
TinyML for UWB-radar based
presence detection

Massimo Pavan
Politecnico di Milano

Milan, Italy
massimo.pavan@polimi.it

Armando Caltabiano
Truesense s.r.l.
Milan, Italy

armando.caltabiano@truesense.it

Manuel Roveri
Politecnico di Milano

Milan, Italy
manuel.roveri@polimi.it

Abstract—Tiny Machine Learning (TinyML) is a novel re-
search area aiming at designing machine and deep learning
models and algorithms able to be executed on tiny devices
such as Internet-of-Things units, edge devices or embedded
systems. In this paper we introduce, for the first time in the
literature, a TinyML solution for presence-detection based on
UltrawideBand (UWB) radar, which is a particularly promising
radar technology for pervasive systems. To achieve this goal we
introduce a novel family of tiny convolutional neural networks for
the processing of UWB-radar data characterized by a reduced
memory footprint and computational demand so as to satisfy
the severe technological constraints of tiny devices. From this
technological perspective, UWB-radars are particularly relevant
in the presence-detection scenario since they do not acquire
sensitive information of users (e.g., images, videos or audio),
hence preserving their privacy.

The proposed solution has been successfully tested on a public-
available benchmark for the indoor presence detection and on a
real-world application of in-car presence detection.

Index Terms—Tiny Machine Learning, UltraWideBand (UWB)
radar, Presence detection, Privacy-preserving computation.

I. INTRODUCTION

IN recent years the technological evolution is paving the
way for a pervasive diffusion of tiny devices, such as

Internet-of-Things (IoT) units, edge devices and embedded
systems, representing the technological asset of the “com-
puting everywhere” paradigm [1][2]. From this technological
perspective, the scientific trend is to move the processing (and
in particular the intelligent processing) as close as possible
to where data are generated to increase the autonomy of tiny
devices, reduce the latency with which a decision is made,
reduce the required transmission bandwidth and increase the
energy efficiency [3][4]. Designing Machine and Deep Learn-
ing solutions (MDL) able to be executed on these tiny devices
requires to completely re-think and re-design MDL models
and algorithms so as to take into account the severe constraints
on memory (the available RAM is in the order of the MB),
computation (the MCU frequency is in the order of the MHz),
and power consumption (typically < 0.1 W) of these devices.

This is exactly where Tiny Machine Learning (TinyML)
comes into play by designing, developing and deploying MDL
models and algorithms for tiny devices. TinyML solutions
present in the literature typically introduce tiny MDL architec-
tures (characterized by reduced memory and computational de-
mands of the processing layers and weights) and approximate-

computing solutions (such as quantization [5], pruning[6],
and early-exit mechanisms[7][8]) to fit the severe technical
constraints characterizing these tiny devices.

Interestingly, one of the most promising application scenar-
ios of such intelligent tiny devices is “presence detection”, i.e.,
detecting the presence of a person in a given environment.
Currently the research in the field of TinyML for presence
detection focused on the analysis of data coming from cameras
(formalized as a “visual wake-word detection” problem) or
microphones (formalized as a “keyword/sound spotting” prob-
lem) [9][10]. Unfortunately, acquiring and processing these
types of data pose serious and legitimate concerns in terms of
user privacy since images, videos or audio of people can be
considered sensitive information [11].

To address this challenging and relevant issue we introduce
here, for the first time in the literature, the use of radar
sensors in TinyML for presence detection. In more detail, we
focus on UltrawideBand (UWB) radar, which is a particularly
promising radar technology for tiny devices. Indeed uwb-
radars are characterized by high precise recordings (they can
detect changes in the environment in the order of the mm), low
energy consumption (typically < 0.1 W) and fast acquisition
of data (each scan requires only some fraction of seconds to be
collected) [12]. We emphasize that enabling the use of TinyML
solutions for UWB-radar will pave the way for intelligent
pervasive applications based on tiny devices enforcing the
privacy of the users.

The aim of this paper is to introduce a new family of
Tiny Convolutional Neural Networks (TyCNNs) for presence-
detection through UWB-radar data on tiny devices. This family
of CNNs relies on an integrated ad-hoc design of tiny dilated
convolutional blocks and quantization of the CNN architecture
to reduce the computational and memory demands (of both
weights and activations). The proposed family of CNNs is
complemented with a suitably-defined pre-processing phase to
further reduce the memory and computational demand, while
maintaining the presence-detection accuracy.

The proposed solution has been successfully tested on
both a public-available benchmark for UWB-radar-based pres-
ence detection and a real-world in-car presence detection
application. In particular, the proposed UWB-based TinyML
solution for the in-car presence-detection has been successfully
deployed and tested in real-world conditions on an ESP32 mi-

978-1-7281-8671-9/22/$31.00 ©2022 IEEE

20
22

 In
te

rn
at

io
na

l J
oi

nt
 C

on
fe

re
nc

e
on

 N
eu

ra
l N

et
w

or
ks

 (I
JC

N
N

) |
 9

78
-1

-7
28

1-
86

71
-9

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IJC
N

N
55

06
4.

20
22

.9
89

29
25

Authorized licensed use limited to: Politecnico di Milano. Downloaded on March 23,2023 at 17:52:15 UTC from IEEE Xplore. Restrictions apply.

crocontroller unit (4 MB of flash memory, 512 KB of S-RAM
memory), equipped with a uwb-radar module comprising only
one pair of antennas.

The paper is organized as follows. Section II describes the
related literature, while Section III introduces the proposed
TinyML solution for UWB-based presence-detection. Section
IV details the problem definitions and the experimental results
for the indoor and in-car presence detection scenarios. Finally,
Section V draws the conclusion and describes the future
research directions in this field.

II. RELATED LITERATURE

This section describes the related literature in the field of
TinyML (Section II-A) and the available UWB-radar solutions
for presence detection and activity recognition (Section II-B).
We emphasize that, currently, no TinyML solution able to
process UWB-radar data is available in the literature.

A. TinyML

The research in the field of MDL for embedded systems
and IoT units is mainly addressed from two different perspec-
tives: the development of custom hardware and the design of
approximated MDL solutions.

In the last few years, the development of custom hardware
specifically designed to run MDL solutions has radically
improved the performance and reduced power consumption.
Unfortunately, these advantages come at the expense of an
increased complexity of the design phase along with a lower
flexibility with respect to general-purpose hardware [13]. In
such a technological scenario [14], GPUs , TPUs, or neural
hardware would allow to significantly improve the overall
performances in terms of training and inference time, but
their power consumption makes them not a viable solution
for embedded systems and IoT units.

The design of approximated machine/deep learning solu-
tions capable of addressing the strict technological constraints
of embedded and IoT units (in terms of memory, computation
and energy) is a relevant and continuously-growing research
field. Despite being a very fragmented area, the techniques
introduced in this area can generally fall within the field of
TinyML [10][15]. Most of the related literature focuses on the
approximation of Convolutional Neural Network algorithms.
For example, [16] introduced a methodology to explore sparse
CNN architectures that could be executed on Microcontroller
units (MCUs), whereas [17] proposed Bonsai, a decision
tree-based technique to perform CNN-inference efficiently on
Arduino boards. In addition, pruning of channels and layers
of CNNs has proven to be a successful [18][19] in reducing
the memory and computational demand.

A different approach to approximate CNNs aims at reducing
the memory required to store the CNN weights through
quantization by using limited-precision data types [20][21] or
binary weights [22][23]. In such a direction, [24] combined
both task dropping and precision scaling techniques to design
approximated CNNs able to be executed in IoT units.

Other solutions focus on reducing the mean inference time
of deep neural networks. In this direction, Adaptive Early
Exit [8] and Gate-Classification CNNs [7] can provide the
final classification output even at intermediate layers according
to the input content, thus not always requiring the execution
of the whole CNN pipeline. However, in these architectures
the inference time is typically reduced at the expense of an
increase in the memory footprint.

In the field of TinyML for presence detection, [25] provided
a dataset for visual wake-word tasks (here presence-detection
is considered one of the most interesting visual wake-work
tasks) and a presence-detection solution based on the analysis
of images is also suggested. Similarly, [26] provided a dataset
for “keyword detection”, which is one of the most successful
tasks for TinyML. The analysis of audio data can be in
principle used to detect the presence of people talking in an
environment (e.g., by speaking to a vocal assistant or to a
smart switch in a smart city).

B. UWB-radar for presence detection and activity recognition

The literature about UWB-radar solutions for human de-
tection is quite wide and comprises person detection and
human activity recognition (HAR). In this related literature,
to ease the comparison, we focus our attention on UWB-radar
solutions that rely on a single receiving antenna1.

Presence detection: Most of the solutions for presence
detection based on uwb-radar relies on thresholds or statistical
approaches to distinguish between empty records and records
where a human is present [27][28]. The main drawback of
these solutions is that the detection ability is strictly related to
the noise of the sensor and to the environment in which the
sensor is deployed (hence limiting the generalization ability of
the solution in different environments or with different types
of radar). Few UWB-based solutions implementing MDL
algorithms are available in the literature for this task. In [29]
for example, deep convolutional neural networks have been
successfully used by exploiting the micro-doppler representa-
tion of the radar data. Finally, anti-abandon systems for cars
based on radar can be also found in the literature [30][31].
Unfortunately, these solutions do not rely on uwb-radar and
they are only meant to detect the presence of a child in a car
(they cannot generalize to young or adult presence detection).

Human Activity recognition: Differently from UWB-based
person detection solutions, most of the HAR solutions based
on UWB present in the literature focuses on machine learning
solutions and, in particular, on CNNs architectures [32]. Such
solutions can be grouped into two main families depending on
how the training is carried out. The first family of solutions
[33][34] relies on transfer-learning mechanisms to classify the
spectrograms of the radar data, while the second one [35]
aims at designing CNNs from scratch. In the aforementioned
solutions, time-doppler maps [36] are typically used as inputs
to the networks, since they proved to be very effective to
preprocess radar data both with and without ML solutions [37].

1Each solution is characterized by its own preprocessing phase: no trans-
formations, transformation in range-doppler or in time-doppler maps.

Authorized licensed use limited to: Politecnico di Milano. Downloaded on March 23,2023 at 17:52:15 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. The acquisition of matrix S by the UWB-radar antenna.

Unfortunately, the UWB-based solutions for HAR present
in the literature are not a viable technological solution on tiny
devices due to the high memory and computational demands.

Finally, we acknowledge the presence in the literature of
an edge solution [38] that makes use of UWB-radar data
to recognize hand gestures through the implementation of a
deep learning algorithm. Nevertheless, specialized hardware
(Intel Neural Computer Stick - NCS2) was used for the deep
learning part of this research, and thus it cannot be considered
a TinyML solution.

III. THE PROPOSED TINYML SOLUTION FOR
UWB-RADAR BASED PRESENCE DETECTION

The proposed TinyML solution for presence detection based
on UWB-radar comprises two main modules: pre-processing
and tiny deep convolutional neural network. These two mod-
ules, which are detailed in the sequel, have been jointly
designed and developed to maximize the presence-detection
accuracy, while satisfying the strict technological constraints
of tiny devices.

A. The pre-processing module

The aim of the pre-processing module is to highlight the
relevant information present in the acquired UWB-radar data
and remove the noise. The proposed pre-processing module
for the tiny UWB-radar based presence detection has been
carefully designed to minimize the computational and memory
demands, hence minimizing its overhead in the target tiny
device. Details about memory and computational demands of
the preprocessing module are reported in Section IV.

Let S ∈ RN×M , with M,N ∈ N, be the output of the
UWB-radar receiving-antenna installed on the device, being
N the collected number of radar scans and M the number
of “bins” characterizing the acquisitions of the antenna. In
more detail, the value S [i, j] with i = {1, . . . , N} and j =
{1, . . . ,M} represents the energy acquired by the i-th scan
at the j-th bin. We emphasize that N = W · fr, being fr
the UWB-radar frame rate (i.e., the number of acquisitions

Fig. 2. The preprocessing steps.

per seconds) and W the acquisition time horizon (in seconds),
while M represents the number of “quantized” distances in the
acquisition range, i.e., from MIN RANGE to MAX RANGE,
of the UWB-radar antenna2. An example of the acquisition of
S is shown in Figure 1.

As shown in Figure 2, the pre-processing module comprises
the following three steps: Fast-Fourier Transform, low-pass
frequency selection and data normalization.

1) Fast Fourier Transform: The first step of pre-processing
aims at computing the Fast Fourier Transform (FFT) Sf of S.
The considered FFT algorithm is the Cooley-Tukey algorithm
[39]. The FFT is computed on all the M rows of S. For this
purpose, without any loss of generality3, we assume N being
a power 2 value.

The considered FFT computes both positive and negative
frequencies. We focus only on the positive frequencies since
negative frequencies contain the conjugate of the positives,
being S a matrix of real numbers. For this reason the output
of this step is Sf ∈ RN

2 ×M and the N
2 -th column represents

the Nyquist frequency fr/2.
2) Low-pass frequency selection: The aim of this step is to

select only a sub-range of the frequencies in Sf to reduce
the memory and computational demands of the next tiny
convolutional neural network (see Section III-B). In more
detail, let fl < fr/2 be the selected cut-off frequency, the goal
of this module is to remove from Sf the rows corresponding
to the frequencies larger than fl. Defining fl is typically
application-specific. In the domain of person detection, the
relevant information lies usually in the range 0 − 25Hz but
fl can be scaled down (with a negligible loss of accuracy) to
2Hz (or less) to further reduce the memory and computational
demands of the tiny convolutional neural network.

Let L be the index of the row in Sf corresponding to fl,
the output of the low-pass frequency selection module is S̄f ∈
RL×M . In Section IV we introduce two real-world presence
detection scenarios (i.e., indoor and in-car) where fs has been
set to 25Hz and 1.66Hz, respectively.

3) Data normalization: Once the FFT of the acquired
UWB-data has been computed and the relevant frequencies
have been selected, data in S̄f are finally processed by means
of a log-scale transformation and a Z-score normalization

2Each value represents the amount of energy of the reflected radar wave.
MIN RANGE, MAX RANGE and M are parameters depending on the
specific radar device used and on its configuration.

3When N is not power-of-two we can consider padding mechanisms and
the use of the Hann window [40].

Authorized licensed use limited to: Politecnico di Milano. Downloaded on March 23,2023 at 17:52:15 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. Representation of the sizes of the activations of the tiny convolutional
neural network TyCNNs.

Fig. 4. The general architecture of the tiny convolutional neural networks
TyCNNs.

(where mean and standard deviation are computed on the
training set of the tiny convolutional neural networks).

The output of this module is SI ∈ RL×M and represents
the input of the next tiny convolutional neural network.
B. Tiny convolutional neural networks for UWB-radar

We here introduce a family of tiny convolutional neural
networks (TyCNNs) for presence detection with UWB-radar
data. These TyCNNs have been carefully designed to satisfy
the technological constraints on the memory footprint m̄ (in
KB) and computation c̄ (number of operations) of the target
tiny devices. To achieve this goal, TyCNNs rely on:

• a suitably-defined CNN architecture characterized by a
tunable number of ad-hoc dilated convolutional blocks
and by a final fully connected layer (integrating a sigmoid
activation function);

• a post-training quantization mechanism to transform the
TyCNN weights and activations from 32-bit floating point
to 8-bit integer. The quantization is also applied to the
input SI leading to XI ∈ ZL×M .

An overview of the proposed TyCNNs is shown in Figures
3 and 4, while the detailed TyCNN architecture and the
quantization mechanism are described in what follows.

Being XI the input of the TyCNN, the processing layers
can be summarized as follows:

1) A 2× 2 Max Pooling layer: this layer aims at reducing
the size of the input XI . In more detail, the goal of this layer
is to reduce the memory demand of intermediate activations
as well as the number of operations required by the TyCNNs
to compute the inference. We emphasize that scaling down XI

allows also to reduce the memory demand of the final fully
connected layer, while it does not have any impact on the
memory demand of the weights of the convolutional layers.

2) A sequence of K Tiny Convolutional Blocks: the Tiny
Convolutional Blocks (TCBs) represent the core of the Ty-
CNNs architecture. Each block comprises the four following
steps:

• a first convolutional layer comprising n square r × r
dilated filters with dilation rate equal to 2;

• a second convolutional layer comprising n square r × r
dilated filters with dilation rate equal to 2;

• the ReLu activation function;
• a 2× 2 Max Pooling layer.

It is worth noting that the first two steps of the TCBs
share the same configuration of the filters. We emphasize that,
for these two steps, we considered dilated filters [41] since
they have proven to be effective in enlarging the field-of-
reach of the filter, while not increasing the number of weights
(hence not increasing the memory demand associated with the
TyCNN weights). In the considered presence-detection appli-
cations described in Section IV, the following configuration
of the TBCs have been considered: n = 14 and r = 5.

3) A fully-connected layer: The aim of this last layer is
to provide the final classification of the TyCNN. In more
detail, this layer comprises a flattening layer, a dropout layer
(with dropout rate equals to 0.3), and a single dense layer
with sigmoid activation characterized by two outputs (since
we modelled the presence-detection as a binary classification
problem, i.e., present vs. not present).

It is worth noting that training and quantization are strictly
related in TyCNNs. For the training we considered the Binary
Crossentropy as loss function, while we used Adam as opti-
mizer. The learning rate was set to 0.3e-4, while the number
of training epochs was set to 15 and 400 for indoor and
in-car presence detection, respectively. Once the TyCNN has
been trained, the full-integer post-training weight quantization
algorithm introduced in [42] has been used to transform the 32-
bit floating-point weights into 8-bit integers. The considered
post-training quantization algorithm has been also applied to
inputs and activations to guarantee that the values of both
network weights and activations are stored as 8-bit integers.
Besides reducing the memory, the quantization allows also the
use of integer operations on the target tiny device, which are
faster and less energy-hungry than the corresponding 32-bit
floating-point operations.

Authorized licensed use limited to: Politecnico di Milano. Downloaded on March 23,2023 at 17:52:15 UTC from IEEE Xplore. Restrictions apply.

C. Evaluating the memory footprint and computational load
of TyCNNs

Evaluating the memory footprint m and the computational
load c of TyCNNs at design-time is crucial to support their
porting on tiny devices characterized by constraints on mem-
ory m and computation c. For this purpose we extend here
the formalization introduced in [24], by defining m and c as
follows:

m = (m̂w + m̂a) ·mp,

c = nops

being m̂w the cardinality of the parameters of the TyCNN,
nops the number of multiplications required to compute the
inference, m̂a the memory needed to store the maximum sum
of two consecutive activations, and mp the memory required
to store a value of a parameter or an activation. In our case
mp is equal to 1 Byte (8 bit) since both the weights of the
network and the input data are quantized.

We emphasize that, since arrays used to store intermediate
activations are shared among the processing layers of the
network and activations’ size can be calculated in advance
for every layer, m̂a can be easily evaluated at design time. In
more detail, being L, M , n, K the parameters described in
Section III, it is easy to demonstrate that:

m̂a =

{
(L2 · M

2) · n · 2 K ≥ 3

(L2 · M
2) +M · L K < 3

.

Differently m̂w and nops can be computed as:

m̂w =

K∑
X=0

mX
w +

2K∑
C=1

mC
w +mFC

w

nops =
K∑

X=0

nX
ops +

2K∑
C=1

nC
ops + nFC

ops

where mC
w , mC

a , nC
ops represent the number of Bytes needed

to store the weights, the number of Bytes needed to store
the activations and the total number of operations for the
convolutional layers, respectively, mX

w , mX
a , nX

ops represent
the number of Bytes needed to store the weights, the number
of Bytes needed to store the activations and the total number
of operations for the Max Pooling layers, respectively, and
mFC

w , mFC
a , nFC

ops represent the number of Bytes needed to
store the weights, the number of Bytes needed to store the
activations and the total number of operations for the fully
connected layers, respectively.

In more detail, for each convolutional layer of the network,
we can compute mC

w , mC
a and nC

ops as follows:

mC
w = (r2 · nin · n+ n) ·mp

mC
a = (Lin ·Min · n) ·mp

nC
ops = r2 · nin · n · Lin ·Min

while Lin, Min and nin are the output dimensions of the layer
preceding the convolutional one.

TABLE I
THE DETAILED MEMORY FOOTPRINT AND THE COMPUTATIONAL DEMAND

OF THE TYCNN.

Memory Footprint (B) N. operations
SI M · L · 1 -
Pool0 (Weights) - -
SI–Pool0 (Activations) L

2 · M
2 · 1 2 · 2 · L · M

Conv1 00 (Weights) r2 · n + n -
Conv1 00 (Activations) L

2 · M
2 · n r2 · n · L

2 · M
2

Conv1 01 (Weights) r2 · n2 + n -
Conv1 01 (Activations) L

2 · M
2 · n r2 · n2 · L

2 · M
2

Pool1 (Weights) - -
Pool1 (activations) L

4 · M
4 · n 2 · 2 · L

2 · M
2

ConvK 00 (Weights) r2 · n2 + n -
ConvK 00 (Activations) L

2K
· M

2K
· n r2 · n2 · L

2K
· M

2K

ConvK 01 (Weights) r2 · n2 + n -
ConvK 01 (Activations) L

2K
· M

2K
· n r2 · n2 · L

2K
· M

2K

PoolK (Weights) - -
PoolK (activations) L

2K+1 · M

2K+1 · n 2 · 2 · L

2K+1 · M

2K+1

FC Classifier (Weights)
L

2K+1 · M

2K+1 · n ·
2 + 2

-

FC Classifier (activations) 2 L

2K+1 · M

2K+1 ·n · 2

Differently, for each Max Pooling layer of the network, we
can compute mX

w , mX
a and nX

ops as follows:
mX

w = 0

mX
a = (

Lin

2
· Min

2
· nin) ·mp

nX
ops = 2 · 2 · Lin ·Min

Finally, for the Fully Connected layer, mX
w , mX

a and nX
ops

can be computed as follows:

mFC
w = (Lin ·Min · n · 2 + 2) ·mp

mFC
a = 2 ·mp

nFC
ops = 2 · n · Lin ·Min

Table I details the required memory in terms of weights
and activations, along with the total number of operations
for all the layers of TyCNN, computed with the formulas
described above. Tables III and IV will detail the specific
values of memory footprint and number of operations for the
two application scenarios presented in this paper.

IV. EXPERIMENTAL RESULTS: INDOOR AND IN-CAR
PRESENCE DETECTION

The proposed TinyML UWB-based solution has been tested
in two relevant and challenging presence-detection scenarios:
indoor and in-car. In more detail, Section IV-A describes the
application of the proposed solution in an indoor presence
detection scenario. For this purpose we considered a public-
available dataset present in the literature. Differently, Section
IV-B introduces the in-car presence detection scenario. This
is a particularly relevant scenario since the possibility to use
a tiny device equipped with an UWB-radar to detect the
presence of sensible targets in the rear seats of a car could lead
to the development of privacy-preserving non-invasive safety
devices.

For the in-car presence detection scenario, we considered
a target tiny device based on the ESP32 microcontroller unit,

Authorized licensed use limited to: Politecnico di Milano. Downloaded on March 23,2023 at 17:52:15 UTC from IEEE Xplore. Restrictions apply.

we designed and carried out an experimental data-acquisition
campaign on real cars and real people and we finally ported
the proposed solution on the target tiny device.
A. Indoor presence detection

1) Problem definition: This problem can be formalized as
a binary classification task aiming at discriminating whether a
person is present or not in the recording. The person can be
moving or standing in front of the radar device.

2) Data description and preprocessing: For this experimen-
tal campaign we considered data from the IR-UWB-Through-
wall-Radar-Human-Motion-Status-Dataset [43]. In more de-
tail, data belonging to Class 001 (human walking) and 010
(standing still) of the dataset have been assigned to the positive
Class 1 (presence), while the data belonging to Class 100
(empty) to the negative Class 0. Both “through-wall” and
“through-air” data of the dataset have been used. The dataset
provides data already partitioned into training and test set.
We kept this organization in order to be able to compare our
solution with the one proposed in [43].

In this scenario S is characterized by M = 32 and N =
768, and it represents radar scans of 4 seconds acquired with
a frame rate fr = 192 Hz. The data have been preprocessed
following the steps described in Section III-A. fl has been
set to 25 Hz, such that SI , used as input for the network, is
characterized by M = 32 and L = 100. The TyCNN used in
this scenario relies only on one TCB, i.e. K = 1.

3) Experimental results: In this section we report the results
provided by our TyCNN on the test set and compare them to
the results obtained by the classification algorithm proposed
in [43]. Experimental results are given in Table II in terms
of Accuracy, Precision, Recall and F2-score, along with the
memory footprint m and the total number of operations c.

Interestingly, the proposed solution provides classification
abilities that are in line with those of [43] (i.e., the reduction
in the classification accuracy is about 0.5%). Conversely,
the proposed solution guarantees a 99.93% reduction of the
memory footprint m, and a 99.94% reduction of the total
number of operations c with respect to the algorithm proposed
in [43]. We emphasize that the solution in [43] cannot be
considered a viable algorithmic solution for a tiny device due
to the high memory and computational demands. The list of
the memory footprint and the number of operations divided
per layer for the proposed TyCNN solution are detailed in
Table III, while its confusion matrix for the presence-detection
problem is here reported:

True \Pred not present (0) present (1)

not present (0) 273 (98.9 %) 3 (1.1 %)
present (1) 1 (0.2 %) 551 (99.8 %)

B. In-car presence detection

1) Problem definition: This problem can be formalized as
a binary classification task aiming at discriminating whether
a subject (adult or child) is present in any of the rear seats of
the car.

Fig. 5. The acquisition campaign for this experimental analysis

Fig. 6. An example of acquisition for the in-car scenario with M=53 and
N=200.

2) The target device: The considered tiny device is based
on an ESP32 Microcontroller unit (MCU). This MCU is
equipped with both a Wi-Fi (used mainly in the development
and testing phase) and a Bluetooth module. Furthermore, the
device can rely on a 4MB Flash memory, and two RAM mem-
ories (520KB SRAM, 16KB SRAM in RTC). Since part of the
memory needs to be allocated for the firmware of the device,
we considered m̄ = 100 KB, and set a limit on the execution
time of the algorithm of 1 s. The device also provides an
uwb-radar module, equipped with an ultra-high precision radar
sensor developed by ARIA sensing (LT103OEM UWB) that
relies only on one pair of antennas (one transmitting TX and
one receiving RX). The device was used for both collecting
the data and deploying the proposed solution for the in-car
presence-detection.

3) Data collection: In all the recordings the device was
deployed above one of the back lateral windows of the car
(the radar can detect subjects in a ±60◦ cone from where it’s
directed). The total amount of acquired samples is 208, divided
into 84 records with a target present and 124 empty records.
Figure 5 describes the positioning and the cone of view of the
device during the data-collection phase.

In this scenario S is characterized by M = 53, N = 200,
and each acquisition lasts W = 20 s, with a frame rate fr =
10 Hz. The data have been preprocessed following the steps
described in section III-A. fl has been set to 1.66 Hz, such
that the dimensions of SI are M = 53 and L = 86. For this
scenario, the number of TCB is set to 3. An example of a
recording is reported in Figure 6.

4) Experimental results: For the experimental results the
dataset has been randomly split into 85% for the training
and 15% for the testing, five runs have been considered and
the results averaged (the standard deviation has been also

Authorized licensed use limited to: Politecnico di Milano. Downloaded on March 23,2023 at 17:52:15 UTC from IEEE Xplore. Restrictions apply.

TABLE II
COMPARISON OF THE RESULTS OF THE TYCNN AND THE RESPECTIVE BASELINE ALGORITHMS. N.V. : NOT VIABLE FOR TINY DEVICES.

Network Accuracy Precision Recall F1 m (kB) c (106)

baseline DL (indoor) 1 1 1 1 ≈ 52550.0 (N.V.) ≈ 1425.0 (N.V.)
TyCNN (indoor) 0.995 0.995 0.998 0.996 32.5 4.2

baseline TL (in-car) 0.925±0.022 0.935±0.029 0.876±0.033 0.905±0.028 ≈ 18300.0 (N.V.) ≈ 1150.0 (N.V.)
TyCNN (in-car) 0.906±0.055 0.906±0.056 0.861±0.116 0.877±0.078 55.3 9.2

TABLE III
THE DETAILED MEMORY FOOTPRINT (WITH AN 8-BIT DATA TYPE) AND

NUMBER OF OPERATIONS OF THE TYCNNS FOR THE INDOOR SCENARIO.
TO OPTIMIZE THE MEMORY, TWO ARRAYS ONLY ARE USED TO STORE THE

ACTIVATIONS (AN ASTERISK MARKS THE ACTIVATIONS RE-USING SUCH
ARRAYS).

Memory Footprint (B) N. operations
SI ∗32 · 100 · 1 = 3200 -
Pool0 (Weights) - -

SI–Pool0 (Activations) ∗16 · 50 · 1 = 800
2 · 2 · 32 · 100 =
12800

Conv1 00 (Weights) 25 · 14 + 14 = 364 -

Conv1 00 (Activations) 16 · 50 · 14 = 11200
25 · 14 · 16 · 50 =
280000

Conv1 01 (Weights) 4914 -
Conv1 01 (Activations) 11200 3.920.000
Pool1 (Weights) - -
Pool1 (activations) ∗2800 3200

FC Classifier (Weights) 5602 -
FC Classifier (activations) *2 5600

Total 33280 4221600

computed).
Table II describes the classification abilities of the proposed

solution together with the memory footprint m and the com-
putational load c for the in-car presence detection scenario.

As a comparison we considered a CNN inspired by the Mo-
bileNet [44], which is a popular CNN for mobile devices and
edge computing systems. In more detail, following a transfer
learning approach (due to the limited number of samples we
had in our training set), we considered the convolutional part
of MobileNet (followed by a global average pooling) as a
feature extractor. Then, extracted features are processed by a
single Dense layer that performs the classification (this layer
is trained on the training set). A dropout layer (dropout rate
= 0.2) is also considered to reduce the overfitting. Since radar
data comprises only one channel, during the preprocessing the
channel was repeated 3 times to match the required input
dimension of the network (i.e. the networks requires a 3
channel input). The optimizer for the training was Adam (lr
= 10−5), the selected loss Binary Crossentropy and the model
was trained for 200 epochs.

It is worth mentioning that, despite the use of the Mo-
bileNet, the CNN used for the comparison does not match
the constraints on memory and computation (e.g., even just
the memory to store the weight of the MobileNet requires
up to 17.9 MBs, or 4.2 MBs using quantization). Differently
the proposed solution completely matches these technological
constrains with m = 56.6 and c = 9.16e6. We measured
experimentally the execution time of the solution on the
ESP32 board. The total execution time is 980 ms, divided

TABLE IV
THE DETAILED MEMORY FOOTPRINT (WITH AN 8-BIT DATA TYPE) AND

THE NUMBER OF OPERATIONS OF THE TYCNNS FOR THE IN-CAR
SCENARIO. TO OPTIMIZE THE MEMORY, TWO ARRAYS ONLY ARE USED TO

STORE THE ACTIVATIONS (AN ASTERISK MARKS THE ACTIVATIONS
RE-USING SUCH ARRAYS).

Memory Footprint 106 operations
SI ∗53 · 86 · 1 = 4558 -
Pool0 (Weights) - -
SI–Pool0 (Activations) ∗26 · 43 · 1 = 1118 2·2·53·86 = 18232

Conv1 00 (Weights) 25 · 14 + 14 = 364 -

Conv1 00 (Activations) 26 · 43 · 14 = 15652
25 · 14 · 26 · 43 =
391300

Conv1 01 (Weights) 4914 -
Conv1 01 (Activations) 15652 5.478.200
Pool1 (Weights) - -
Pool1 (activations) ∗3822 4472

Conv2 00 (Weights) 4914 -
Conv2 00 (Activations) ∗3822 1337700
Conv2 01 (Weights) 4914 -
Conv2 01 (Activations) ∗3822 1337700
Pool2 (Weights) - -
Pool2 (activations) ∗840 1092

Conv3 00 (Weights) 4914 -
Conv3 00 (Activations) ∗840 294000
Conv3 01 (Weights) 4914 -
Conv3 01 (Activations) ∗840 294000
Pool3 (Weights) - -
Pool3 (activations) ∗210 240

FC Classifier (Weights) 422 -
FC Classifier (activations) *2 420

Total 56660 9157355

in 230 ms for preprocessing data and 750 ms to perform
the inference with the TyCNN. Preprocessing required 27136
B to be executed in memory, and thus can be executed
in the same memory space of dimension m̂a = 31304 B
where the activations of the networks will be stored, hence
not influencing the memory footprint. The loss in accuracy
induced by the proposed solution is however limited (less than
2%) showing not only the efficiency but also the effectiveness
of what proposed.

The detailed list of the memory footprints and the number
of operations divided by layers for the proposed solution
are detailed in Table IV, while the confusion matrix is here
reported:

True \Pred not present (0) present (1)

not present (0) 89 (93.7%) 6 (6.3%)
present (1) 9 (13.8%) 56 (86.2%)

V. CONCLUSIONS

The aim of this paper was to introduce, for the first time
in the literature, a TinyML solution for presence-detection

Authorized licensed use limited to: Politecnico di Milano. Downloaded on March 23,2023 at 17:52:15 UTC from IEEE Xplore. Restrictions apply.

based on UWB-radar. To achieve this goal we introduced a
family of tiny convolutional neural networks based on dilated
convolutional blocks able to guarantee high detection ability
and reduced memory footprint and computational load. The
effectiveness and efficiency of the proposed solution have been
successfully evaluated on a public-available benchmark for
indoor presence detection and a real-world scenario for in-car
presence detection.

Future works will encompass always-on scenarios for the
proposed solutions, incremental learning mechanisms to sup-
port the on-device learning, the extension of the use of UWB-
radar to human activity recognition and the use of adaptive
mechanisms to support the on-device learning in presence of
concept drift (e.g., faults affecting the device or changes in the
environmental conditions in which the device is operating).

ACKNOWLEDGMENT

The authors would like to thank Ing. P. Lento, and Dr. A.
Bassi from Trusense s.r.l. and Ing. G. Viscardi from Politecnco
di Milano for the valuable support in the project.

REFERENCES

[1] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
Computer, vol. 36, no. 1, pp. 41–50, 2003.

[2] C. Alippi, Intelligence for embedded systems. Springer, 2014.
[3] C. Alippi, R. Fantacci, D. Marabissi, and M. Roveri, “A cloud to the

ground: The new frontier of intelligent and autonomous networks of
things,” IEEE Communications Mag., vol. 54, no. 12, pp. 14–20, 2016.

[4] C. Alippi and M. Roveri, “The (not) far-away path to smart
cyber-physical systems: An information-centric framework,” Computer,
vol. 50, no. 4, pp. 38–47, 2017.

[5] A. Gholami, S. Kim, Z. Dong, Z. Yao, M. W. Mahoney, and K. Keutzer,
“A survey of quantization methods for efficient neural network infer-
ence,” arXiv preprint arXiv:2103.13630, 2021.

[6] J. Liu, S. Tripathi, U. Kurup, and M. Shah, “Pruning algorithms
to accelerate convolutional neural networks for edge applications: A
survey,” arXiv preprint arXiv:2005.04275, 2020.

[7] S. Disabato and M. Roveri, “Reducing the computation load of convolu-
tional neural networks through gate classification,” in 2018 International
Joint Conference on Neural Networks (IJCNN). IEEE, 2018, pp. 1–8.

[8] T. Bolukbasi, J. Wang, O. Dekel, and V. Saligrama, “Adaptive neural
networks for efficient inference,” in International Conference on Ma-
chine Learning. PMLR, 2017, pp. 527–536.

[9] V. J. Reddi and al., “Widening access to applied machine learning with
tinyml,” arXiv preprint arXiv:2106.04008, 2021.

[10] R. Sanchez-Iborra and A. F. Skarmeta, “Tinyml-enabled frugal smart
objects: Challenges and opportunities,” IEEE Circuits and Systems
Magazine, vol. 20, no. 3, pp. 4–18, 2020.

[11] E. U. Council, “Regulation (eu) n2016/679, art. 4,” 2016.
[12] J. D. Taylor, “Ultra-wideband radar overview,” in Introduction to ultra-

wideband radar systems. CRC Press, 2020, pp. 1–10.
[13] A. Dundar and al, “Embedded streaming deep neural networks acceler-

ator with applications,” IEEE Trans. on Neural Networks and Learning
Systems, vol. 28, no. 7, pp. 1572–1583, 2016.

[14] Y. E. Wang, G.-Y. Wei, and D. Brooks, “Benchmarking tpu, gpu, and cpu
platforms for deep learning,” arXiv preprint arXiv:1907.10701, 2019.

[15] R. David, J. Duke, and al., “Tensorflow lite micro: Embedded machine
learning for tinyml systems,” Proceedings of Machine Learning and
Systems, vol. 3, pp. 800–811, 2021.

[16] I. Fedorov, R. P. Adams, M. Mattina, and P. Whatmough, “Sparse: Sparse
architecture search for cnns on resource-constrained microcontrollers,”
Advances in Neural Information Processing Systems, vol. 32, 2019.

[17] A. Kumar, S. Goyal, and M. Varma, “Resource-efficient machine learn-
ing in 2 kb ram for the internet of things,” in International Conference
on Machine Learning. PMLR, 2017, pp. 1935–1944.

[18] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman
coding,” arXiv preprint arXiv:1510.00149, 2015.

[19] Y. He, X. Zhang, and J. Sun, “Channel pruning for accelerating
very deep neural networks,” in Proceedings of the IEEE international
conference on computer vision, 2017, pp. 1389–1397.

[20] Z. Cai, X. He, J. Sun, and N. Vasconcelos, “Deep learning with low
precision by half-wave gaussian quantization,” in Proc. IEEE Conf. on
computer vision and pattern recognition, 2017, pp. 5918–5926.

[21] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep
learning with limited numerical precision,” in International conference
on machine learning. PMLR, 2015, pp. 1737–1746.

[22] X. Lin and al., “Towards accurate binary convolutional neural network,”
Advances in neural information processing systems, vol. 30, 2017.

[23] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net:
Imagenet classification using binary convolutional neural networks,” in
European conference on computer vision. Springer, 2016, pp. 525–542.

[24] C. Alippi, S. Disabato, and M. Roveri, “Moving convolutional neural
networks to embedded systems: the alexnet and vgg-16 case,” in 2018
17th ACM/IEEE International Conference on Information Processing in
Sensor Networks (IPSN). IEEE, 2018, pp. 212–223.

[25] A. Chowdhery, P. Warden, J. Shlens, A. Howard, and R. Rhodes, “Visual
wake words dataset,” arXiv preprint arXiv:1906.05721, 2019.

[26] P. Warden, “Speech commands: A dataset for limited-vocabulary speech
recognition,” arXiv preprint arXiv:1804.03209, 2018.

[27] J.-E. Kim, J.-H. Choi, and K.-T. Kim, “Robust detection of presence of
individuals in an indoor environment using ir-uwb radar,” IEEE Access,
vol. 8, pp. 108 133–108 147, 2020.

[28] S. Chang and al., “An algorithm for uwb radar-based human detection,”
in 2009 IEEE Radar Conference. IEEE, 2009, pp. 1–6.

[29] Y. Kim and T. Moon, “Human Detection and Activity Classification
Based on Micro-Doppler Signatures Using Deep Convolutional Neural
Networks,” IEEE Geoscience and Remote Sensing Letters, vol. 13, no. 1,
pp. 8–12, Jan. 2016.

[30] A. R. Diewald and al, “RF-based child occupation detection in the
vehicle interior,” in 2016 17th International Radar Symposium (IRS),
May 2016, pp. 1–4.

[31] A. Caddemi and E. Cardillo, Automotive Anti-Abandon Systems: a
Millimeter-Wave Radar Sensor for the Detection of Child Presence, Oct.
2019, pages: 97.

[32] X. Li, Y. He, and X. Jing, “A Survey of Deep Learning-Based Human
Activity Recognition in Radar,” Remote Sensing, vol. 11, no. 9, p. 1068,
Jan. 2019, number: 9.

[33] J. Park and al., “Micro-Doppler Based Classification of Human Aquatic
Activities via Transfer Learning of Convolutional Neural Networks,”
Sensors (Basel, Switzerland), vol. 16, no. 12, p. 1990, Nov. 2016.

[34] S. An, G. Bhat, S. Gumussoy, and U. Ogras, “Transfer Learning for
Human Activity Recognition using Representational Analysis of Neural
Networks,” arXiv:2012.04479 [cs, eess], Feb. 2021, arXiv: 2012.04479.

[35] Y. Lang, C. Hou, Y. Yang, D. Huang, and Y. He, Convolutional neural
network for human micro-Doppler classification, Oct. 2017.

[36] V. C. Chen, “Analysis of radar micro-doppler with time-frequency
transform,” in Proc. IEEE Workshop on Statistical Signal and Array
Processing. IEEE, 2000, pp. 463–466.

[37] V. C. Chen, D. Tahmoush, and W. J. Miceli, Radar Micro-Doppler
Signatures. Institution of Engineering and Technology, 2014.

[38] M. Chmurski, M. Zubert, K. Bierzynski, and A. Santra, “Analysis of
Edge-Optimized Deep Learning Classifiers for Radar-Based Gesture
Recognition,” IEEE Access, vol. 9, pp. 74 406–74 421, 2021.

[39] J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation
of complex fourier series,” Mathematics of computation, vol. 19, no. 90,
pp. 297–301, 1965.

[40] F. J. Harris, “On the use of windows for harmonic analysis with the
discrete fourier transform,” Proceedings of the IEEE, vol. 66, no. 1, pp.
51–83, 1978.

[41] F. Yu and V. Koltun, “Multi-scale context aggregation by dilated
convolutions,” arXiv preprint arXiv:1511.07122, 2015.

[42] B. Jacob, S. Kligys, and al., “Quantization and training of neural
networks for efficient integer-arithmetic-only inference,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
2018, pp. 2704–2713.

[43] Z. Zhengliang, Y. Degui, Z. Junchao, and T. Feng, “Dataset of human
motion status using ir-uwb through-wall radar,” Journal of Systems
Engineering and Electronics, vol. 32, no. 5, pp. 1083–1096, 2021.

[44] A. G. Howard, M. Zhu, and al., “Mobilenets: Efficient convolu-
tional neural networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

Authorized licensed use limited to: Politecnico di Milano. Downloaded on March 23,2023 at 17:52:15 UTC from IEEE Xplore. Restrictions apply.

