
On Calibration of Graph Neural Networks
for Node Classification

1st Tong Liu
LMU Munich

Munich, Germany
tong.liu@physik.uni-muenchen.de

3rd Mitchell Joblin
Siemens AG

Munich, Germany
mitchell.joblin@siemens.com

1st Yushan Liu
Siemens AG, LMU Munich

Munich, Germany
yushan.liu@siemens.com

4th Hang Li
Siemens AG, LMU Munich

Munich, Germany
hang.li@siemens.com

2nd Marcel Hildebrandt
Siemens AG

Munich, Germany
marcel.hildebrandt@siemens.com

5th Volker Tresp
Siemens AG, LMU Munich

Munich, Germany
volker.tresp@siemens.com

Abstract—Graphs can model real-world, complex systems by
representing entities and their interactions in terms of nodes
and edges. To better exploit the graph structure, graph neural
networks have been developed, which learn entity and edge em-
beddings for tasks such as node classification and link prediction.
These models achieve good performance with respect to accuracy,
but the confidence scores associated with the predictions might
not be calibrated. That means that the scores might not reflect
the ground-truth probabilities of the predicted events, which
would be especially important for safety-critical applications.
Even though graph neural networks are used for a wide range of
tasks, the calibration thereof has not been sufficiently explored
yet. We investigate the calibration of graph neural networks for
node classification, study the effect of existing post-processing
calibration methods, and analyze the influence of model capacity,
graph density, and a new loss function on calibration. Further,
we propose a topology-aware calibration method that takes the
neighboring nodes into account and yields improved calibration
compared to baseline methods.

Index Terms—Graph neural networks, calibration, node clas-
sification

I. INTRODUCTION

Learning graph representations for relational data structures
has been gaining increasing attention in the machine learning
community [1], [2]. A graph is able to model real-world, com-
plex systems by representing entities as nodes and interactions
between them as edges. Since the information in graphs is of-
ten incomplete, e.g., missing node attributes or edges, relevant
graph-related tasks for attaining new knowledge include node
classification and link prediction. A variety of graph neural
network (GNN) models have been developed [3]–[5], which
learn node and edge embeddings in a low-dimensional vector
space. Subsequently, these embeddings can be used to solve
downstream tasks like node classification. Usually, the focus
here lies on maximizing the accuracy – the proportion of nodes
that are classified correctly. GNNs achieve good performance
with respect to accuracy but are also black boxes and lack
interpretability.

Most machine learning models output confidence scores
associated with the predictions, and the concept of calibration

captures the idea that the score should reflect the ground-truth
probability of the prediction’s correctness. For example, if 100
instances have a score of 0.6 for a specific class k, then 60
instances are expected to actually be of class k. A real-world
application is autonomous driving, where the model should
not only be aware that the object in front of the car is more
likely to be a plastic bag than a pedestrian but also know
how much more likely it is. A score distribution of 0.99 for
plastic bag and 0.01 for pedestrian or 0.51 for plastic bag and
0.49 for pedestrian could have a huge influence on the next
action of the car. Generally, calibrated scores lead to a better
interpretation of the results and increase the trustworthiness
of machine learning models, which is especially important in
safety-critical domains.

The calibration of deep neural networks has been addressed
in several works [6]–[9]. The calibration of GNNs, however,
has not been sufficiently explored yet, and existing calibration
methods do not exploit the graph structure. Due to the different
architectures of GNNs compared to neural networks, GNNs
might exhibit different calibration characteristics. In this work,
we are interested in the following research questions:

R1. How are GNNs calibrated for the node classification
task, and are existing calibration methods sufficient to calibrate
GNNs?

R2. How do model capacity (width and depth) and graph
density influence the calibration?

R3. Can a calibration error term be added to the loss
function in a straightforward way to improve the calibration
without hurting the accuracy?

R4. Can the incorporation of topological information im-
prove calibration?

To better understand the calibration properties of GNNs,
we conduct an empirical analysis of several GNN models in a
node classification setting. Based on our experimental finding
that the nodes in the graph express different levels of over-
and underconfidence, we propose a topology-aware calibration
method that takes the neighboring nodes into account. Our
contributions are summarized as follows:

ar
X

iv
:2

20
6.

01
57

0v
1

 [
cs

.L
G

]
 3

 J
un

 2
02

2

• We inspect the calibration of five representative GNN
models on three benchmark citation datasets for node
classification.

• We analyze the influence of model capacity, graph den-
sity, and a new loss function on the calibration of GNNs.

• We propose a calibration method that takes the graph
topology into account and yields improved calibration
compared to state-of-the-art post-processing calibration
methods.

In Section II, we define the necessary concepts and summarize
related work. The existing GNNs and calibration methods
used in this work are also described briefly. An experimental
study on the calibration of GNNs is presented in Section III
(→ R1, R2, R3). In Section IV (→ R1, R4), we propose
a topology-aware calibration method and show experimental
results compared to state-of-the-art calibration baselines. The
results are discussed in Section V.

II. BACKGROUND

A. Definitions

1) Node classification on graphs: An undirected graph is
defined as G = (V, E), where V is the set of nodes and E the
set of edges. An edge e = {i, j} ∈ E connects the two nodes
i and j in the graph. The information about the edges can
be encoded in an adjacency matrix A ∈ {0, 1}|V|×|V|. With
Aij being the entry in the i-th row and j-th column of A,
we define Aij = 1 if {i, j} ∈ E and Aij = 0 otherwise1.
Moreover, we define N (i) as the set of neighbors of node i.
For attributed graphs, where each node i is associated with a
d-dimensional feature vector Xi ∈ Rd, we denote the feature
matrix by X ∈ R|V|×d.

The goal of the node classification task is to assign each
node i ∈ V a class label ŷi ∈ K := {1, 2, . . . ,K}, where K
stands for the total number of classes.

2) Calibration: Let Hi ∈ Rh denote the node embedding
and yi ∈ K the ground-truth label of sample (or node) i ∈ V .
Let g : Rh → [0, 1]K be a function that takes Hi as input and
outputs a probability vector g(Hi), where g(Hi)k represents
the k-th element. The predicted class label for sample i is given
by ŷi = argmaxk∈K g(Hi)k, where p̂i = maxk∈K g(Hi)k
is called the corresponding confidence score for ŷi. Perfect
calibration is defined as P(ŷi = yi | p̂i = p) = p for all
p ∈ [0, 1] and any sample i [6].

A reliability diagram [10] plots accuracy against confidence
to visualize the calibration of the model (see Fig. 1). More
formally, the samples are grouped into M ∈ N equally-spaced
interval bins according to their confidences p̂i. For each bin
Bm, m ∈ {1, 2, . . . ,M}, the accuracy and average confidence
are calculated according to

acc(Bm) =
1

|Bm|
∑
i∈Bm

1[ŷi = yi] and (1)

conf(Bm) =
1

|Bm|
∑
i∈Bm

p̂i , (2)

1We identify nodes and indices to ease the notation.

respectively, where |Bm| denotes the number of samples in bin
Bm and 1 the indicator function. In case of perfect calibration,
the equation acc(Bm) = conf(Bm) holds for all m. Reliability
diagrams also present a way to identify if the model is over-
or underconfident. If the bars are above the diagonal line, it
implies that the accuracy is higher than the average confidence,
and the model is called underconfident. If the bars are below
the diagonal, the model is overconfident.

The expected calibration error (ECE) [11] measures the
miscalibration by averaging the gaps in the reliability diagram
and is given by

M∑
m=1

|Bm|
N
|acc(Bm)− conf(Bm)| , (3)

where N is the total number of samples.
The marginal ECE (MECE) approximates the marginal

calibration error [12], which takes all classes into account. For
each bin and every class k, it compares the average confidence
of samples for class k to the proportion of samples that has
as ground-truth label class k. The MECE is defined as

K∑
k=1

wk

M∑
m=1

1

N

∣∣∣∣∣ ∑
i∈Bm

1[yi = k]−
∑
i∈Bm

g(Hi)k

∣∣∣∣∣ , (4)

where wk is a class-dependent weight factor, which is set to
1/K if all classes are equally important.

B. Related work

Guo et al. [6] showed that modern neural networks are
miscalibrated and tend to be overconfident, i. e., the confidence
scores are higher than the proportions of correct predictions.
They proposed temperature scaling, a single-parameter variant
of Platt scaling [13], to calibrate the results. Several other
methods were introduced to improve the calibration of deep
neural networks (e. g., mixup training [7] and FALCON [8]).
Methods that improve calibration by preventing overconfi-
dence include label smoothing [9] and focal loss [14], [15].
In GNNs, calibration issues have only been studied recently.
A first evaluation of GNNs was done by Teixeira et al. [16],
who performed experiments on multiple node classification
datasets and concluded that GNNs are miscalibrated and
existing calibration methods are not always able to improve
the calibration to the desired extent.

C. Methods

1) Graph neural networks: Given an adjacency matrix A
and a feature matrix X, the idea of all GNNs is to learn
node embeddings H ∈ R|V|×h. The embedding for node i
is denoted by Hi ∈ Rh, which can be fed to a task-specific
decoder g. For example, since we are concerned with node
classification, we use a single-layer perceptron with softmax
activation as decoder. For our experiments, we select the
widely used models graph convolutional network (GCN) [3],
graph attention network (GAT) [4], and simple graph con-
volution (SGC) [17]. Further, we consider graph filter neural
network (gfNN) [18], a straightforward extension of SGC, and

Fig. 1. Reliability diagrams and corresponding confidence histograms for GCN on Cora. The two left plots show the results before calibration, while the two
right plots show the results after calibration with temperature scaling. The diagonal line indicates perfect calibration.

approximate personalized propagation of neural predictions
(APPNP) [5], a model with state-of-the-art performance.

GCN applies a normalized adjacency matrix with self-loops
Ã = D̂−

1
2 (A+ I)D̂−

1
2 , where I is the identity matrix and D̂

the degree matrix of A+ I. Concretely, the hidden layer of a
GCN is formed according to H(l+1) = σ(ÃH(l)W(l)), where
W(l) is a trainable weight matrix, σ an activation function,
and H(0) := X. GCN aggregates information from a node’s
neighbors by computing the normalized sum of adjacent node
embeddings.

GAT differs from GCN in the neighbor aggregation function
by introducing an attention mechanism that scales the impor-
tance of neighbors when summing over their embeddings.

SGC is a GCN without nonlinear activation functions be-
tween the layers, resulting from the authors’ conjecture that
the good performance of GCNs comes from the aggregation of
local neighborhood information and not from the application
of nonlinear feature maps.

gfNN extends SGC with a nonlinear layer σ so that the node
embeddings for layer l are obtained from H(l) = σ(ÃlXW),
where W is a trainable weight matrix.

APPNP is based on the personalized PageRank (PPR) algo-
rithm [19]. The node embeddings in layer l+1 are calculated
via H(l+1) = (1 − α)ÃH(l) + αH(0), where α ∈ (0, 1] is a
hyperparameter and H(0) := f(X), with f being a trainable
neural network.

2) Calibration methods: We consider the classical post-
processing methods histogram binning [20], isotonic regres-
sion [21], and Bayesian binning into quantiles (BBQ) [11],
which is a refinement of histogram binning. Further, we
include temperature scaling [6] as a multiclass calibration
method and Meta-Cal [22], a recently introduced approach
with state-of-the-art performance.

Histogram binning divides the confidence scores p̂i into M
bins and assigns a new score q̂m to each bin to represent
the calibrated confidences. The scores q̂m are learned by
minimizing

∑M
m=1

∑
i∈Bm

(q̂m − yi)2.
Isotonic regression learns a piecewise constant function f by

minimizing
∑M

m=1

∑
i∈Bm

(f(p̂i)−yi)2. It is a generalization
of histogram binning where the bin boundaries and scores are
jointly optimized.

BBQ extends histogram binning and learns a distribution
P(q̂i | p̂i,Dval) by marginalizing out all possible binnings,
where Dval is the validation set.

Temperature scaling is a single-parameter extension of Platt
scaling [13] for multiple classes. Given the output logit vector
z before the softmax activation, a rescaling z/T depending on
a temperature T > 0 is applied.

Meta-Cal combines temperature scaling as a base model
with a bipartite ranking model to weaken the limitation of
accuracy-preserving calibration methods. By investigating two
practical constraints (miscoverage rate control and coverage
accuracy control), the goal is to improve calibration depending
on the bipartite ranking while controlling the accuracy.

III. EXPERIMENTAL STUDY

A. Setup

Experiments We first inspect the calibration of GNN mod-
els on benchmark citation datasets, where we take the best
hyperparameter and training settings from the corresponding
original papers.

Then, we empirically analyze the influence of model ca-
pacity (width and depth) on calibration. It has been observed
that stacking too many GCN layers drastically worsens the
performance, which is partly attributed to a phenomenon called
oversmoothing [23]. Oversmoothing happens when repeated
neighbor aggregation leads to similar node embeddings in the
graph, and various methods have been proposed to tackle this
problem [5], [24]. In the following, we investigate if increasing
model depth also affects calibration.

One of the core mechanisms of GNNs is the message
aggregation from neighboring nodes. We examine how graph
density, i. e., the ratio of the number of edges in the graph
to the number of maximum possible edges, influences the
calibration performance.

Finally, we also test a new loss function (5) that combines
the standard cross-entropy loss Lce with an ECE-inspired term
Lcal for optimizing the calibration. We define Lcal as the cross
entropy between the confidence of the sample and the accuracy
of its corresponding bin, where the idea is that the confidence
should stay close to the accuracy. Given the original cross-
entropy loss Lce, we define the new loss as

TABLE I
DATASET STATISTICS.

Dataset K d |V| |E| Label rate
Cora 7 1,433 2,708 5,429 0.052

Citeseer 6 3,703 3,327 4,732 0.036
Pubmed 3 500 19,717 44,338 0.003

L = αLce + (1− α)Lcal with (5)

Lcal = −
N∑
i=1

acc(Bm(i)) · log(p̂i) , (6)

where α ∈ (0, 1) and Bm(i) denotes the bin that sample i
belongs to.

For the experiments on width, depth, graph density, and the
new loss function, we focus on GCN and GAT, two of the
basic and most widely used GNN models.
Datasets Cora, Citeseer, and Pubmed2 are three commonly
used benchmark datasets for node classification. They are
citation networks, where nodes represent scientific publica-
tions and edges between pairs of nodes correspond to one
publication citing the other. Each node comes with a d-
dimensional feature vector that indicates the presence of words
from a predefined vocabulary. The class label of a node is the
topic of the corresponding publication. Similar to previous
works [3], [4], we operate under a semi-supervised setting,
where only a small amount of labeled data is available during
training. The statistics of the datasets are summarized in
Table I.
Implementation The GNN models are implemented using the
PyTorch-Geometric library3. The bin number for calculating
the ECE and MECE is set to 15. More information about the
hyperparameters and experimental settings can be found in the
supplementary material4.

B. Results

Uncalibrated results We run all GNNs on the three citation
datasets and show the uncalibrated performance with respect to
accuracy, ECE, and MECE in Table II. The method APPNP
is best on Cora and Pubmed in terms of accuracy (second-
best on Citeseer), and it is also best calibrated on the datasets
Citeseer and Pubmed. For Cora, gfNN has the lowest ECE and
MECE. All models except for gfNN5 have stable calibration
values with small standard deviations. The worst method with
respect to the calibration performance is SGC, which is, apart
from the softmax activation for normalization, the only linear
model. Adding a nonlinear layer as in gfNN results in better
calibration. Moreover, we find that GAT outperforms GCN in
terms of ECE and MECE in two of three datasets.
Influence of width We compare the calibration of GCN and
GAT for varying model width, i. e., the number of hidden

2https://github.com/kimiyoung/planetoid
3https://github.com/pyg-team/pytorch geometric
4Source code and supplementary material available at https://github.com/

liu-yushan/calGNN.
5The original paper trains for 50 epochs without early stopping. A different

training setting might stabilize the results more.

TABLE II
UNCALIBRATED PERFORMANCE WITH RESPECT TO ACCURACY, ECE, AND
MECE (MEAN±SD OVER 100 INDEPENDENT RUNS). THE BEST RESULTS

ARE DISPLAYED IN BOLD.

Dataset Model Acc. ECE MECE

Cora

GCN 81.43±0.60 23.51±1.89 7.01±0.46
GAT 83.14±0.39 17.26±1.09 5.15±0.30
SGC 81.19±0.05 26.03±0.16 7.78±0.08
gfNN 78.73±5.04 6.45±2.44 3.16±1.45

APPNP 83.68±0.36 14.90±0.69 4.73±0.17

Citeseer

GCN 71.32±0.70 21.80±1.21 8.57±0.32
GAT 70.99±0.60 18.92±1.05 7.66±0.30
SGC 72.46±0.15 53.59±0.14 19.15±0.00
gfNN 67.33±6.58 15.50±4.47 8.40±1.26

APPNP 72.10±0.38 11.93±0.80 5.37±0.28

Pubmed

GCN 79.23±0.43 10.62±1.28 7.29±0.84
GAT 79.05±0.38 14.37±0.48 9.89±0.23
SGC 78.72±0.04 22.40±0.04 14.98±0.02
gfNN 77.94±2.32 6.04±2.90 5.23±2.65

APPNP 80.09±0.25 4.38±0.74 3.59±0.41

Fig. 2. Varying model width (hidden dimension per layer).

dimensions per layer. While the accuracy basically stays
constant, the ECE and MECE decrease with increasing number
of hidden dimensions initially (see Fig. 2). When a certain
width is reached, the calibration values stagnate or slightly
increase again. Generally, wider networks tend to be better
calibrated.
Influence of depth We investigate the influence of model
depth, i. e., the number of layers, on the calibration per-
formance (see Fig. 3). Oversmoothing becomes particularly
pronounced when the test accuracy decreases significantly with
increasing number of layers. The ECE first improves when
changing from two to three layers, then it increases again until
five or six layers. Using an even larger model depth, the ECE
eventually decreases again.
Influence of graph density For this experiment, we remove

https://github.com/kimiyoung/planetoid
https://github.com/pyg-team/pytorch_geometric
https://github.com/liu-yushan/calGNN
https://github.com/liu-yushan/calGNN

TABLE III
UNCALIBRATED PERFORMANCE OF GCN AND GAT UNDER THE STANDARD AND THE NEW LOSS FUNCTION (MEAN±SD OVER 10 INDEPENDENT RUNS).

THE BETTER RESULTS WHEN COMPARING THE TWO LOSS FUNCTIONS ARE UNDERLINED.

Dataset Model Acc. (Lce) ECE (Lce) MECE (Lce) Acc. (L) ECE (L) MECE (L)

Cora GCN 81.43±0.60 23.51±1.89 7.01±0.46 81.81±0.85 14.91±2.7 4.64±0.56
GAT 83.14±0.39 17.26±1.09 5.15±0.30 82.73±0.40 5.29±1.31 2.41±0.32

Citeseer GCN 71.32±0.70 21.80±1.21 8.57±0.32 71.67±0.50 14.65±0.42 6.43±0.26
GAT 70.99±0.60 18.92±1.05 7.66±0.30 71.13±0.44 9.39±0.97 4.58±0.40

Pubmed GCN 79.23±0.43 10.62±1.28 7.29±0.84 79.00±0.37 7.50±0.91 5.60±0.73
GAT 79.05±0.38 14.37±0.48 9.89±0.23 78.88±0.40 9.58±0.79 6.91±0.63

Fig. 3. Varying depth (number of layers).

different proportions of edges randomly from the dataset,
ranging from 0% (original dataset) to 100% (no graph structure
at all). The models GCN and GAT only differ in the aggre-
gation mechanism, i. e., GAT introduces attention coefficients
to weight the importance of neighbors. The results are shown
in Fig. 4. Similar to Table II, the ECE of GAT is consistently
lower than the ECE of GCN on Cora and Citeseer, while on
Pubmed, GCN expresses partly better calibration. Generally,
the graph density of Pubmed is the lowest. It might be that
the attention weights in GAT are beneficial for calibration and
especially useful when enough edges exist in the graph.
Influence of new loss function Table III compares the results
of the standard cross-entropy loss Lce and the new loss
function L from (5), which contains a calibration error term.
The new loss L improves the model calibration in all cases
while keeping the accuracy at the same level or even slightly
increasing the accuracy.
Underconfidence vs. overconfidence Taking the best hy-
perparameter and training settings from their corresponding
publications, all GNNs exhibit underconfidence on all three
datasets, i. e., the confidence scores are lower than the accuracy
of the predictions (see Fig. 1 and figures in the supplementary

Fig. 4. Influence of graph density. The graph density is the ratio of the number
of edges in the graph to the number of maximum possible edges.

material). In some cases, however, we find that the model
changes from underconfidence to overconfidence if it is trained
without early stopping.

The left plot in Fig. 5 shows the test accuracy, scaled test
negative log-likelihood (NLL), and scaled test ECE for a 4-
layer GCN on Cora during training, with a weight decay set
to 5e-4. Around epoch 150, the NLL and accuracy become
stable, while the ECE is still improving. At this point, GCN
is underconfident, as shown in the left-most reliability diagram
in Fig. 6. In the epochs between 200 and 300, the ECE
gains the best performance when the model changes from
underconfidence to overconfidence (see the two diagrams
in the middle of Fig. 6). After epoch 300, GCN starts to
overfit with repect to the ECE, while the NLL and accuracy
remain rather unchanged. During this process, overconfidence
aggravates, and the ECE increases to 7.8% in epoch 400,
which is displayed in the right-most diagram in Fig. 6.

In summary, GCN first optimizes NLL and accuracy during
training, then fits the confidence scores, and eventually starts
to overfit regarding the ECE without influencing the NLL
and accuracy. When we slightly increase the weight decay
to 7.5e-4 (see right plot in Fig. 5), the ECE stabilizes after
reaching the optimal value, and the values of NLL and
accuracy also stay in a smaller range compared to the left
plot.

Fig. 5. Test accuracy, scaled test NLL, and scaled test ECE for GCN on Cora, with a weight decay of 5e-4 (left) and 7.5e-4 (right).

Fig. 6. Reliability diagrams for GCN on Cora during the training process. From left to right, the corresponding number of epochs is 100, 200, 300, and 400.

IV. RATIO-BINNED SCALING FOR CALIBRATING GNNS

A. Same-class-neighbor ratio

From our experiments, we find that GNN models tend to
be underconfident. Even though the overall model exhibits
underconfidence, there might be differences depending on
node-level properties, which have not been considered before.
Especially for graph data, the topology could provide structural
information that are useful for calibration. For node classifica-
tion, the class labels and properties of a node’s neighbors have
a significant influence on the classification. We calculate for
each node i the same-class-neighbor ratio, i. e., the proportion
of neighbors that have the same class as node i, and develop
a new binning scheme that groups samples into bins based on
the same-class-neighbor ratio for calibration.

To evaluate the correlation between the same-class-neighbor
ratio and the confidence of a model, we calculate the ratio for
each node based on the ground-truth labels. In Fig. 7, we group
the nodes into 5 equally-spaced interval bins according to
their ratios. Employing a trained GNN model, we compute the
output of the classifier g for each node and draw the average
confidence of the samples in each bin as a blue bar. The
gap illustrates the difference between the average confidence
and the accuracy in each bin. We observe that the average
confidence increases with the same-class-neighbor ratio, where
bins with higher ratios express underconfidence and bins with
lower ratios overconfidence. Consequently, a binning scheme
that groups samples depending on their same-class-neighbor
ratios would take the graph structure into account and allow

for an adaptive calibration depending on the confidence level
of each bin.

B. Ratio-binned scaling

We propose ratio-binned scaling (RBS), a topology-aware
method, which first approximates the same-class-neighbor
ratio for each sample, then groups the samples into M bins,
and finally learns a temperature for each bin to rescale the
confidence scores.

In the semi-supervised setting, we only know the labels of
a small number of nodes and therefore cannot use the true
labels for binning. One natural option is to replace the nodes’
ground-truth labels with their confidence scores for estimating
the same-class-neighbor ratio. More precisely, we define the
estimated ratio for node i as

r̂(i) =
1

|N (i)|
∑

j∈N (i)

g(Hj)ŷi
∈ [0, 1] , (7)

where Hj is the node embedding of node j, which is learned
by a GNN model, and g is the classifier. g(Hj)ŷi denotes the
confidence score of node j corresponding to the class ŷi that
is predicted for the central node i.

For the ratio-based binning scheme, let {Bm | 1 ≤ m ≤M}
be a set of bins that partitions the interval [0, 1] uniformly.
After calculating the output for all nodes, each node i is
assigned to a bin according to its estimated same-class-
neighbor ratio r̂(i), i. e., B1 = {i ∈ V | r̂(i) ∈ [0, 1

M]} and
Bm = {i ∈ V | r̂(i) ∈ (m−1M , m

M]} for m ∈ {2, . . . ,M}.

Fig. 7. The nodes are grouped according to their same-class-neighbor ratios. The blue bar represents the average confidence and the gap the difference
between average confidence and accuracy in each bin.

TABLE IV
CALIBRATED PERFORMANCE WITH RESPECT TO ECE (MEAN±SD OVER 100 INDEPENDENT RUNS). THE BEST GNN MODEL FOR EACH CALIBRATION

METHOD IS UNDERLINED. THE BEST CALIBRATION METHOD FOR EACH GNN MODEL IS DISPLAYED IN BOLD.

Dataset Model Uncal. His. bin. Iso. reg. BBQ Tem. scal. Meta-Cal RBS RRBS

Cora

GCN 23.51±1.89 4.50±0.76 3.94±0.66 4.53±0.64 3.82±0.60 4.09±0.65 3.90±0.61 3.10±0.63
GAT 17.26±1.09 4.86±0.62 4.04±0.59 4.18±0.60 3.53±0.66 3.28±0.65 3.34±0.63 2.67±0.54
SGC 26.03±0.16 4.38±0.30 4.21±0.42 4.35±0.21 4.05±0.11 4.02±0.35 3.55±0.07 2.57±0.11
gfNN 6.45±2.44 3.80±0.86 3.72±0.78 4.15±1.22 3.74±1.34 4.07±1.52 3.77±0.96 3.39±1.22

APPNP 14.90±0.69 4.20±0.62 3.43±0.60 3.90±0.57 3.14±0.50 3.48±0.57 3.01±0.53 2.68±0.44

Citeseer

GCN 21.80±1.21 4.61±0.82 4.46±0.93 5.30±1.09 4.86±0.76 5.04±0.90 4.99±0.75 4.11±0.88
GAT 18.92±1.05 5.00±0.73 4.90±0.69 5.04±0.71 5.92±0.58 6.08±0.61 4.45±0.73 4.71±0.67
SGC 53.59±0.14 7.55±0.23 6.93±0.19 7.43±0.13 4.47±0.19 4.17±0.29 4.04±0.17 2.97±0.20
gfNN 15.50±4.47 4.74±1.00 4.92±1.03 5.06±1.37 5.43±1.27 5.45±1.32 5.19±1.31 4.34±1.27

APPNP 11.93±0.80 4.75±0.85 4.50±0.67 5.10±1.02 4.98±0.67 5.29±0.67 5.08±0.69 3.97±0.58

Pubmed

GCN 10.62±1.28 4.69±0.78 4.76±0.77 4.69±0.74 4.27±0.61 4.99±1.11 4.16±0.60 3.28±0.89
GAT 14.37±0.48 4.85±0.89 4.93±0.78 5.70±1.03 3.94±0.67 4.45±0.74 3.61±0.75 2.56±0.56
SGC 22.40±0.04 4.40±0.29 4.29±0.21 5.04±0.22 4.13±0.12 4.64±0.58 4.07±0.17 3.01±0.12
gfNN 6.04±2.90 4.98±1.06 5.00±0.83 5.15±1.26 4.97±1.67 6.06±1.95 4.91±1.65 3.78±1.03

APPNP 4.38±0.74 4.86±0.75 4.72±0.57 4.79±0.84 3.98±0.59 4.34±0.72 3.80±0.60 2.60±0.47

Let the output of g be in the form g(Hi) = σ(Zi) ∈ RK

for node i, where σ is the softmax function and Zi the logits
before normalization. For each bin Bm, m ∈ {1, . . . ,M}, a
temperature Tm > 0 is learned on the validation dataset.

The calibrated confidence for a test node j is then given by

q̂j = σ(Zj/Tm) ∈ [0, 1]K if j ∈ Bm. (8)

We apply temperature scaling for calibrating the nodes in
each bin, but it would also be possible to apply other post-
processing calibration methods for obtaining calibrated scores.

C. Results

Table IV summarizes the calibration performance of all con-
sidered post-processing calibration methods and our proposed
method RBS in terms of ECE. All methods can improve the
calibration of GNN models on Cora and Citeseer. In particular,
the obtained ECE for a specific dataset and calibration method
is rather similar for all GNNs regardless of the uncalibrated
ECE. On Pubmed, most methods have difficulties improving
calibration of APPNP, which already has low ECE. RBS
gains the best performance in the majority of the cases and
outperforms classical temperature scaling in 11 out of 15
experiments.

Next to a good calibration performance, accuracy preserva-
tion is desirable for calibration methods. RBS and temperature
scaling do not change the ranking of the classes and thus the
accuracy stays unchanged. Meta-Cal trades good calibration
for lower accuracy, while the other methods yield comparable
or even slightly improved accuracy in some cases (see supple-
mentary material).

D. Effectiveness of real-ratio-binned scaling

Table IV also shows the calibrated results of real-ratio-
binned scaling (RRBS), where we assume that the ground-truth
labels are available for all nodes. RRBS outperforms the best
calibration method in 14 out of 15 experiments. Although the
correct labels are not accessible in the semi-supervised setting,
the results still indicate the effectiveness of the intuition of our
proposed method.

V. DISCUSSION

In general, the calibration performance depends on the spe-
cific GNN model and dataset, where all models perform best
on Pubmed (see Table IV). When using the hyperparameter
and training settings from the original publications, all GNNs
tend to be underconfident on all three datasets, in contrast
to the finding that deep neural network models rather exhibit

overconfidence [6], [7]. However, when plotting the reliability
diagrams for a varying number of epochs, we observe that in
some cases, underconfidence changes to overconfidence when
the number of epochs increases. It seems that underconfidence
or overconfidence is not necessarily a property of the model
architecture but is also dependent on the training setting.

Most GNNs suffer from oversmoothing, which becomes ap-
parent when increasing the number of layers in the model [5],
[23], [24]. We observe that for large numbers of layers, the
accuracy drops significantly, while the ECE improves. Over-
smoothing results in similar node embeddings, which might
be uninformative for the model. In this case, the model would
most likely learn the distribution of classes in the training data
as confidence scores. Therefore, all samples would be grouped
into one bin, resulting in low ECE if the test distribution is
close to the training distribution. However, such a model does
not make use of the underlying graph structure and is probably
not useful for application.

The results for RBS and RRBS show the potential of a
calibration method that takes the graph structure into ac-
count, where the binning scheme is constructed depending on
node-level properties. RRBS almost always outperforms RBS,
which suggests that RBS might be especially helpful for cases
where the estimated ratios are close to the real ratios, i.e., for
models with relatively high accuracy. The number of bins for
RBS was chosen from {2, 3, 4}, and it seems that even a small
number of bins can lead to improved calibration compared to
classical temperature scaling. It would further be interesting to
apply RBS to other kinds of datasets, e.g., heterophilic graphs,
where nodes from different classes are likely to be connected.

VI. CONCLUSION

We investigated the calibration of graph neural networks
for node classification on three benchmark datasets. Graph
neural networks seem to be miscalibrated, where the exact
calibration depends on both the dataset and the model. Existing
post-processing calibration methods are able to alleviate the
miscalibration but do not consider the graph structure. Based
on our experimental finding that the nodes in the graph express
different levels of over- or underconfidence depending on their
same-class-neighbor ratios, we proposed the topology-aware
calibration metohd ratio-binned scaling. It takes the predictions
of neighboring nodes into account and shows better perfor-
mance compared to state-of-the-art baselines. For future work,
it would be interesting to gain a more theoretical understanding
of the calibration properties and conduct experiments on larger
and a wider variety of datasets.

ACKNOWLEDGMENT

This work has been supported by the German Federal
Ministry for Economic Affairs and Climate Action (BMWK)
as part of the project RAKI under grant number 01MD19012C.

REFERENCES

[1] I. Chami, S. Abu-El-Haija, B. Perozzi, C. Ré, and K. Murphy, “Ma-
chine learning on graphs: A model and comprehensive taxonomy,”
arXiv:2005.03675, 2021.

[2] W. L. Hamilton, R. Ying, and J. Leskovec, “Representation learning
on graphs: Methods and applications,” Bulletin of the IEEE Computer
Society Technical Committee on Data Engineering, vol. 40, pp. 52–74,
2017.

[3] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in Proceedings of the Fifth International Con-
ference on Learning Representations, 2017.

[4] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and
Y. Bengio, “Graph attention networks,” in Proceedings of the Sixth
International Conference on Learning Representations, 2018.

[5] J. Klicpera, A. Bojchevski, and S. Günnemann, “Predict then propagate:
Graph neural networks meet personalized PageRank,” in Proceedings
of the Seventh International Conference on Learning Representations,
2019.

[6] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger, “On calibration of
modern neural networks,” in Proceedings of the Thirty-Fourth Interna-
tional Conference on Machine Learning, 2017.

[7] S. Thulasidasan, G. Chennupati, J. Bilmes, T. Bhattacharya, and
S. Michalak, “On mixup training: Improved calibration and predictive
uncertainty for deep neural networks,” in Proceedings of the Thirty-Third
Conference on Neural Information Processing Systems, 2019.

[8] C. Tomani and F. Buettner, “Towards trustworthy predictions from deep
neural networks with fast adversarial calibration,” in Proceedings of the
Thirty-Fifth AAAI Conference on Artificial Intelligence, 2021.

[9] R. Müller, S. Kornblith, and G. Hinton, “When does label smoothing
help?” in Proceedings of the Thirty-Third Conference on Neural Infor-
mation Processing Systems, 2019.

[10] A. H. Murphy and R. L. Winkler, “Reliability of subjective probability
forecasts of precipitation and temperature,” Applied Statistics, vol. 26,
pp. 41–47, 1977.

[11] M. P. Naeini, G. F. Cooper, and M. Hauskrecht, “Obtaining well
calibrated probabilities using Bayesian binning,” in Proceedings of the
Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015.

[12] A. Kumar, P. Liang, and T. Ma, “Verified uncertainty calibration,”
in Proceedings of the Thirty-Third Conference on Neural Information
Processing Systems, 2019.

[13] J. C. Platt, “Probabilistic outputs for support vector machines and
comparisons to regularized likelihood methods,” Advances in Large
Margin Classifiers, 1999.

[14] J. Mukhoti, V. Kulharia, A. Sanyal, S. Golodetz, P. H. S. Torr, and
P. K. Dokania, “Calibrating deep neural networks using focal loss,”
in Proceedings of the Thirty-Fourth Conference on Neural Information
Processing Systems, 2020.

[15] N. Charoenphakdee, J. Vongkulbhisal, N. Chairatanakul, and
M. Sugiyama, “On focal loss for class-posterior probability estimation:
A theoretical perspective,” in Proceedings of the 2021 Conference on
Computer Vision and Pattern Recognition, 2021.

[16] L. Teixeira, B. Jalaian, and B. Ribeiro, “Are graph neural networks
miscalibrated?” arXiv:1905.02296, 2019.

[17] F. Wu, T. Zhang, Jr. Souza, A. H. d., C. Fifty, T. Yu, and K. Q.
Weinberger, “Simplifying graph convolutional networks,” in Proceedings
of the Thirty-Sixth International Conference on Machine Learning, 2019.

[18] H. NT and T. Maehara, “Revisiting graph neural networks: All we have
is low-pass filters,” arXiv:1905.09550, 2019.

[19] L. Page, S. Brin, R. Motwani, and T. Winograd, “The PageRank citation
ranking: Bringing order to the web,” Stanford InfoLab, 1998.

[20] B. Zadrozny and C. Elkan, “Obtaining calibrated probability estimates
from decision trees and naive Bayesian classifiers,” in Proceedings of
the Eighteenth International Conference on Machine Learning, 2001.

[21] ——, “Transforming classifier scores into accurate multiclass probability
estimates,” in Proceedings of the Eighth ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, 2002.

[22] X. Ma and M. B. Blaschko, “Meta-Cal: Well-controlled post-hoc cali-
bration by ranking,” in Proceedings of the Thirty-Eighth International
Conference on Machine Learning, 2021.

[23] Q. Li, Z. Han, and X.-M. Wu, “Deeper insights into graph convolutional
networks for semi-supervised learning,” in Proceedings of the Thirty-
Second AAAI conference on Artificial Intelligence, 2018.

[24] K. Xu, C. Li, Y. Tian, T. Sonobe, K.-i. Kawarabayashi, and S. Jegelka,
“Representation learning on graphs with jumping knowledge networks,”
in Proceedings of the Thirty-Fifth International Conference on Machine
Learning, 2018.

SUPPLEMENTARY MATERIAL

GNN models We follow the best hyperparameter and
training settings given by the corresponding graph
neural network papers, using the PyTorch-Geometric
implementation6 of GCN [3], GAT [4], SGC [17], and
APPNP [5]. For SGC, we set the learning rate to 0.2, train for
100 epochs without early stopping, and tune weight decay for
60 iterations using Hyperopt7, according to the original paper.
We implement gfNN [18] by ourselves and follow the setting
in the original paper. In order to capture the variance across
different training runs, each model is run for 100 times, and
we report the averaged results with standard deviations.

Width We conduct experiments on the influence of width
on the models GCN and GAT, where we use the best
hyperparameter settings and vary the hidden dimensions per
layer in the range given by {2i | 3 ≤ i ≤ 10}. Dropout layers
are removed, and the number of epochs is set to 200 with
early stopping after 10 epochs without improvement of the
validation loss. Each model is run for 10 times.

Depth We conduct experiments on the influence of depth on
the models GCN and GAT, where we follow the experimental
setting in Appendix B by Kipf and Welling [3]. The number
of layers is in the range {1, 2, . . . , 10}. Each model is run for
10 times.

Graph density We conduct experiments on the influence
of graph density on the models GCN and GAT. Different
proportions of edges are removed randomly from 0% (original
dataset) to 100% (no graph structure at all). Each model is
run for 10 times.

New loss function We follow the setting by Tomani and Buet-
tner [8], who also introduced an ECE-inspired loss function.
An annealing coefficient is specified for the calibration error
term since the early epochs are usually used for reaching the
cross entropy minimum. More precisely, we define

anneal coef = λ ·min

{
1,

epoch

EPOCHS · anneal max

}
, (9)

L̃cal = anneal coef · Lcal , and (10)

L = α · Lce + (1− α) · L̃cal , (11)

where epoch and EPOCHS are the current training
epoch and the total number of epochs, respectively, and
λ, anneal max, and α are hyperparameters. We set
anneal max = 1, λ = 1, and tune α on the validation set
in the range {0.95, 0.96, 0.97, 0.98, 0.99}. Each model (fixed
hyperparameter setting) is run for 10 times.

6https://github.com/pyg-team/pytorch geometric/tree/master/benchmark/
citation

7https://github.com/hyperopt/hyperopt

https://github.com/pyg-team/pytorch_geometric/tree/master/benchmark/citation
https://github.com/pyg-team/pytorch_geometric/tree/master/benchmark/citation
https://github.com/hyperopt/hyperopt

TABLE V
CALIBRATED ACCURACY (MEAN±SD OVER 100 INDEPENDENT RUNS). TEMPERATURE SCALING AND RBS DO NOT CHANGE THE ACCURACY.

Dataset Model Uncal. His Iso BBQ Meta

Cora

GCN 81.43±0.60 80.38±0.82 81.80±0.57 81.34±0.67 79.23±1.61
GAT 83.14±0.39 81.39±0.48 84.05±0.51 83.52±0.59 79.99±1.70
SGC 81.19±0.05 79.91±0.13 81.16±0.11 79.83±0.24 78.77±1.88
gfNN 78.73±5.04 79.06±1.16 80.21±1.28 79.96±1.31 76.30±5.51

APPNP 83.68±0.36 82.52±0.46 83.45±0.45 83.20±0.53 81.33±1.79

Citeseer

GCN 71.32±0.70 71.93±0.84 72.39±0.66 71.79±0.99 68.22±4.13
GAT 70.99±0.60 71.78±0.56 72.21±0.52 71.81±0.70 68.28±2.63
SGC 72.46±0.15 74.13±0.05 73.81±0.12 73.32±0.13 69.19±2.08
gfNN 67.33±6.58 71.74±1.22 71.98±1.15 71.10±1.22 64.63±6.61

APPNP 72.10±0.38 72.94±0.48 72.90±0.48 72.63±0.83 69.64±2.29

Pubmed

GCN 79.23±0.43 79.01±0.55 79.03±0.46 78.85±0.67 76.99±4.62
GAT 79.05±0.38 78.50±0.61 78.85±0.38 78.19±0.56 78.00±1.43
SGC 78.72±0.04 79.05±0.08 79.30±0.03 79.88±0.19 77.83±1.57
gfNN 77.94±2.32 77.92±1.11 78.16±0.98 77.76±1.33 75.66±3.05

APPNP 80.09±0.25 80.12±0.44 80.15±0.30 79.50±0.47 78.37±1.64

Fig. 8. Histograms and reliability diagrams for GCN.

Fig. 9. Histograms and reliability diagrams for GAT.

Fig. 10. Histograms and reliability diagrams for SGC.

Fig. 11. Histograms and reliability diagrams for gfNN.

Fig. 12. Histograms and reliability diagrams for APPNP.

Fig. 13. Influence of width.

Fig. 14. Influence of depth.

Fig. 15. Influence of graph density.

	I Introduction
	II Background
	II-A Definitions
	II-A1 Node classification on graphs
	II-A2 Calibration

	II-B Related work
	II-C Methods
	II-C1 Graph neural networks
	II-C2 Calibration methods

	III Experimental study
	III-A Setup
	III-B Results

	IV Ratio-binned scaling for calibrating GNNs
	IV-A Same-class-neighbor ratio
	IV-B Ratio-binned scaling
	IV-C Results
	IV-D Effectiveness of real-ratio-binned scaling

	V Discussion
	VI Conclusion
	References

