
results.

Other works [5], [6], albeit in different contexts, have also
proposed relaxing SAT formulas to continuous truth values

similar to Lφ loss (one not in the log-space) but faces the
same problems as Lφ if used for learning SAT solutions
directly. Therefore, log-space formulation Llog

φ of the loss
trades capabilities of modelling general Boolean formulas for a
loss function that gives non-zero loss for large CNF formulas
and can be directly applied for learning their solutions.

C. Power of the query

The proposed loss function, when used in the query mecha-
nism, gives the satisfiability status of a solution if queried at
the binary points 0 or 1 and reveals the structure of the formula
if queried at the intermediate (real) points. To maximize the
amount of information gained by the query and to match the
internal structure of Graph Neural Network (GNN), we employ
queries that return the loss value Vc(x) for each clause at
the query point x. The power of such query mechanism is
formulated in the Theorem 1 and 2, respectively. The proofs
of theorems are deferred to the Appendix A and B.

Theorem 1. For a binary query point x the losses Lφ(x) or
Vc(x) are equal to 1 if the formula φ or clause c is satisfied
and 0 otherwise.

Theorem 2. A single query that returns the loss Vc for each
clause c is sufficient to uniquely identify the SAT formula φ to
be solved.

The proof of theorem 1 follows immediately from the
definitions of the losses. The proof of theorem 2 shows how to
create a query point x in such a way that the literals making
up the clauses can be uniquely decoded solely from the clause
losses. The proof assumes that we know the variable and
clause count of the formula, but this assumption can be relaxed
by padding all the formulas to some fixed maximum size. A
stronger result that a single query returning only the total loss
Lφ (a single real number) might also be shown by using more
intricate reasoning, but we did not pursue this direction since
we use per-clause loss.

The construction used in theorem 2 assumes sufficiently
high precision of the numbers, exceeding the limits of standard
floating-point arithmetic. Regarding that, in our implementation,
we issue several queries in parallel (up to 128) and organize
the computation in multiple recurrent steps in which queries
are performed repeatedly and one query can depend on the
results of the previous one. Such design significantly enhances
the power of queries and relieves the need for high precision.

IV. QUERYSAT

We validate the theory in practice by building a neural SAT
solver that we call QuerySAT and evaluate its performance
on a wide range of SAT tasks - k-SAT, 3-SAT, 3-Clique, k-
Coloring, and SHA-1 preimage attack. Experimental evaluation
is performed on a single machine with 16GB RAM and a single
Nvidia T4 GPU (16GB) using AdaBelief optimizer [7]. Code
for reproducing experiments is implemented in TensorFlow and
is available at https://github.com/LUMII-Syslab/QuerySAT.

A. Model

QuerySAT is based on a GNN employing the proposed
query mechanism and unsupervised SAT loss function. It
receives a CNF Boolean formula φ in the input represented
as two adjacency matrices of variables-clauses graphs - Ap ∈
{0, 1}n×m and An ∈ {0, 1}n×m, where n and m are the
number of variables and clauses, respectively. Ap represents
all positive variable mentions in the clauses, and An represents
all negated variable mentions. The network outputs a vector
out ∈ [0, 1]n ⊆ Rn – a variable assignment. QuerySAT
works in a step-wise manner with recurrent application of
the following graph-based recurrent unit:

qi = σ(MLPq(vi, t))
ei = Vφ(qi)

ci+1 = PairNorm(MLPc(ci, ei))
vi+1 = PairNorm(MLPv(vi, Apci+1, Anci+1, ∇qiei))
out = σ(MLPo(vi+1)).

At the beginning an empty state vector initialized with all
ones is allocated for each variable and each clause and the
unit is recurrently applied to them strain steps at training and
stest steps at evaluation. At each step i starting from i = 0,
QuerySAT produces a query qi ∈ {0, 1}n×d, where d is the
feature map count, by applying a 2-layer multi-layer perceptron
MLPq to the variables state vi ∈ Rn×d. A random noise vector
t ∈ Rn×r is also given in the input to this MLP. The query is
range-limited by the sigmoid function σ and evaluated by our
unsupervised loss. Here we employ per-clause loss defined as
Vφ(qi) = {Vc(qi)) | c ∈ φ} which returns the vector of clause
losses ei.

We then obtain the new clauses state ci+1 ∈ Rm×d by
applying a 2-layer perceptron MLPc and PairNorm [8] to
the previous clauses state ci and the query result ei. Query
mechanism thus replaces a variables-to-clauses message passing
step that would be present in a classical message-passing
architecture. Then, information aggregation from clauses-to-
variables is performed by message-passing, which for some
variable sums all the clause states in which the variable occurs.
Positive and negative occurrences are treated separately and
are implemented as a sparse matrix multiplication between the
clause state ci+1 and occurrence matrices Ap and An.

The new variables state vi+1 ∈ Rn×d is then obtained by
applying a 3-layer perceptron MLPv and PairNorm to the
variables state vi, aggregated clause messages and the query
loss gradient with the respect to query qi. The new variables
state is then mapped to the output variable assignment out ∈
[0, 1]n using another 2-layer perceptron MLPo and sigmoid
function σ. In all MLP layers we use LeakyReLU activation.

The model is trained using the loss function Llog
φ proposed in

section III-B. The loss is calculated from variable assignments
out at each step, and the sum of all losses is minimized. Using
the loss at each time-step has shown performance improvements
[9], [10], [11] versus a single loss calculation at the end.
Also, it enables using many more steps in evaluation than

https://github.com/LUMII-Syslab/QuerySAT

50 100 150 200 250 300 350 400

0

20

40

60

80

100

QuerySAT (32 steps) NeuroCore (32 steps)

QuerySAT (4096 steps) NeuroCore (4096 steps)

variable count in formula

a
c
c
u
r
a
c
y
 %

Fig. 2: Part of fully solved 3-SAT in-
stances of the test set depending on the
variable count. Models were trained with
32 recurrent steps on formulas with up
to 100 variables.

4 8 1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
K

2
K

4
K

8
K

1
6
K

3
2
K

6
5
K

1
3
1
K

0

20

40

60

80

QuerySAT NeuroCore

steps taken

a
c
c
u
r
a
c
y
 %

Fig. 3: Part of fully solved 3-SAT in-
stances with 400 variables depending
on the steps taken at test time. Models
were trained with 32 recurrent steps on
formulas with up to 100 variables.

0 5k 10k 15k 20k 25k 30k 35k 40k
0

5k

10k

15k

20k

25k
NeuroCore (4096 steps) QuerySAT (4096 steps)

numer of solved instances

t
im

e
 (

s
)

Fig. 4: Time vs fully solved instances
trained with 32 recurrent steps on 3-SAT
instances with 5-100 variables and then
tested on instances with 5-405 variables.

in training. Without impacting the model’s performance, we
use a conditional exit at any step if the variable assignment
satisfies the input formula.

Although giving an additional noise parameter t to MLPq
seems like a minor detail, it serves several purposes. First, it
avoids a blowup in the gradient during training, which may
result from applying normalization to zero values. Secondly, it
enables the model to learn a randomized algorithm by providing
greater diversity between the queries, which is especially
needed for obtaining good accuracy in testing with many steps.
Thirdly, it allows the model to perform differently in several
evaluations (we observed that in the experiments), mimicking
restarts in the classical SAT solvers. We find that for our
purposes t ∈ N (0, 1)n×r, where r = 4, works well.

B. Training tricks

In this section, we describe the model architecture and
training tricks that are not per se important for the power of the
proposed architecture yet slightly improves model performance.

Gradient scaling. As we calculate loss and minimize
it at each step, large gradient values may accumulate in
the backwards pass for the first-time steps. Such uneven
gradient distribution slows down training, and to mitigate
that, we introduce gradient scaling and apply it to the
variables and clauses states. It works by downscaling the
gradient in the backward pass at each time-step as follows:
stop gradient(x)α+x(1−α), where x is value and α ∈ [0, 1]
is a hyperparameter. We find that for QuerySAT with 32
recurrent steps, α = 0.2 works the best.

Multi-assignment loss. Instead of returning a single variable
assignment, we let the model return several out ∈ [0, 1]n×u,
where u ∈ Z+ is hyperparameter. The u = 8 works best for
us. For each assignment, we calculate loss value using the
proposed loss function Llog

φ and then obtain the final step
loss as a weighted sum of assignment losses. Weighting is
done as follows - we sort assignments losses in descending
order and enumerate them from 1 to u. Let’s call each such
number the loss index. Then we calculate the final loss as
the sum of each loss value multiplied with its squared index

and then dividing the sum with the sum of squared indices.
From our observations, such multi-assignment loss only gives
improvements when used with unsupervised loss as the model
in the early stages of training is free to explore various outputs.
The assignment with the lowest loss value (before weighting)
is promoted as the final model assignment.

C. Evaluation

We evaluate the QuerySAT model on several SAT tasks,
which are standard benchmarks for classical SAT solvers, and
the majority of them are not an easy feat for neural solvers.
Namely, we chose k-SAT, 3-SAT, and also 3-Clique, k-Coloring,
and SHA-1 preimage attack problems represented as CNF
Boolean formulas. All datasets consists only of satisfiable
formulas. The QuerySAT architecture is compared to the
derivative of NeuroSAT [1] that was used for predicting
unsatisfiable cores by [12] but is generally applicable to any
variables-wise predictions on SAT factor graph. Further on, we
refer to this NeuroSAT derivative as NeuroCore. The results
are also compared to the GSAT and Glucose 4 classical solvers.
For all tasks, we generate a train set of 100k formulas and
validation and test sets of 10k formulas each. The 3-SAT and
SHA-1 tasks are an exception as their test sets consist of 40k
and 5k formulas, respectively. For most tasks, we use larger
formulas in the test set to evaluate the generalization capability
of the model.

The k-SAT task is taken from [1] – each clause in the n
variable formula is generated by sampling a small integer k
(size of the clause), and then randomly without replacement
taking k of the n variables. Each variable in the clause is then
negated with 50% probability. The resulting clauses consist
of roughly four variables on average. The train and validation
sets consist of formulas with 3 to 100 variables, but the test
set – with 3 to 200 variables.

Graph and 3-SAT tasks are generated using the CNFGen
library [13], which allows encoding several popular problems
as SAT instances. We generate hard 3-SAT instances at the sat-
isfiability boundary where the relationship between the number
of clauses (m) and variables (n) is m = 4.258n+ 58.26n−

2
3

TABLE I: Mean test accuracy (higher is better) as per cent of fully solved instances from the test set over 3 consecutive runs.
Both models were trained with 32 recurrent steps for 500k training iterations and then tested with 32, 512, and 4096 recurrent
steps. Value after ± indicates the standard error.

Task QuerySAT NeuroCore

stest = 32 stest = 512 stest = 4096 stest = 32 stest = 512 stest = 4096

k-SAT 72.12± 0.19 96.61± 0.78 99.05± 0.38 21.64± 0.27 46.85± 5.02 50.82± 6.41

3-SAT 61.89± 5.19 88.20± 4.01 93.32± 3.21 28.38± 3.24 53.49± 3.94 57.63± 4.38

3-Clique 82.00± 4.73 93.06± 4.67 94.74± 4.62 1.03± 0.69 1.03± 0.66 1.04± 0.66

k-Coloring 91.70± 1.01 97.76± 0.98 98.32± 0.82 0.0± 0.0 0.0± 0.0 0.0± 0.0

SHA-1 33.25± 4.17 46.57± 1.16 46.45± 1.10 0.00± 0.0 0.27± 0.09 0.24± 0.09

[14]. The train and validation sets of 3-SAT tasks consist of
formulas with 5 to 100 variables, but test set – with 5 to 405
variables.

For the graph-based tasks, we generate Erdős–Rényi graphs
with edge probability p. For the 3-Clique task, where the
main goal is to find all triangles in the graph, we use p =
3

1
3 /(v(2−3v+v2))

1
3 , where v is the vertex count in the graph.

For the k-Coloring task we use p = (1+0.2) ln v
v + 0.05 and

the goal is to color the graph with at least k colours. Such
generation produces mostly sparse connected graphs that are
colourable using 3 to 5 colours. The graphs are then encoded
as SAT instances using the CNFGen library. For both tasks,
train and validation sets consist of graphs with 4 to 40 vertices,
but the test set – with 4 to 100 vertices.

We also experiment with the SHA-1 preimage attack task
from the SAT Race 2019 [15]. The goal of this task is to find
the message value given the hash value. The original SAT
competition task uses the SHA-1 algorithm with 17 rounds
and asks the solver to find the first up to 160 message bits.
Such configuration produces SAT instances at the threshold
of satisfiability, and it is expected that only a single solution
exists. That is a challenging task even for modern SAT solvers;
hence, we use a smaller set-up to find the first 2 to 20 bits of
the message. But even then, it is still a moderately hard task.
We generate instances for this task using the CGen tool [16].

To make the QuerySAT and NeuroCore architectures com-
parable, we train NeuroCore with the same per-step loss and
apply the same bag of tricks that we used for QuerySAT, as
described in Sections IV-A and IV-B. NeuroCore is also given
a chance to return results in any step if the correct solution
has been found. The rest of the architecture is left intact. For
both models, we use 128 feature maps that produce similarly
sized models and train them with a batch size of 20000 nodes
(max node count in the input factor graph), 32 recurrent steps
and a learning rate 2× 10−4. Hyperparameters are selected by
performing a grid search by hand. On the SHA-1 preimage
attack, models are trained for 1M iterations, but on the rest of
the tasks for 500k iterations. Afterwards, models are tested with
32, 512, and 4096 recurrent steps and the mean accuracy as a
percentage of fully solved instances over 3 consecutive runs is
depicted in Table I. We see that QuerySAT with 4096 steps
performs consistently the best for all the tasks. It can solve

3-Clique, k-Coloring and SHA-1 tasks on which NeuroCore
produces an accuracy of almost zero.

Detailed comparison of both architectures is conducted on
the 3-SAT task, where we check step-wise and formula-wise
generalization of both models. To evaluate both properties, we
use models trained with 32 recurrent steps on formulas with 3 to
100 variables. Fig. 2 depicts generalization to harder formulas
(up to 400 variables) with 32 and 4096 recurrent steps at the
test time. Fig. 3 shows step-wise generalization by changing
the number of steps stest from 4 up to 131k when testing on
the same formulas with 400 variables. QuerySAT outperforms
NeuroCore on both generalization tasks by a wide margin and,
with 32 steps, has a similar performance to the NeuroCore
with 4096 steps. QuerySAT’s performance increases with the
step count at the test time, although it is trained only with 32
steps. NeuroCore, on the contrary, plateaus at approximately
16k steps and 40% accuracy. In Fig. 4, the cactus plot is
shown comparing NeuroCore, and QuerySAT tested with 4096
recurrent steps on 3-SAT instances with 5 to 405 variables.
Cactus plot shows cumulative time spend for solving instances
(y-axis) versus cumulative solved instance count (x-axis). More
solved instances in less time indicate better model performance.
At the same time interval, QuerySAT solves ∼ 36k formulas,
while NeuroCore solves only ∼ 18k from the total of 40k
3-SAT formulas in the test set (see Fig. 4).

To show current capabilities of QuerySAT, we also compare
it to GSAT [17] and Glucose 4 [18], [19] classical solvers.
GSAT is a widely known incomplete local-search solver, and
Glucose is a contemporary conflict-driven clause learning solver.
As the QuerySAT is also an incomplete solver, it’s directly
comparable to the GSAT algorithm. Comparison to Glucose
is not on equal ground since Glucose can certify that some
instance is UNSAT while QuerySAT runs indefinitely for such
instance. That said, we present their comparison nonetheless
to give a rough idea of their relative performance. Note that
both - GSAT and Glucose 4 - may not accurately represent the
performance of modern state-of-the-art SAT solvers. All solvers
are evaluated on the same hardware but note that QuerySAT
utilizes a single Nvidia T4 GPU while the others do not. We
configure all three solvers to have approximately a 2-second
time limit by giving QuerySAT 1024 recurrent steps, GSAT –
500k steps, and setting a 2-second timeout for Glucose solver.

0 500 1000 1500 2000 2500
0

1000

2000

3000

4000

5000

QuerySAT (1024 steps) Glucose 4 GSAT

numer of solved instances

t
im

e
 (

s
)

Fig. 5: Cactus plot representing the number of solved SHA-1
preimage attack instances vs. used time for QuerySAT, GSAT
and Glucose 4 solvers.

0 5k 10k 15k 20k 25k 30k 35k
0

1000

2000

3000

4000

5000

QuerySAT (1024 steps) Glucose 4 GSAT

numer of solved instances

t
im

e
 (

s
)

Fig. 6: Cactus plot representing the number of solved 3-SAT
instances vs. used time for QuerySAT, GSAT and Glucose 4
solvers.

0 20k 40k 60k 80k 100k

0

10

20

30

40

50

60

70

80

NeuroCore + Query + Query+G

iteration

e
r
r
o
r
 %

Fig. 7: Error as per cent of unsolved instances in the validation
set depending on training iteration for the k-SAT task. The
validation set consists of 10k formulas with 3-100 variables.
stest = 64 is used for validation.

0 20k 40k 60k 80k 100k

0

20

40

60

80

100

NeuroCore + Query + Query+G

iteration

e
r
r
o
r
 %

Fig. 8: Error as per cent of unsolved instances in the validation
set depending on training iteration for the 3-Clique task.
The validation set consists of 10k graphs with 4-20 vertices.
stest = 64 is used for validation.

We compare these solvers on previously described test sets
of 3-SAT and SHA-1 tasks. The QuerySAT was trained on
the forenamed train sets. The results are depicted as cactus
plots in the Fig. 5 and 6. Glucose utilizes the structure of the
problem and therefore struggles on random 3-SAT instances yet
solves the SHA-1 task in almost no time. Even though GSAT
outperforms QuerySAT on 3-SAT instances, QuerySAT seems
to utilize the SHA-1 structure and achieves better performance
than GSAT. QuerySAT, similarly to other contemporary end-to-
end neural solvers [1], [10], in the general case, is outperformed
by classical solvers and requires breakthroughs to allow scaling
them to large industrial instances.

V. EVALUATING THE QUERY MECHANISM

We evaluate the impact of the query mechanism by aug-
menting NeuroCore architecture with it and measuring the
improvement. It is straightforward to do since NeuroCore is
similar to QuerySAT. NeuroCore uses literals-to-clauses and
clauses-to-literals message-passing to update the internal states
for literals and clauses. Therefore, we add a query mechanism
alongside the literals-to-clauses message-passing and also give
the gradient of the evaluated query to the MLP that updates
the literals state. We experiment with two variants of the query

mechanism: with both query and gradient (+ Query + G) and
only with query (+ Query). Both versions are compared with
the standard NeuroCore architecture (NeuroCore).

We chose k-SAT and 3-Clique tasks (see section IV-C) for
evaluation. We use the same dataset split as previously. For
the k-SAT task, we use the same train and validation set as
previously, but for the test set generate formulas with 100 to
200 variables. On the same note, train and validation sets for
the 3-Clique task consists of graphs with 4 to 20 vertices but
the test set of 20 to 40 vertices. The test set consists of harder
formulas to see how various variants of query mechanism
impacts generalization.

All three versions are trained for 100k iterations with the
same training and network configuration as described in Section
IV-C. The trained model is then tested with 32, 512, and 4096
recurrent steps. The mean results of 3 consecutive runs are
depicted in Table II. We also include validation error in the
train time for each version using 64 recurrent steps (stest), it
is depicted in the Fig. 7 and 8.

In Table II, we can see that both versions with a query
mechanism outperform the NeuroCore baseline. The version
with a query mechanism and gradient trains faster and achieves
better accuracy. Interestingly, adding a gradient significantly

TABLE II: Mean accuracy of NeuroCore and its augmentation with query and gradient and as per cent of fully solved instances
from the test set over 3 consecutive runs. All models are trained with 32 recurrent steps and evaluated with 32, 512, and 4096
steps. Value after ± indicates the standard error. Note that the training, validation and test instances are smaller than in Table I.

k-SAT 3-Clique

stest = 32 stest = 512 stest = 4096 stest = 32 stest = 512 stest = 4096

NeuroCore 38.86± 1.04 56.14± 3.48 60.97± 6.19 65.38± 5.09 67.12± 3.25 70.39± 2.68

+ Query 41.09± 2.33 61.21± 9.89 67.21± 13.54 62.90± 2.55 78.19± 2.67 84.55± 2.93

+ Query + G 47.92 ± 1.66 71.95 ± 6.59 75.50 ± 7.15 86.13 ± 4.83 93.96 ± 2.59 95.50 ± 1.95

improves the model’s accuracy of the 3-Clique task. We reason
that gradient is helpful for the tasks that represented as a
SAT instance has a distinct structure. Such structure is very
expressive for the 3-Clique task, yet, on the contrary, k-SAT
doesn’t have any distinct structure as it is sampled from a
uniform distribution [20].

VI. RELATED WORK

Neural networks have been proposed as an effective alter-
native for automatically developing heuristic algorithms for
NP-hard problems [21], [22]. Two main research directions
are replacing handcrafted heuristics with a neural network in
a classical solver and building end-to-end neural solvers.

[1] proposed a Graph Neural Network (GNN) architecture
called NeuroSAT that is trained using single-bit supervision
to predict whether the Boolean formula is satisfiable or not.
The variable assignment is obtained from the last layer by
performing 2-clustering on the output, but the network is never
optimized for producing the assignment explicitly. Hence, it is
not clear why such an approach should work. In a later work,
[12] simplified NeuroSAT architecture (they call it NeuroCore)
and used it for guiding high-performance solvers (e.g., MiniSAT,
Glucose) by predicting how likely each variable is in the
unsatisfiable core. [23] use Q-learning to train similar GNN for
predicting branching heuristics in MiniSAT solver. Others [24],
[23] similarly augment classical solvers with neural networks to
solve 2-Quantified Boolean Formulas and logic locked circuits.
On the same trend, [20] trained a GNN using reinforcement
learning to learn a local-search heuristic that finds a solution
similar to the GSAT / WalkSAT algorithm by flipping a single
variable in each step. It is also theoretically shown that GNN
can learn to mimic the WalkSAT algorithm [25].

Supervised and reinforcement learning are not the best
options for solving SAT, as the variable assignment is time-
consuming to obtain, many possible solutions exist, and training
may be slow. [2] proposed a differentiable unsupervised
approach for directly solving Circuit-SAT. For this purpose,
they represent variables as real numbers in the range [0, 1]
and use GNN for producing variable predictions on the
Circuit-SAT graph. The predicted variables are evaluated as
Circuit-SAT, but the AND and OR functions are substituted
with differentiable Softmax and Softmin functions. In a later
work [10], they have applied the same method for solving
SAT problems. To encourage exploration, they introduce a
temperature parameter that is annealed in the training time,

making training cumbersome. Although the training method is
closely related to ours, their loss function is more complex. [26]
lately proposed to represent Boolean functions by multilinear
polynomials and find a solution to a single formula by using
gradient descent optimization. Even though their loss function
is similar to ours, they solve the MAX-SAT problem and do
not directly optimize towards finding a solution to the SAT
problem.

VII. CONCLUSIONS

In this paper, we have proposed a query mechanism that
allows the neural network to make several solution trials, obtain
the loss of each trial and change its strategy accordingly. To
evaluate the impact of the query mechanism, we propose an
unsupervised SAT loss and integrate it with queries to form the
QuerySAT architecture. We find that QuerySAT outperforms
the message-passing neural baseline on all proposed tasks: k-
SAT, 3-SAT, 3-Clique, k-Coloring, and SHA-1 preimage attack.
Experiments show that query mechanism can significantly
increase the performance of message-passing graph neural
networks. To give a better insight into the current capabilities
of QuerySAT, we also compare it with classical solvers on
3-SAT and SHA-1 preimage attack tasks. Although we have
analyzed only SAT solving, we expect a similar benefit from
the query mechanism on other neural architectures and tasks.
Since QuerySAT employs unsupervised loss, not requiring to
know the labels, it provides rich opportunities for integration
with classical solvers.

ACKNOWLEDGMENT

We would like to thank the IMCS UL Scientific Cloud for the
computing power and Leo Trukšāns for the technical support.
This research is supported by Google Cloud and funded by
the Latvian Council of Science, projects No. lzp-2018/1-0327,
lzp-2021/1-0479.

REFERENCES

[1] D. Selsam, M. Lamm, B. Bünz, P. Liang, L. de Moura, and D. L. Dill,
“Learning a SAT solver from single-bit supervision,” arXiv preprint
arXiv:1802.03685, 2018.

[2] S. Amizadeh, S. Matusevych, and M. Weimer, “Learning To Solve
Circuit-SAT: An Unsupervised Differentiable Approach,” in International
Conference on Learning Representations, 2019. [Online]. Available:
https://openreview.net/forum?id=BJxgz2R9t7

[3] M. Andrychowicz, M. Denil, S. Gomez, M. W. Hoffman, D. Pfau,
T. Schaul, B. Shillingford, and N. De Freitas, “Learning to learn by
gradient descent by gradient descent,” arXiv preprint arXiv:1606.04474,
2016.

https://openreview.net/forum?id=BJxgz2R9t7

[4] A. Biere, M. Heule, and H. van Maaren, Handbook of satisfiability. IOS
press, 2009, vol. 185.

[5] G. Ryan, J. Wong, J. Yao, R. Gu, and S. Jana, “Cln2inv: Learning
loop invariants with continuous logic networks,” in International
Conference on Learning Representations, 2020. [Online]. Available:
https://openreview.net/forum?id=HJlfuTEtvB

[6] M. Fischer, M. Balunovic, D. Drachsler-Cohen, T. Gehr, C. Zhang, and
M. Vechev, “DL2: Training and querying neural networks with logic,” in
Proceedings of the 36th International Conference on Machine Learning,
ser. Proceedings of Machine Learning Research, K. Chaudhuri and
R. Salakhutdinov, Eds., vol. 97. PMLR, 09–15 Jun 2019, pp. 1931–1941.
[Online]. Available: https://proceedings.mlr.press/v97/fischer19a.html

[7] J. Zhuang, T. Tang, Y. Ding, S. Tatikonda, N. Dvornek, X. Papademetris,
and J. S. Duncan, “Adabelief optimizer: Adapting stepsizes by the belief
in observed gradients,” arXiv preprint arXiv:2010.07468, 2020.

[8] L. Zhao and L. Akoglu, “PairNorm: Tackling oversmoothing in GNNs,”
arXiv preprint arXiv:1909.12223, 2019.

[9] R. B. Palm, U. Paquet, and O. Winther, “Recurrent relational networks,”
arXiv preprint arXiv:1711.08028, 2017.

[10] S. Amizadeh, S. Matusevych, and M. Weimer, “PDP: A General Neural
Framework for Learning Constraint Satisfaction Solvers,” arXiv preprint
arXiv:1903.01969, 2019.

[11] E. Ozoliņš, K. Freivalds, and A. Šostaks, “Matrix Shuffle-Exchange
Networks for Hard 2D Tasks,” 2020.

[12] D. Selsam and N. Bjørner, “Guiding High-Performance SAT Solvers
with Unsat-Core Predictions,” 2019.

[13] M. Lauria, J. Elffers, J. Nordström, and M. Vinyals, “CNFgen: A
generator of crafted benchmarks,” in International Conference on Theory
and Applications of Satisfiability Testing. Springer, 2017, pp. 464–473.

[14] J. M. Crawford and L. D. Auton, “Experimental results on the crossover
point in random 3-SAT,” Artificial intelligence, vol. 81, no. 1-2, pp.
31–57, 1996.

[15] V. Skladanivskyy, “Minimalistic Round-reduced SHA-1 Pre-image
Attack,” in SAT RACE 2019: Solver and Benchmark Descriptions, ser. B-
2019-1, vol. 1. Department of Computer Science Series of Publications
B, University of Helsinki, 2019, pp. 51–52.

[16] ——, “Tailored compact cnf encoding for sha-1,” J. Satisf. Boolean
Model. Comput, 2020.

[17] B. Selman, H. Levesque, and D. Mitchell, “A new method for solving
hard satisfiability problems,” in AAAI’92 Proceedings of the tenth national
conference on Artificial intelligence, 1992, pp. 440–446.

[18] G. Audemard and L. Simon, “On the glucose SAT solver,” International
Journal on Artificial Intelligence Tools, vol. 27, no. 01, p. 1840001, 2018.

[19] N. Eén and N. Sörensson, “An extensible SAT-solver,” in International
conference on theory and applications of satisfiability testing. Springer,
2003, pp. 502–518.

[20] E. Yolcu and B. Póczos, “Learning Local Search Heuristics for Boolean
Satisfiability.” in NeurIPS, 2019, pp. 7990–8001.

[21] Y. Bengio, A. Lodi, and A. Prouvost, “Machine learning for combinatorial
optimization: a methodological tour d’horizon,” European Journal of
Operational Research, 2020.

[22] Q. Cappart, D. Chételat, E. Khalil, A. Lodi, C. Morris, and P. Veličković,
“Combinatorial optimization and reasoning with graph neural networks,”
arXiv preprint arXiv:2102.09544, 2021.

[23] V. Kurin, S. Godil, S. Whiteson, and B. Catanzaro, “Improving SAT
solver heuristics with graph networks and reinforcement learning,” arXiv
preprint arXiv:1909.11830, 2019.

[24] K. Z. Azar, H. M. Kamali, H. Homayoun, and A. Sasan, “NNgSAT:
Neural network guided SAT attack on logic locked complex structures,”
in 2020 IEEE/ACM International Conference On Computer Aided Design
(ICCAD). IEEE, 2020, pp. 1–9.

[25] Z. Chen and Z. Yang, “Graph neural reasoning may fail in certifying
boolean unsatisfiability,” arXiv preprint arXiv:1909.11588, 2019.

[26] A. Kyrillidis, A. Shrivastava, M. Vardi, and Z. Zhang, “FourierSAT:
A Fourier Expansion-Based Algebraic Framework for Solving Hybrid
Boolean Constraints,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 34, 2020, pp. 1552–1560.

[27] D. Polymath, “Variants of the Selberg sieve, and bounded intervals
containing many primes,” Research in the Mathematical sciences, vol. 1,
no. 1, pp. 1–83, 2014.

https://openreview.net/forum?id=HJlfuTEtvB
https://proceedings.mlr.press/v97/fischer19a.html

APPENDIX A
PROOF OF THEOREM 1

Theorem 1. For a binary query point x the losses Lφ(x) or
Vc(x) are equal to 1 if the formula φ or clause c is satisfied
and 0 otherwise.

Proof. The idea is to give proof in two steps. First, we prove
that when a binary query satisfies the formula, then formula
value Lφ(x) and all clauses values Vc(x) should be 1. Secondly,
when a binary query does not satisfy the formula, at least one
clause value and formula value should be 0.

Firstly, assume that the query corresponds to a satisfying
assignment, then all clauses are satisfied. That implies that
in each clause, there is at least one positive literal with its
query value being 1 or a negative literal with its query value
being 0. Therefore in each clause loss Vc(x) = 1−

∏
i∈c+(1−

xi)
∏
i∈c− xi at least one of the elements of the product is

0. That implies that all clause losses Vc(x) are equal to 1.
Therefore the loss Lφ(x) =

∏
c∈φ Vc(x) is 1.

Secondly, assume the query corresponds to an unsatisfying
assignment, then there is at least one clause c that is unsatisfied.
This implies that in the unsatisfied clause c the query value
for all positive literals is 0 and for all negative literals it
is 1. Therefore in the clause loss Vc(x) = 1 −

∏
i∈c+(1 −

xi)
∏
i∈c− xi all elements of the product are 1. This implies

that for the unsatisfied clause the corresponding clause loss
Vc(x) is 0. Therefore the loss Lφ(x) =

∏
c∈φ Vc(x) is 0, since

one of the elements of the product is 0.

APPENDIX B
PROOF OF THEOREM 2

Theorem 2. A single query that returns the loss Vc for each
clause c is sufficient to uniquely identify the SAT formula φ to
be solved.

Proof. The idea is to choose the query input values based
on primes such that the clause loss contains an irreducible
fraction with the numerator and denominator consisting of
prime factors which point to the variables that appear in the
clause. From the measured clause loss value, it is possible
to infer the corresponding irreducible fraction, and from this
fraction, we can infer the variables and the signs of their
corresponding literals in the clause.

An element of the query x = (x1, x2, . . . , xn) ∈ Rn
corresponds to a value of a variable queried at an intermediate
(real) point between 0 and 1, where n is the number of variables.
Each query element is obtained by using a pair from the series
of prime pairs where the gap between the two primes in the
pair is a fixed constant H . For H = 2 the series would be
pairs of twin primes: (3, 5), (5, 7), (11, 13), It has been
proven that there is a constant H between 2 and 246 such
that the corresponding prime pair series contains an infinite
number of elements [27]. We fix a concrete value of H for
constructing the query.

For constructing the query from the series, we take the first
n pairs (a1, b1), (a2, b2), ..., (an, bn) that fulfill the following

criteria: ∀i ai > H and ∀i,j ai 6= bj . Note that bi −H = ai.
We set the query x as (H/b1, H/b2, ...,H/bn).

Let us examine the clause loss Vc(x) = 1 −
∏
i∈c+(1 −

xi)
∏
i∈c− xi corresponding to a clause c and the query x with

i positive and k − i negative literals. To simplify the notation,
we assume without a loss of generality that the first k variables
appear in the clause and that the positive literals have lower
indices than negative literals.

Vc(x) = 1− (1− x1)(1− x2) . . . (1− xi)xi+1xi+2 . . . xk =

= 1−
(
1− H

b1

)(
1− H

b2

)
. . .

(
1− H

bi

)
H

bi+1

H

bi+2
. . .

H

bk
=

= 1− b1 −H
b1

b2 −H
b2

. . .
bi −H
bi

H

bi+1

H

bi+2
. . .

H

bk
=

= 1− a1
b1

a2
b2
. . .

ai
bi

H

bi+1

H

bi+2
. . .

H

bk
= 1− a1a2 . . . aiH

k−i

b1b2 . . . bk

The indices of the primes b1b2 . . . bk in the denominator
of the fraction in the obtained expression correspond to the
indices of variables appearing in the clause c. The indices of
the primes a1a2...ai in the numerator correspond to the indices
of variables appearing as positive literals in the clause.

The primes a1a2 . . . ai and b1b2 . . . bk are non-overlapping
and the prime factors of H are smaller than any prime ai or bi
due to the pair selection criteria. This implies that the fraction
in the representation of the clause loss that we obtained is
irreducible.

We prove that given the constructed query x, the clause loss
function is injective. To show that, we take a clause c′ that
is different from our arbitrarily chosen clause c. The clause
c′ being different from clause c implies that it will differ in
at least one literal, and therefore the irreducible fraction in
the corresponding clause losses V ′c (x) and Vc(x) will differ
in a1a2 . . . ai or b1b2 . . . bk. Due to the fundamental theorem
of arithmetic, there is only one way to write a number as a
product of its prime factors (up to the order of the factors). The
numerator or the denominator of the fraction in the losses will
differ because their prime factors will differ. Therefore any two
different clauses will produce clause losses that each contain a
different irreducible fraction. Since each rational number can
be written as an irreducible fraction in exactly one way, the
two clause losses are different rational numbers, and hence the
clause loss function is injective for the constructed query.

Therefore the clause can be identified from a query and its
corresponding loss for the clause. Since the instance φ to be
solved is uniquely represented by its constituent clauses, it can
be identified from a query and a set containing a clause loss
for each of its clauses.

APPENDIX C
QUERY RESULTS

To analyze how the model uses queries and what information
they contain, we train NeuroCore with the query mechanism on
the 3-SAT task for 100k iterations as described in the section V.
At each recurrent step, query and logit values are discretized by
applying the sigmoid function and then rounding values to the
closest integer (0 or 1). Fig. 10 reveals how many clauses the

0 20k 40k 60k 80k 100k

50

55

60

65

70

75

80

1st step 2nd step 4th step 8th step

16th step 32nd step

iteration

m
a
t
c
h
 %

Fig. 9: Match between query and logits
(higher value means more similar) of the
same recurrent step depending on the
training iteration on the 3-SAT task.

0 20k 40k 60k 80k 100k

88

90

92

94

96

1st step 2nd step 4th step 8th step

16th step 32th step

iteration

s
a
t
is

fi
e
d
 c

la
u
s
e
s
 %

Fig. 10: Per cent of clauses satisfied by
query depending on the training iteration
on the 3-SAT task.

0 20k 40k 60k 80k 100k

50

60

70

80

90

100

0st vs 1th 1st vs 2nd 3rd vs 4th

7th vs 8th 15th vs 16th 31st vs 32nd

iteration

m
a
t
c
h
 %

Fig. 11: Element-wise match (higher val-
ues indicate greater similarity) between
two queries in consecutive steps depend-
ing on the training iteration on the 3-SAT
task.

discretized query satisfies at each step in the training time. Fig.
9, on the other hand, depicts an element-wise match between
discretized queries and logits as per cent of identical variables
from the total variable count. In Fig. 9, we can see that the
queries have different values from the logits of the same step
and from the Fig. 10 we can see that they never satisfy given
Boolean formula, strengthening our belief that queries are not
used to output the true prediction but instead to obtain rich
information about the problem.

We also validate that model produces different queries at each
recurrent step, therefore obtaining rich information about the
problem. Fig. 11 depicts the match as per cent of equal elements
from the total element count between two discretized queries
of two consecutive steps. As reasoned in section III-B, query
mechanism can extract more information about the problem by
issuing several different queries at each step and accumulating
this knowledge. In Fig. 11, we can see the difference between
the last and second last query increase with the training time.
That indicates that the model learns to issue more different
queries, increasing the obtained information about the problem.

	I Introduction
	II Query mechanism
	III Query mechanism for SAT
	III-A Boolean Satisfiability Problem
	III-B Unsupervised SAT loss
	III-C Power of the query

	IV QuerySAT
	IV-A Model
	IV-B Training tricks
	IV-C Evaluation

	V Evaluating the query mechanism
	VI Related work
	VII Conclusions
	References
	Appendix A: Proof of Theorem 1
	Appendix B: Proof of Theorem 2
	Appendix C: Query results

