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Abstract—This study proposes an efficient intelligent control
structure for uncertain nonlinear systems. The controller is
implemented by a sliding mode control framework including
a modified broad leaning network (BLS) with a double-loop
recurrent structure. In addition, the proposed BLS involves a
self-organizing mechanism to increase or decrease the size of
the BLS. The technique for order of preference by similarity
to ideal solution (TOPSIS) method is used to build the self-
organizing mechanism. Moreover, two dynamic thresholds of
TOPSIS are automatically determined according to the stability
of the controller. One dynamic threshold is used to consider
whether to retain or remove existing network neurons in the
BLS; and the other is used to generate new neurons, so as to meet
the requirements of different control states and save computing
resources. To improve the network’s dynamic characteristics, a
double-loop recurrent structure is further introduced into the
self-organizing BLS. The Lyapunov stability function is used to
ensure the stability of the control system. The proposed controller
is applied to the simulation control of a nonlinear chaotic system
and a three-link robot manipulator. The experimental results
show that the proposed controller can achieve better control
performance against other network-based controllers. The source
code of this work is placed at https://github.com/wzhuang-xmu/
SODLRBLS

Index Terms—Self-organizing network, broad learning system,
double loop recurrent neural network, three-links robot manip-
ulator

I. INTRODUCTION

Nowadays, many studies have used learning methods to con-

trol uncertain nonlinear systems [1]–[3]; however, designing

an efficient intelligent controller with excellent control per-

formance is still a challenge. In particular, how counteracting

non-linearity and uncertainty is the key to solving the chal-

lenge. Many studies suggest using the robust control algorithm

as the main approach to controlling uncertain systems [4]–[7].

However, the sliding mode control (SMC) method can have

This work was supported by the Natural Science Foundation of Fujian
Province of China (No. 2021J01002).

better performance for nonlinear systems [8]–[10]. SMC can

convert high-order systems into low-order systems and SMC

is insensitive to parameter changes, capable of fast dynamic

response, and able to suppress external disturbances [11].

Therefore, the SMC-based intelligent control systems are

widely used in the control of nonlinear systems to obtain better

learning ability and faster convergence speed. In addition,

many SMC controllers involve various artificial neural net-

works to further improve their non-linear characteristics [12],

[13]. For example, a fuzzy brain emotional learning network

was embedded into an SMC control system for controlling

different types of non-linear systems including robots [14]–

[16]. In particular, the cerebellar model articulation controller

network (CMAC) with a recurrent feedback loop has attracted

good attention and led to promising results due to its struc-

ture’s greater freedoms-of-design [17], [18].

However, current SMC controllers often suffer two chal-

lenges: (1) controllers consume too many computational re-

sources, and (2) the accuracy of controllers is not high enough

and their dynamic response characteristics are insufficient. For

the first challenge, a self-organizing structure must be involved

to efficiently and flexibly invoke computational resources;

we thus find that the Technique for Order of Preference by

Similarity to Ideal Solution (TOPSIS) firstly proposed in [19]

has been applied in many dynamic networks [20]–[22], whose

results revealed that TOPSIS can use information contained in

input data to rank and select candidate neurons to build self-

organizing structures [23].

For the second challenge, the Broad Learning System net-

work (BLS) [24], [25] can expand in width, so as to provide

a faster response scheme with higher accuracy compared with

other popular neural networks. BLS is designed based on the

random vector functional-link neural network (RVFLNN) [26],

which further solves shortcomings of RVLFNN in processing

large-scale and high-dimensional data. Also, the computational

https://github.com/wzhuang-xmu/SODLRBLS
https://github.com/wzhuang-xmu/SODLRBLS


speed of a BLS network is faster than an extremely learning

machine (ELM) [27]. In addition, Fei et al. proposed a

double loop recurrent neural network (DLRNN) [28], which

combines the advantages of internal and external feedback. A

DLRNN captures both output state information and internal

state information simultaneously to own better approximation

performance than other regular recurrent neural networks.

Therefore, combining BLS and DLRNN is a potential solution

to improve a BLS network’s dynamic response-ability.

Based on the above considerations, we propose a self-

organizing BLS network-based SMC controller, in which the

TOPSIS method is used to build a self-organizing structure

to efficiently take advantage of computational resources, and

a double loop mechanism inspired by DLRNN is created to

improve the BLS network’s dynamic characteristics. Two dy-

namic thresholds: one threshold determines whether to retain

or remove the existing feature neurons and the other generates

new feature neurons, which are automatically determined to

construct the self-organizing structure. The double-loop struc-

ture is introduced into the self-organizing BLS, so as to process

both internal and output state information simultaneously. The

Lyapunov stability theorem is used to guarantee the stability

of the proposed controller and derive the updated rules of

the parameters in the proposed BLS network. The control

performance of the control system is demonstrated through a

control simulation of a nonlinear chaotic system and a three-

link robot manipulator.

The main contributions of the proposed controller include:

1) The TOPSIS method is used to evaluate outputs of

feature neurons and two dynamic thresholds are auto-

matically determined to construct a self-organizing BLS,

which meets the requirements of different control states

and saves computational resources.

2) A double-loop structure is introduced into the self-

organizing BLS: the internal feedback neural network

is added to the enhancement neurons to capture the in-

ternal state information and the external feedback neural

network is added to the output neurons to capture the

output state information, so as to improve the dynamic

characteristics of self-organizing BLS.

II. PROBLEM FORMULATION

A class of nth-order multi-input multi-output (MIMO) un-

certain nonlinear system is described as:

x(n) (t) = f (x (t)) + g (x (t))u (t) + d (t) (1)

where x (t) =
[
x(n−1) (t) , . . . , ẋ (t) , x (t)

]
∈ R

m×n is the

system state vector, u = [u1, u2, . . . , um ]
T ∈ R

m is the

control input vector. Thus, Eq. (1) is rewritten as:

x(n)(t) = f0 (x (t)) +∆f (x (t))

+ (g0 +∆g (x (t)))u(t) + d (t)

= f0 (x (t)) + g0u(t) + ε (x (t) , t) (2)

where ∆f (x (t)) and ∆g (x (t)) are the respective uncertain

terms in f (x (t)) and g (x (t)), and ε (x (t) , t) = ∆f (x (t))+

∆g (x (t))u (t)+d (t) is the lumped uncertainties and external

disturbances. If the lumped uncertainties and external distur-

bances are ignored, Eq. (2) can be rewritten as:

x(n)(t) = f0 (x (t)) + g0u(t) (3)

where f0 (x (t)) ∈ R
m and g0 = diag(g01, g02, . . . , g0m) ∈

R
m×m are the respective nominal portions of f (x (t)) and

g (x (t)). If xd (t) =
[
x
(n−1)T
d (t) , . . . , ẋT

d (t) , xT
d (t)

]T
∈

R
m×n is the desired signal, then the tracking error vector is

defined as:

e (t) =
[
e(n−1) (t) , e(n−2) (t) , . . . , ė (t) , e (t)

]T
∈ R

m·n

(4)

where e (t) = xd (t)− x (t).
Thus, an ideal sliding surface is defined as:

e (t) =




e
1
e
2
...

e
m




=




e
(n−1)
1 (t) + λ11e

(n−2)
1 (t) + · · ·+ λn1

∫ T

0
e1 (t) dt

e
(n−1)
2 (t) + λ12e

(n−2)
2 (t) + · · ·+ λn2

∫ T

0
e2 (t) dt

...

e
(n−1)
m (t) + λ1me

(n−2)
m (t) + · · ·+ λnm

∫ T

0
em (t) dt




=



1 λ11 λn1

. . .
. . .

. . .

1 λ1m λnm



[

e (t)∫ T

0
e (t) dt

]

= J

[
e (t)∫ T

0
e (t) dt

]
(5)

where J = [I, J ] = [I, λ2I, . . . , λnI] ∈ R
m×(m+1)n, λj =

[λ1j , λ2j , . . . , λnj ]
T ∈ R

n, j = 1, 2, . . . ,m.

Take the derivative of Eq. (5), we have:

ė (t) = J

[
ė (t)
e (t)

]
= J

[
e(n) (t)
e (t)

]

= e(n) (t) + Je (t) = x
(n)
d (t)− x(n) (t) + Je (t)

= x
(n)
d (t)− f0 (x (t))− g0u (t)− ε (x (t) , t) + Je (t) (6)

If the following inequality (7) can be satisfied, the control

system will be stable; meanwhile, an ideal control output

uIDEAL can be obtained.

1

2

d

dt

(
e2
i

)
≤ −

m∑

i=1

σi

∣∣∣e
i

∣∣∣ (7)

where σi > 0, i = 1, 2, . . . ,m.

Applying Eq. (6) into Eq. (7):

eT (t) ė (t) = eT (t)
[
x
(n)
d (t)− f0 (x (t))− g0u (t)

−ε (x (t) , t) + Je (t)] ≤ −
m∑

i=1

σi

∣∣∣e
i

∣∣∣ (8)



……1 𝑛…… 1 𝑛……

……

Feature node 
Group n

Feature node 
Group 1

1 q……

……

𝑦 𝑦……

……

𝐾 𝑊

𝑤

Enhancement 
node group 

Input layer

Output layer

𝑓 ≥ 𝜌 Delete the 
feature node

Retain the 
feature nodemax (𝐹) < 𝜌 Generate a new 
feature node

𝑤

TOPSIS 
multi-
criteria 

decision 
analysis

no

yes

yes

𝑤 𝑤𝑤
𝑤

Fig. 1. Structure of proposed SODLRBLS network.

uIDEAL = g−1
0

[
x
(n)
d (t)− f0 (x (t))

−ε (x (t) , t) + Je (t) + σsgn
(
e (t)

)]
(9)

where sgn (·) is a sign function.

However, the ideal control output uIDEAL cannot be ob-

tained directly because ε (x (t) , t) is unknown, and in general

we must know the exact system dynamics parameters to obtain

the functional form of f0 and g0.

In this paper, TOPSIS-based self-organizing double loop

recurrent broad learning system (SODLRBLS) is proposed to

fit this process. The input of SODLRBLS is the combination

error e (t), and its output is uSODLRBLS .

III. SELF-ORGANIZING DOUBLE LOOP RECURRENT

BROAD LEARNING SYSTEM

The TOPSIS method and DLRNN structure are introduced

into BLS to improve the performance of the control system in

this paper. TOPSIS method is applied to evaluate the output of

the feature node layer of BLS to automatically determine two

dynamic thresholds for constructing a self-organizing BLS.

the internal feedback neural network of DLRNN is added

to the enhancement node layer and the external feedback

neural network of DLRNN is added to the output layer.

The configuration of the proposed SODLRBLS network is

illustrated in Fig. 1. These layers of SODLRBLS are specified

as below.

1. Input layer: both input signals and external feedback

signals from output layer are input to every node in this layer.

The output of ith node in this layer can be denoted as:

θi =
xiwroiexui

eexui

, i = 1, 2, . . . ,m (10)

where xi is the input signal to ith node of this layer; exui is

the ith output signal of SODLRBLS calculated in the last step

and eexui is the output signal one step before exui; exui and

eexui work as the feedback signals in the external recurrent

loop; wroi are the neural weights connecting the ith node of

the output layer and the ith node of the input layer.

2. Feature node layer: there are m feature node groups,

each of which has nfj nodes. wfijk is the weight connecting

the ith input node in input layer and the kth feature node in

jth feature node group, bfjk is the bias term of the kth feature

node in jth feature node group. The output of the kth feature

node in jth feature node group is defined by:

fjk =
m∑

i=1

∅(wfijkθi + bfjk)

=
m∑

i=1

∅(wfijk

xiwroiexui

eexui

+ bfjk) (11)

where ∅ (·) is the activation function, ∅ (x) = tanh (x) =
(ex − e−x)/ (ex + e−x).

We denote F =
[
f11, . . . , f1nf

, . . . , fm1, . . . , fmnf

]T
∈

R
mnf , nf = maxm

j=1(nfj ), which indicates nf equals the

maximum number of nodes in all feature node groups. For the

convenience of calculation, if the feature node group whose

number of feature nodes is less than nf , the output value f is

regarded as 0.

The TOPSIS method is used to determine the dynamic

deleting threshold value and dynamic generating threshold

value, which are used for automatically retaining, deleting the

feature node, or generating a new feature node. The Shannon

entropy method is used to determine the weights for the

evaluation criteria in the TOPSIS. The specific process based

on [29], [30] is as follows:

Let feature nodes be the alternatives and let the outputs

fj1, fj2, . . . , fjnfj
be judgment conditions, we have:

1) Generate an evaluation vector:

f = [fj1, fj2, . . . , fjnf
] (12)

which means each feature node group is an evaluation

vector and the output of the nodes in the group con-

stitutes the dimensions of the evaluation vector. There

are a total of n evaluation vectors, each evaluation

vector has nf dimensions. Then we have: Eva =
[f1,f2, . . . ,fn]

T .

2) Normalize evaluation vector to limit the value of each

element to [0, 1] by:

bij =
Evaij√∑n
i=1 Evaij

,

i = 1, 2, . . . , n, j = 1, 2, . . . , nf (13)

3) Use the entropy weight method to obtain the weights.

The entropy method is given by [31], [32]. First, the

entropy value is calculated by:

Ej = −
1

ln (n)

n∑

i=1

(bij ln (bij)) (14)

Then, determine the diversification degree of the mea-

surement quality by:

Dj = 1− Ej (15)

Determine the weight for each evaluation criteria by:

ϕj =
Dj∑nf

j=1 Dj

(16)



4) Determine the weighted normalized decision matrix by:

vij = bijϕj , i = 1, 2, . . . , n, j = 1, 2, . . . , nf (17)

5) Determine the best weighted vector v∗ and worst vector

v′ by:

v∗j = maxni=1(vij) (18)

v′j = minni=1(vij) (19)

6) Calculate the separation distance between the best

weighted vector v∗ and the worst weighted vector v′

by:

S∗

i =

√√√√
nf∑

j=1

(v∗j − vij)
2

(20)

S′

i =

√√√√
nf∑

j=1

(v′j − vij)
2

(21)

7) Calculate the similarity to the worst condition and the

best condition by:

wci =
S∗

i

S∗

i + S′

i

(22)

bcj =
S′

i

S∗

i + S′

i

(23)

Vector wc and bc can be used to determine the dynamic

thresholds.

ρwc = Pwc min (WC) = Pwc min(max (wc)) (24)

ρbc = Pbc max (BC) = Pbc max(min (bc)) (25)

where ρwc is the dynamic deleting threshold and ρbc
is the dynamic generating threshold. WC is a storage

vector that contains the maximum values of wc in each

train round and BC is a storage vector that contains the

minimum values of bc in each train round. 0 ≤ Pwc ≤ 1
is deleting threshold coefficient and 0 ≤ P bc ≤ 1 is the

generating threshold coefficient.

With dynamic deleting and dynamic generating thresholds,

we can achieve the self-organization in the feature node layer

by :

fjk =

{
fjk if fjk ≥ ρwc,

φ if fjk < ρwc.
(26)

If the output of the feature node is greater than or equal to

ρwc, this node remains, else this node is deleted. Also, If

max(F ) < ρbc, a new feature node is generated; otherwise,

no node is added.

3. Enhancement node layer: Assume that there is one node

group with nh nodes, thus both signals from the feature node

layer and internal feedback signals are input to each node in

this layer. The output of qth node in this layer is defined as:

hq = e−netq ,

netq =
m∑

j=1

nfj∑

k=1

(
whjkqf jk

+ wrqexhq − cjkq

)2

v2jkq
(27)

where whjkq denotes the weights connecting the k-th feature

node in j-th feature node group and the q-th enhancement node

in this layer; the Gaussian function is the activation function;

wr is the weights of internal feedback; exh is the output of

enhancement layer calculated in the last epoch, which works

as the feedback signal in the internal recurrent loop. cjkq and

vjkq are the center and width of the Gaussian function, which

calculated in the q-th enhancement node for the k-th feature

node in j-th feature node group. Thus, we have:

H = [h1, h2, . . . , hnh
]
T ∈ R

nh . (28)

4. Output layer: The outputs of both the feature node layer

and enhancement node layer are passed to this layer. kijk is

the weight connecting kth feature node in jth feature node

group and the ith output node, wiq is the weight connecting

qth enhancement node and the ith output node. The output of

ith output node can be calculated by:

uSODLRBLSi
=

m∑

j=1

nf∑

k=1

kijkfjk +

nh∑

q=1

wiqhq. (29)

We define K and W as:

K = [k1jk, k2jk, . . . , kmjk]

=




k111 k211 · · · km11

...
...

...

k11nf
k21nf

· · · km1nf

k121 k221 · · · km21

...
...

...

k12nf
k22nf

· · · km2nf

...
...

...

k1m1 k2m1 · · · kmm1

...
...

...

k1mnf
k2mnf

· · · kmmnf




∈ R
mnf×m (30)

W = [w1q, w2q, . . . , wmq]

=




w11 w21 · · · wm1

w12 w22 · · · wm2

...
...

...

w1nh
w2nh

· · · wmnh


 ∈ R

nh×m. (31)

Thus, we have:

uSODLRBLS = KTF +WTH (32)

The overall computational process of the proposed SODL-

RBLS network is summarized in pseudocode in Algorithm 1.

IV. ADAPTIVE LEARNING ALGORITHM AND

CONVERGENCE ANALYSIS

The framework of the proposed SODLRBLS-based control

system is illustrated in Fig. 2. The SODLRBLS is used as

the main controller in the control system, which works with a

robust controller.



Algorithm 1 The pseudocode of SODLRBLS network.

1: calculate θi using Eq. (10);

2: calculate fjk using Eq. (11);

3: calculate dynamic deleting ρwc and generating threshold

ρbc using Eqs. (24) and (25);

4: Self-organizing of enhancement node layer according to

self-organization rule (26);

5: calculate hq using Eq. (27);

6: calculate the output u of network using Eq. (29);

7: update
˙̂
K,

˙̂
W, ˙̂wf ,

˙̂
bf , ˙̂wro, ˙̂wh, ˙̂c, ˙̂v and ˙̂wr using updating

rules (46)-(54).

Sliding 

Surface

𝜮
𝑥𝑑+
𝒆

𝑺 SODLRBLS

Robust 

Controller

Adaptive Laws

TOPSIS Method

𝜮𝑢𝑆𝑂𝐷𝐿𝑅𝐵𝐿𝑆
𝑢𝑅𝐶

Uncertain Nonlinear Systems𝑥 𝑛 𝑡 = 𝑓 𝑥 𝑡 + 𝑔 𝑥 𝑡 𝑢 𝑡 + 𝑑 𝑡 𝑢𝑥−
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+
+

𝜌𝑤𝑐, 𝜌𝑏𝑐

Fig. 2. The proposed SODLRBLS-based Control System.

A set of update laws for SODLRBLS are derived to support

the proposed control system and the rules can be proven that

global control system can achieve an H∞ tracking control

effect using the Lyapunov stability theory. The detailed proof

process is as follows:

Subtracting Eq. (9) from Eq. (6)

ė (t) = g0 [uIDEAL − u]− σsgn(e (t)) (33)

Assume that there exists an optimal SODLRBLS,

u∗

SODLRBLS , to approach an ideal controller uIDEAL. K∗

and W ∗ are optimal weight matrices, and F ∗ and H∗ are

optimal output matrices of the feature node layer and the

enhancement node layer in the optimal SODLRBLS. Then the

optimal control output is:

uIDEAL = u∗

SODLRBLS + ε =
(
KTF +WTH

)∗
+ ε

= K∗TF ∗ +W ∗TH∗ + ε
(34)

where ε is a minimum approximation error vector; K̂ and Ŵ
are estimated weight matrices; and F̂ and Ĥ are estimated

output matrices of the feature node layer and enhancement

node layer in the actual SODLRBLS. Then the actual control

output is:

u = uSODLRBLS + uRC = K̂T F̂ + ŴT Ĥ + uRC (35)

where uRC is the output of the robust controller.

Taking Eqs. (34) and (35) into Eq. (33):

ė (t) = g0

[
K∗TF ∗ +W ∗TH∗ + ε− K̂T F̂ − ŴT Ĥ

−uRC ]− σsgn
(
e (t)

)

= g0

[
K̃TF ∗ + K̂T F̃ + W̃TH∗ + ŴT H̃ + ε− uRC

]

−σsgn
(
e (t)

)
(36)

where K̃ = K∗ − K̂; W̃ = W ∗ − Ŵ ; F̃ = F ∗ − F̂ and

H̃ = H∗ − Ĥ . A partially linear form of the receptive-field

basis function vector F̃ in Taylor series can be described as:

F̃ =




f̃1
...

f̃nd


 =




(
∂f1
∂wf

)T

...(
∂fnd

∂wf

)T




|wf=ŵf
(wf

∗ − ŵf )

+




(
∂f1
∂bf

)T

...(
∂fnd

∂bf

)T




|
bf=b̂f

(
bf

∗ − b̂f

)

+




(
∂f1
∂wro

)T

...(
∂fnd

∂wro

)T




|wro=ŵro
(wro

∗ − ŵro) + β1

= Fwf
w̃f + Fbf b̃f + Fwro

w̃ro + β1 (37)

where Fwf
, Fbf and Fwro

are defined by:





Fwf
=

[
∂f1
∂wf

, . . . ,
∂fnd

∂wf

]T
|wf=ŵf

∈ R
nd×nfnd

Fbf =
[
∂f1
∂bf

, . . . ,
∂fnd

∂bf

]T
|
bf=b̂f

∈ R
nd×nfnd

Fwro
=

[
∂f1
∂wro

, . . . ,
∂fnd

∂wro

]T
|wro=ŵro

∈ R
nd×nfnd

(38)

where w̃f = wf
∗ − ŵf ; b̃f = bf

∗ − b̂f , w̃ro = wro
∗ − ŵro;

and β1 is a higher-order vector.

F ∗ can also be rewritten as:

F ∗ = F̂ + F̃ = F̂ + Fwf
w̃f + Fbf b̃f + Fwro

w̃ro + β1. (39)

Also, a partially linear form of the receptive-field basis func-



tion vector H̃ in Taylor series can be described as:

H̃ =




h̃1

...

h̃nh


 =




(
∂h1

∂wh

)T

...(
∂hnh

∂wh

)T




|wh=ŵh
(wh

∗ − ŵh)

+




(
∂h1

∂c

)T
...(

∂hnh

∂c

)T


 |c=ĉ (c

∗ − ĉ) +




(
∂h1

∂v

)T
...(

∂hnh

∂v

)T


 |v=v̂ (v

∗ − v̂)

+




(
∂h1

∂wr

)T

...(
∂hnh

∂wr

)T




|wr=ŵr
(wr

∗ − ŵr) + β2

= Hwh
w̃h +Hcc̃+Hv ṽ +Hwr

w̃r + β2

(40)

where Hwh
, Hc, Hv and Hwr

are defined by:





Hwh
=

[
∂h1

∂wh
, . . . ,

∂hnh

∂wh

]T
|wh=ŵh

∈ R
nh×mnh

Hc =
[
∂h1

∂c
, . . . ,

∂hnh

∂c

]T
|c=ĉ ∈ R

nh×mnh

Hv =
[
∂h1

∂v
, . . . ,

∂hnh

∂v

]T
|v=v̂ ∈ R

nh×mnh

Hwr
=

[
∂h1

∂wr
, . . . ,

∂hnh

∂wr

]T
|wr=ŵr

∈ R
nh×mnh

(41)

where w̃h = w∗

h−ŵh, c̃ = c∗− ĉ, ṽ = v∗− v̂, w̃r = wr
∗−ŵr,

and β2 is a higher-order vector.

H∗ can also be rewritten as:

H∗ = Ĥ+H̃ = Ĥ+Hwh
w̃h+Hcc̃+Hv ṽ+Hwr

w̃r+β2. (42)

Then, substituting Eqs. (39) and (42) to Eq. (36), we have:

ė (t) = g0

[
K̃T

(
F̂ + Fwf

w̃f + Fbf b̃f + Fwro
w̃ro + β1

)

−σsgn
(
e (t)

)
+ K̂T

(
Fwf

w̃f + Fbf b̃f + Fwro
w̃ro + β1

)

−W̃T
(
Ĥ +Hwh

w̃h +Hcc̃+Hv ṽ +Hwr
w̃r + β2

)

−ŴT
(
Hwh

w̃h +Hcc̃+Hv ṽ +Hwr
w̃r + β2

)
+ ε− uRC

]

= g0

[
K̂T

(
Fwf

w̃f + Fbf b̃f + Fwro
w̃ro

)

−ŴT
(
Hwh

w̃h +Hcc̃+Hv ṽ +Hwr
w̃r

)

+K̃T F̂ − W̃T Ĥ + τ − uRC

]
− σsgn

(
e (t)

)
(43)

where τ = K∗Tβ1 +W ∗Tβ2

+K̃T
(
Fwf

w̃f + Fbf b̃f + Fwro
w̃ro

)

+W̃T
(
Hwh

w̃h +Hcc̃+Hv ṽ +Hwr
w̃r

)
+ ε is a combined

error of SODLRBLS.

Because of the existence of τ , we can use an attenuation

constant, λ, to guarantee an H∞ tracking performance [33]:

m∑

i=1

∫ T

0

e2
i
(t)dt ≤ eT (0) g−1

0 e (0)

+ tr
[
K̃T (0) η−1

K K̃ (0)
]
+ tr

[
W̃T (0) η−1

W W̃ (0)
]

+ w̃f
T
(0) η−1

wf
w̃f (0) + b̃f

T
(0) η−1

bf
b̃f (0)

+ w̃ro
T
(0) η−1

wro
w̃ro (0) + w̃h

T
(0) η−1

wh
w̃h (0)

+ c̃T (0) η−1
c c̃ (0) + ṽT (0) η−1

v ṽ (0)

+ w̃r
T
(0) η−1

wr
w̃r (0) +

m∑

i=1

λ2
i

∫ T

0

τ2i (t)dt (44)

where ηK , ηW , ηwf
, ηbf , ηwro

, ηwh
, ηc, ηv and ηwr

are

diagonal positive constant learning-rate matrices. The initial

conditions of system are set as e (0) = 0,K̃ (0) = 0,

W̃ (0) = 0, w̃f (0) = 0, b̃f (0) = 0, w̃ro (0) = 0, w̃h (0) = 0,

c̃ (0) = 0, ṽ (0) = 0, w̃r (0) = 0, so Eq. (44) can be rewritten

as:
m∑

i=1

∫ T

0

e2
i
(t)dt ≤

m∑

i=1

λ2
i

∫ T

0

τ2i (t)dt (45)

The update laws of all parameters in SODLRBLS-based

controller proposed in this paper is described as:

˙̂
K = ηK F̂ eT (t) (46)

˙̂
W = ηW ĤeT (t) (47)

˙̂wf = ηwf
FT
wf

K̂eT (t) (48)

˙̂
bf = ηbfF

T
bf
K̂eT (t) (49)

˙̂wro = ηwro
FT
wro

K̂eT (t) (50)

˙̂wh = ηwh
HT

wh
ŴeT (t) (51)

˙̂c = ηcH
T
c ŴeT (t) (52)

˙̂v = ηvH
T
v ŴeT (t) (53)

˙̂wr = ηwr
HT

wr
ŴeT (t) (54)

uRC =
(
2R2

)−1
[IR2 + I]eT (t) (55)

where Eq. (55) is the adaptive laws of robust controller, R =
diag[λ1 λ2, . . . , λm] ∈ R

m×m is a diagonal matrix of robust

controller, whose elements are used as attenuation coefficients.

The Lyapunov function of the control system is empirically

designed as:

L
(
e (t) , K̃, W̃ , w̃f , b̃f , w̃ro, w̃h, c̃, ṽ, w̃r

)

=
1

2
[eT g−1

0 e+ tr
[
K̃T η−1

W K̃
]
+ tr

[
W̃T η−1

W W̃
]

+ w̃f
T
η−1
wf

w̃f + b̃f
T
η−1
bf

b̃f + w̃ro
T
η−1
wro

w̃ro

+ w̃h
T
η−1
wh

w̃h + c̃T η−1
c c̃+ ṽT η−1

v ṽ + w̃r
T
η−1
wr

w̃r]. (56)



Taking the derivative of the Lyapunov function and using

Eq. (36), we have:

L̇
(
e (t) , K̃, W̃ , w̃f , b̃f , w̃ro, w̃h,c̃, ṽ, w̃r

)

= eT g−1
0 ė− tr

[
K̃T η−1

K

˙̂
K
]
− tr

[
W̃T η−1

W

˙̂
W

]

− w̃f
T
η−1
wf

˙̂wf − b̃f
T
η−1
bf

˙̂
bf − w̃ro

T
η−1
wro

˙̂wro

− w̃h
T
η−1
wh

˙̂wh − c̃T η−1
c

˙̂c− ṽT η−1
v

˙̂v − w̃r
T
η−1
wr

˙̂wr

≤ −tr
[
K̃T

(
η−1
K

˙̂
K − F̂ e

T
)]

− tr
[
W̃T

(
η−1
W

˙̂
W − Ĥe

T
)]

+ w̃f
T
[
K̂Fwf

eT − η−1
wf

˙̂wf

]
+ b̃f

T
[
K̂Fbf e

T − η−1
bf

˙̂
bf

]

+ w̃ro
T
[
K̂Fwro

eT − η−1
wro

˙̂wro

]
+ w̃h

T
[
ŴHwh

eT − η−1
wh

˙̂wh

]

+ c̃T
[
ŴHce

T − η−1
c

˙̂c
]
+ ṽT

[
ŴHve

T − η−1
v

˙̂v
]

+ w̃r
T
[
ŴHwr

eT − η−1
wr

˙̂wr

]
+ eT (τ − uRC) . (57)

Substituting from Eqs. (46) to (55) into (57), we have:

L̇
(
e (t) , K̃, W̃ , w̃f , b̃f , w̃ro, w̃h,c̃, ṽ, w̃r

)

≤ eT (τ − uRC) = −
1

2
eT e−

1

2

eT e

λ2
+ eT τ

= −
1

2
eT e−

1

2

[ e
λ
− λτ

]T [ e
λ
− λτ

]
+

1

2
λ2τT τ

≤ −
1

2
eT e+

1

2
λ2τT τ. (58)

Integrating Eq. (58) from t = 0 to t = T , we have:

L (T )− L (0) ≤ −
1

2

m∑

i=0

∫ T

0

e2
i
(t)dt+

1

2

m∑

i=1

λ2
i

∫ T

0

τ2i (t)dt.

(59)

Since L (T ) > 0, we have:

m∑

i=1

∫ T

0

e2
i
(t)dt ≤ eT (0) g−1

0 e (0)

+ tr
[
K̃T (0) η−1

K K̃ (0)
]
+ tr

[
W̃T (0) η−1

W W̃ (0)
]

+ w̃f
T
(0) η−1

wf
w̃f (0) + b̃f

T
(0) η−1

bf
b̃f (0)

+ w̃ro
T
(0) η−1

wro
w̃ro (0) + w̃h

T
(0) η−1

wh
w̃h (0)

+ c̃T (0) η−1
c c̃ (0) + ṽT (0) η−1

v ṽ (0)

+ w̃r
T
(0) η−1

wr
w̃r (0) +

m∑

i=1

λ2
i

∫ T

0

τ2i (t)dt (60)

where Eq. (60) is exactly Eq. (44). The above proves that the

tracking control effect of H∞ can be achieved.

V. SIMULATION RESULTS

In this section, we first conducted an ablation experiment

of SODLRBLS to show each component’s importance in the

Duffing-Holmes chaotic system. Then, a comparison with

other neural network-based controllers was conducted in a

three-link robotic manipulator to exhibit the advantages of our

proposed work.

A. Ablation Experiment: Duffing–Holmes Chaotic System

In the ablation experiment, the backbone of SODLRBLS

was denoted as BLS; the self-organizing behavior of SODL-

RBLS was deleted, denoted as DLRBLS; and the DLRNN

structure of SODLRBLS was deleted, denoted as SOBLS.

The performances of BLS, DLRBLS, SOBLS, and SODLR-

BLS were compared to study the influence of self-organizing

behavior and DLRNN structure on the performance of the

SODLRBLS network. The control object is a Duffing-Holmes

chaotic system, whose dynamic equation is:

ẍ = f (x) + u (t) + fd (x) + d (t)

= −0.25ẋ+ x− x3 + 0.1
√
x2 + ẋ2 sin (t)

+ 0.3 cos (t) + u (t) + fd (x) + d(t) (61)

where fd (x) = 0.1x is the uncertainty, d (t) = sin (2t) +
cos (2t) is the disturbance. x (0) = ẋ (0) = 0.2 are the initial

system states. xd (0) = sin (1.1t) is the reference trajectory.

The sliding hyperplane was designed as s (t) = 0.5ė (t) +
5e(t); and the diagonal matrix R of the robust controller was

set to 0.07I , where I ∈ R
2 is a unit matrix.

The weights, bias, and parameters of the Gaussian function

of those four networks were initialized by random numbers

from [−1, 1]. The learning rate, η, is set to 0.01. The number of

feature nodes in each group is set to 3 for BLS and DLRBLS,

and the number of feature nodes in each group of SOBLS and

SODLRBLS is initialized by random numbers from [1, 10]. In

the process of self-organization, no more than 10 feature nodes

can exist in each group. The number of feature node groups

was set to 2, and the number of enhancement nodes is set to

1 for these four networks. The deleting threshold coefficient,

Pwc, was set to 0.1; and the generating threshold coefficient,

Pbc, was set to 1. We conducted ten simulation experiments

for each of the four networks and averaged all results.

The simulation results are shown in Fig. 3. Fig. 3-(a) shows

all of the trajectory phase portraits; Fig. 3-(b) shows all of

the tracking responses of x and tracking responses of ẋ;

Fig. 3-(c) shows all of tracking errors and derivative of errors.

From Fig. 3(a) to (c), all the four controllers (BLS, DLRBLS,

SOBLS and SODLRBLS) can well follow the reference tra-

jectories. Moreover, the number of remaining feature nodes

of SOBLS and SODLRBLS are shown in Fig. 3(d). In the

figure, both SOBLS-based controller and SODLRBLS-based

controller can be suitably self-organized. However, the feature

nodes of SOBLS changed more drastically, and the number of

feature nodes within the converged term is larger that that of

SODLRBLS.

In addition, Table I shows the average RMSE values of ten

simulations. The average RMSE of the DLRBLS-based con-

troller is significantly smaller than those of other BLS-based

controllers, showing that the double-loop recurrent structure

can improve the accuracy of the controller well. Also, the

performance of DLRBLS and SODLRBLS was very close,

but the result of SOBLS was not as good as SODLRBLS;

this result proved with the assistance of the TOPSIS structure,
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Fig. 3. The simulation results for a nonlinear chaotic system. (a) The trajectory phase portrait, (b) The tracking responses of x and tracking responses of ẋ,
(c) Tracking errors and derivative of errors, (d) The number of remaining feature nodes of SOBLS and SODLRBLS.

TABLE I
THE AVERAGE RMSE VALUES AND COMPUTATIONAL TIME OF 10

SIMULATIONS OF DUFFING-HOLMES CHAOTIC SYSTEM.

BLS DLRBLS SOBLS SODLRBLS

Average RMSE 0.01460 0.01358 0.01555 0.01360

Average time (s) 0.54952 0.66873 1.03437 1.21650

SODLRBLS can use fewer neurons to archive equivalent

preferment with DLRBLS.

B. Comparison Experiment: Three-Link Robot Manipulator

The model of a three-link robot manipulator is illustrated

in Fig. 4. The dynamic equation of the three-link robot

manipulator is expressed as:

M (q) q̈ + C (q, q̇) q̇ + g (q) = u+ τd (62)

where M (q) is the inertia matrix, C (q, q̇) is the

Coriolis/Centripetal matrix, g (q) is the gravity vector, u is the

output torque, τd = 2× [0.2 sin (2t), 0.1 cos (2t), 0.1 sin (t)]
T

is the external disturbance, q is the the joint angle state

vector, q̇ is the velocity vector, q̈ is the acceleration vector.

X

Y

𝒒𝟑 𝒎𝟑

𝒒𝟏

𝒒𝟐𝒎𝟐
𝒎𝟏

Fig. 4. The model of three-Link Robot Manipulator.

q = [−0.3, 0.1,−0.4]
T

, and the original state is q̇ = 0 and

q̈ = 0. The reference trajectories were set as: qd1 = 0.5 ×
[0.5 sin (2t+ 2.5) + 0.75 cos (2t+ 1.5), sin (2t) + sin (t),
0.2 cos (2t)− 0.2 sin (t)]

T
, q̇d1 = 0 and q̈d1 = 0.

The reference trajectories were changed as qd2 =



TABLE II
THE AVERAGE RMSE VALUES AND COMPUTATIONAL TIME OF TEN

SIMULATIONS OF THREE-LINK ROBOT MANIPULATOR.

DLRNN FBEL SODLRBLS

Joint 1 0.02145 0.01902 0.01897

Joint 2 0.01994 0.01845 0.01795

Joint 3 0.01925 0.01750 0.01734

Average time (s) 3.59750 3.69021 13.15782

0.5 × [0.5 sin (2t) + cos (t+ 1), sin (2t) cos (t+ 1),
0.25− 0.1 sin (t+ 1)− 0.1 sin (2t)]

T
, q̇d2 = 0 and

q̈d2 = 0 at 15s to evaluate the robustness of the proposed

control system. The sliding hyperplane was designed as

s (t) = 0.55ė (t) + 10e(t) and the diagonal matrix R of the

robust controller was set to 0.066I , where I ∈ R
2 is a unit

matrix.

The weights, bias, and parameters of the Gaussian func-

tion of SODLRBLS are initialized by random numbers from

[−0.01, 0.01]. The learning rate η is 0.0001. The number of

feature nodes in each group of SODLRBLS is initialized by

random numbers from [1, 10]. The number of feature node

groups is set to 3, and the number of enhancement nodes is

set to 3. The deleting threshold coefficient Pwc was set as 0.1

and The generating threshold coefficient Pbc was set as 0.1.

We conducted ten simulation experiments for each of the four

networks and averaged all results as well.

The simulation results are shown in Fig. 5. Figs. 5(a)-(c)

show trajectory responses and tracking errors of Joints 1, 2,

and 3. We compared the tracking effect of the SODLRBLS-

based controller with the DLRNN-based and FBEL-based

controllers. All the controllers can well handle the robotic

system; however, for the average RMSE values (given in Table

II) of ten simulations of the three-link robot manipulator,

the tracking effect of the SODLRBLS-based controller was

significantly better than those of the DLRNN-based controller

and FBEL-based controllers. In Fig. 5(d), the feature nodes of

SODLRBLS can be well self-organized in the initial stage and

when the trajectory was abruptly changed, so as to meet the

requirements of different control states and save computational

resources. Note that the number of the feature nodes contained

a chattering phenomenon after 15 seconds, more efforts should

be required to eliminate the chattering. Note that we calculated

the average computational time of the ten simulations in both

Tables I and II. In these two tables, our computational time

is larger than those of the compared methods. The reason

is the self-organization mechanism increased the amount of

computational time.

VI. CONCLUSION

In this work, we proposed a type of self-organizing neural

network that is used to build a controller for uncertain non-

linear systems. The network contained the key structure of

the TOPSIS method and Broad Learning System. In addition,

a double-loop recurrent structure was introduced to improve

the network’s dynamic characteristics. The Lyapunov stabil-

ity function was used to prove the stability of the control

system and derive the updated rules of the parameters in

the proposed network. The network-based control system was

used to simulate the control of a Duffing–Holmes chaotic

system and a three-link robot manipulator. The simulation

results showed that the proposed control system can achieve

a better tracking performance against other network-based

controllers. The future study will focus on building a more

stable organizing method for TOPSIS to reduce the node

number’s instability. In addition, it is also crucial to apply

our system to control real-time models and to deal with the

chattering problems in real dynamic systems.

.
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Fig. 5. The simulation results for a three-link robot manipulator. (a) Trajectory response and tracking error of joint 1, (b) Trajectory response and tracking
error of joint 2, (c) Trajectory response and tracking error of joint 3, (d) The number of remaining feature nodes of SODLRBLS.

[19] C. Hwung and K. Yoon, “Multiple attribute decision-making: Methods
and applications: A state-of-the-art-survey,” 1981.

[20] H. Li, J. Huang, Y. Hu, S. Wang, J. Liu, and L. Yang, “A new tmy
generation method based on the entropy-based topsis theory for different
climatic zones in china,” Energy, vol. 231, p. 120723, 2021.

[21] C.-N. Wang, T.-T. Dang, H. Tibo, and D.-H. Duong, “Assessing renew-
able energy production capabilities using dea window and fuzzy TOPSIS
model,” Symmetry, vol. 13, no. 2, p. 334, 2021.

[22] F. Foroozesh, S. M. Monavari, A. Salmanmahiny, M. Robati, and
R. Rahimi, “Assessment of sustainable urban development based on a
hybrid decision-making approach: Group fuzzy bwm, ahp, and topsis–
gis,” Sustainable Cities and Society, vol. 76, p. 103402, 2022.

[23] H.-S. Shih, H.-J. Shyur, and E. S. Lee, “An extension of topsis for group
decision making,” Mathematical and Computer Modelling, vol. 45, no.
7-8, pp. 801–813, 2007.

[24] C. P. Chen and Z. Liu, “Broad learning system: An effective and efficient
incremental learning system without the need for deep architecture,”
IEEE Transactions on Neural Networks and Learning Systems, vol. 29,
no. 1, pp. 10–24, 2017.

[25] C.-F. Hsu, B.-R. Chen, and B.-F. Wu, “Broad-learning recurrent
hermite neural control for unknown nonlinear systems,” Knowledge-

Based Systems, vol. 242, p. 108263, 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0950705122000831

[26] Y.-H. Pao and Y. Takefuji, “Functional-link net computing: theory,

system architecture, and functionalities,” Computer, vol. 25, no. 5, pp.
76–79, 1992.

[27] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning machine:
theory and applications,” Neurocomputing, vol. 70, no. 1-3, pp. 489–501,
2006.

[28] J. Fei and C. Lu, “Adaptive sliding mode control of dynamic systems
using double loop recurrent neural network structure,” IEEE Transac-

tions on Neural Networks and Learning Systems, vol. 29, no. 4, pp.
1275–1286, 2017.

[29] C.-M. Lin and T.-T. Huynh, “Function-link fuzzy cerebellar model ar-
ticulation controller design for nonlinear chaotic systems using TOPSIS
multiple attribute decision-making method,” International Journal of

Fuzzy Systems, vol. 20, no. 6, pp. 1839–1856, 2018.
[30] R. V. Rao, Decision making in the manufacturing environment: using

graph theory and fuzzy multiple attribute decision making methods.
Springer, 2007, vol. 2.

[31] C. E. Shannon, “A mathematical theory of communication,” ACM

SIGMOBILE Mobile Computing and Communications Review, vol. 5,
no. 1, pp. 3–55, 2001.

[32] M. Zeleny, Multiple criteria decision making Kyoto 1975. Springer
Science & Business Media, 2012, vol. 123.

[33] C.-H. Chen, C.-C. Chung, F. Chao, C.-M. Lin, and I. J. Rudas,
“Intelligent robust control for uncertain nonlinear multivariable systems
using recurrent cerebellar model neural networks,” Acta Polytechnica

Hungarica, vol. 12, no. 5, pp. 7–33, 2015.

https://www.sciencedirect.com/science/article/pii/S0950705122000831

	Introduction
	Problem formulation
	Self-Organizing Double Loop Recurrent Broad Learning System
	Adaptive Learning Algorithm and Convergence Analysis
	Simulation results
	Ablation Experiment: Duffing–Holmes Chaotic System
	Comparison Experiment: Three-Link Robot Manipulator

	Conclusion
	References

