
Neural Greedy Pursuit for Feature Selection
1st Sandipan Das

Information Science and Engineering
KTH Royal Institute of Technology

Stockholm, Sweden
sandipan@kth.se

2nd Alireza M. Javid
Information Science and Engineering

KTH Royal Institute of Technology
Stockholm, Sweden

almj@kth.se

3rd Prakash Borpatra Gohain
Information Science and Engineering

KTH Royal Institute of Technology
Stockholm, Sweden

pbg@kth.se

4th Yonina C. Eldar
Mathematics and Computer Science

Weizmann Institute of Science
Rehovot, Israel

yonina.eldar@weizmann.ac.il

5th Saikat Chatterjee
Information Science and Engineering

KTH Royal Institute of Technology
Stockholm, Sweden

sach@kth.se

Abstract—We propose a greedy algorithm to select N impor-
tant features among P input features for a non-linear prediction
problem. The features are selected one by one sequentially, in an
iterative loss minimization procedure. We use neural networks
as predictors in the algorithm to compute the loss and hence,
we refer to our method as neural greedy pursuit (NGP). NGP is
efficient in selecting N features when N � P , and it provides
a notion of feature importance in a descending order following
the sequential selection procedure. We experimentally show that
NGP provides better performance than several feature selection
methods such as DeepLIFT and Drop-one-out loss. In addition,
we experimentally show a phase transition behavior in which
perfect selection of all N features without false positives is
possible when the training data size exceeds a threshold.

Index Terms—Feature selection, Deep learning;

I. INTRODUCTION

Feature selection helps to identify a relevant subset of
features from a set of available features. It reduces data
dimension [1], computation complexity and effort in data
collection, while improving interpretation of features’ role
for inference tasks (prediction, classification).

When using neural networks as a non-linear predictor, a
standard methodology of feature selection is through elimi-
nation and retraining - a top-down approach. Examples of
this approach are Drop-one-out loss [2] and remove and
retrain (ROAR) [3]. In these methods, a feature selection
algorithm starts with P features in the beginning and then
eliminates (P − N) features one-by-one or group-wise to
select N important features at the end. In each elimination
step, the algorithm performs retraining of the corresponding
predictor to find the least important feature to remove. There
are two major disadvantages of a top-down approach when
P is large. (a) The feature search complexity of the method
is O((P − N)P) ≈ O(P 2) in the regime N � P . (b) To
select N features and the corresponding predictor, we need to
start with a predictor that uses P features. Consequently, the

We thank the Swedish Foundation for Strategic Research for their funding
to support the work.

predictor would need more training data to account for higher
dimensional feature space.

In this article, we address the aforementioned disadvantages.
Our contribution is to develop a general methodology for feature
selection in neural networks where a bottom-up approach is
used - addition and retraining. In this approach, referred to as
neural greedy pursuit (NGP), important features are selected
one-by-one or group-wise in a sequence until N features are
selected. The approach has two major advantages. (a) The
feature search complexity is O(NP)� O(P 2) in the regime
N � P . (b) There is no need to design a predictor that uses
more than N features.

To provide non-linear prediction and exploitation of sparsity
when N � P , NGP provides an appropriate combination
of neural networks, and sequential greedy pursuit algorithms
for sparse representations [4], [5]. Note the following point -
sparse representation problems are generally unsupervised and
consider a linear system model, while our feature selection
problem deals with a supervised learning setup and a non-linear
system model. NGP is conceptually close to the greedy pursuit
algorithms for sparse representations, such as matching pursuit
(MP), orthogonal MP (OMP) [6], and orthogonal least-squares
(OLS) [7], where signal components of a sparse signal are
selected one-by-one as relevant features.

While the proposed NGP algorithm can accommodate many
types of non-linear predictors, we only consider neural networks
in this article. We evaluate NGP for various artificial and real
datasets, and compare with several methods including least
absolute shrinkage selection operator (LASSO) [8], random
forest (RF) [9], Bayesian additive regression trees (BART) [10],
Drop-one-out loss [2] and DeepLIFT [11] with extracted global
feature importance via SHAP values [12]. In our experiments,
we show the following results.
• A phase transition behavior from an imperfect selection of

features to perfect selection when the number of samples
in a training dataset exceeds a threshold. To the best of our
knowledge, this is the first work to show such behavior
where neural networks are used as predictors. We mention

ar
X

iv
:2

20
7.

09
39

0v
1

 [
cs

.L
G

]
 1

9
Ju

l 2
02

2

Fig. 1: Examples of best features (in %) selected by NGP.

that phase transitions occur for sparse representations [13]
and constraint satisfaction problems [14].

• NGP provides a notion of feature importance in a descend-
ing order that corresponds to the minimum validation
loss. Fig. 1 shows the selected features by NGP for ten
different images of the MNIST dataset. Red pixels denote
the selected features.

• NGP provides 58% better false-positive-selection-rate
(FPSR) compared to the top-down approach Drop-one-
out loss [2] for their benchmark artificial dataset while
showing consistent and competitive performance across
several other datasets.

We also mention that NGP is a global feature selection method
where features are selected across the population of all samples.
There exist local feature selection methods where individual
samples are treated [15]. The population-wise feature selection
methods (global) find out an optimal feature subset collectively
for all the samples in the population and thus provides global
interpretability of the model.

II. NEURAL GREEDY PURSUIT

A. Problem Formulation

Let x = [x1 x2 . . . xP]
> ∈ RP denote an input data vector

(feature vector) where xi denotes the i’th feature, and t denotes
a Q-dimensional target vector which we predict using x. Let
S ⊆ {1, 2, . . . , P}, and xS represent the part of x where the
components in xS are indexed by the elements of S. For
example, if S = {2, 5, 9} then xS = [x2 x5 x9]

>. Selection of
at most N features to predict the target t requires to identify
S with |S| ≤ N < P . In practice, N � P for most feature
selection problems.

Assume that the prediction of target t is performed using
a predictor y = fθ(x), where y is Q-dimensional and θ
represents the parameters of the predictor. Examples of such
predictors are neural networks, kernel regression and random
forests. In a supervised learning setup, we have a training
dataset D = {(xj , tj)}Jj=1 with J samples of data-and-target
pairs (x, t). Then the problem of jointly learning the parameters
of the predictor and selecting at most N features is

{θ̂, Ŝ} ∈ argmin
θ,S

J∑
j=1

L(tj , fθ(xSj)) +R(θ), (1)

such that |S| ≤ N < P , where | · | denotes cardinality. Here, L
is a chosen loss function, andR is a regularization term to avoid
overfitting, e.g., a simple `2-norm weight decay. Examples of
loss functions are cross-entropy loss, mean-square loss and
hinge loss. The optimization problem (1) is combinatorial due
to search in S and non-convex to find θ for neural network-
based predictors.

B. Proposed algorithm

To address the optimization problem (1), we propose a
neural greedy pursuit (NGP) algorithm. Let A = {1, · · · , P}.
Given S ⊆ A, the learning of parameters of the corresponding
predictor can be shown as the following optimization problem:

θ̂S ∈ argmin
θ

J∑
j=1

L(tj , fθ(xSj)) +R(θ), (2)

where θ̂S is the optimized parameter. In NGP, we use neural
network as the predictor fθ(·). Cross-validation is applied
to optimize the parameters using a validation dataset D′ =
{(xj , tj)}J

′

j=1 and the validation loss,

LS =

J′∑
j=1

L(tj , fθ̂S (x
S
j)). (3)

Using (2) and (3), NGP is outlined in Algorithm 1. The
algorithm finds features one by one greedily. The indices
of selected features are incorporated sequentially in S. This
iterative sequential selection process has a high resemblance
with variable selection in some prominent sequential greedy
pursuit algorithms for sparse representations, such as MP, OMP
and OLS [7], [16]. Naturally, the NGP algorithm is efficient
for N � P .

Algorithm 1 : Neural Greedy Pursuit (NGP)
Input:

1: Training dataset D and validation dataset D′
2: The maximum number of selected features N , and/or a

stopping threshold η
Initialization: set S0 ← ∅, A ← {1, · · · , P}, iteration k ← 0

1: repeat
2: k ← k + 1 (Iteration counter increment by one)
3: i?k ← argmin

i∈A
LS

(i)
k−1 where S(i)k−1 = Sk−1∪ i (Compute

loss LS
(i)
k−1 using (2) and (3))

4: Sk = Sk−1 ∪ i?k (Greedy choice)
5: A ← A− i?k. (Removing the chosen feature index i?k

from A)
6: until |S| > N or L

Sk−LSk−1

LSk < η (Stopping condition)
Output:

1: Set of indices of selected features: Ŝ = Sk−1,
2: Sorted features’ indices with descending importance:
i?1, i

?
2, i

?
3, . . .

Flexibility to accommodate a combination of predictors:
In the algorithm, we learn the predictor fθ̂Sk (x

Sk) for each
iteration k. The predictors {fθ̂Sk (x

Sk)} can have different
architectures and/or types across iterations. For example,
fθ̂Sk (x

Sk) can be a neural network, but fθ̂Sk−1 (x
Sk−1) can be

a kernel substitution-based predictor such as support vector
machine (SVM). It is also possible that, for an iteration, we use
a set of different types of predictors, and choose the predictor
from the set that provides best loss minimization performance.
For example, in iteration k, we use both types of predictors,
a neural network and a kernel substitution, and then choose
the best predictor out of two. We do not perform studies on
using different predictors for NGP in this paper, and restrict
ourselves to neural networks as predictors.

A notion of feature importance: An inherent advantage
of the sequential choice of features is to provide a notion of
feature importance in a sorted manner (descending order). In
the first iteration, the algorithm estimates the most important
feature. After that, the algorithm estimates the second most
important feature and continues. The order corresponds to the
effect on the minimization of loss.

Phase transition: A natural question is whether the NGP
algorithm can select all the N important features perfectly in

N iterations? Perfect selection depends on the efficiency of
predictors {fθ̂Sk (x

Sk)} and training data size J . We will show
experimentally that it is possible to achieve perfect selection
Ŝ = S when J exceeds a threshold. This is a phase transition
behavior that resembles similar behavior for sparse signal
recovery problems in sparse representations where perfect
signal reconstruction happens when measurements exceed a
certain threshold [13].

Technical limitation: Once a feature is selected, it can not
be removed in the sequential process. A feature selected in
a past iteration can be a false positive or it may no longer
remain relevant if another important feature is selected in a
current/future iteration.

III. EXPERIMENTS AND DISCUSSION

In this section, we evaluate NGP on various artificial and
real datasets and compare it with a few prominent feature
selection methods. The corresponding source codes along with
more illustrative simulations are available in the supplementary
materials. All the experiments are implemented using a standard
core-i7 laptop with 16GB RAM.

A. Datasets, Performance Measures and Competing Methods

Datasets: For artificial data, we use three well-known
physical laws to generate data and a complex non-linear
generative data model of [2]. For real data, we one regression
dataset - BOSTON [17], and one classification datatset - MNIST
[18].

Ohm’s, Planck’s and Gravitational laws are used as the
three physical laws to generate artificial data. Ohm’s law:
current I = V

R , where V is the voltage across a resistor R.
Planck’s law: the spectral radiance for frequency ν at absolute
temperature T is given by B = 2ν3 1

e
ν
T −1

. Gravitational law:
for two masses m1 and m2 with a distance of r, the force is
F = Gm1m2

r2 , where G is the gravitational constant. For each
law, we generate J = 1000 samples where feature vectors are
10-dimensional (P = 10) and the first two (three) components
of a feature vector are used to generate the corresponding target
for each physical law. All components of the feature vectors
are drawn from a uniform distribution U(10, 20). Note that this
is a tough condition because statistics of true features typically
differ from irrelevant features in real life, but we consider the
same statistics for all ten features.

In order to have a fair comparison with competitive methods,
we consider the same artificial data generation model of Drop-
one-out loss [2] as below:

t=
10 sin(x1∨x2)+(x3∨x4∨ x5)3

1 + (x1 + x5)2
+

sin(0.5x3)(1+expx4−0.5x3)+x23+2 sin(x4)+2x5+ε, (4)

where ε ∼ N (0, 1). The Artificial dataset consists of 600
observations, 300 of them are used for training and the rest
for testing. Features x1, · · · , x5 and 495 additional irrelevant
features are generated by x(j)i =

e(j)+z
(j)
i

2 , i = 1, · · · , 500, j =
1, · · · , 600, where e(j) and z

(j)
i are independently generated

from N (0, 1). Therefore, all of the input features are mutually
correlated.

The BOSTON dataset consists of 339 training samples
and 167 test samples. The feature components are x1, . . . x13
and 100 additional features are generated independently from
U(10, 10) and appended to the true existing features. All the
experiments of the MNIST dataset are done using a subset of
J = 1000 samples of MNIST.

Performance measures: We use fitting mean square error
(F-MSE) on traning dataset and prediction mean square error (P-
MSE) on test dataset as performance measures. We also show
fitting normalized mean square error (F-NME) and prediction
normalized mean square error (P-NME) in dB scale. In addtion,
we use false positive selection rates FPSR = |Ŝ−S|

|Ŝ| and false

negative selection rates FNSR = |S−Ŝ|
|S| , where S and Ŝ

denote the set of true features and the set of selected features,
respectively.

Competing methods: We compare NGP with several feature
selection methods, including Drop-one-out loss [2], RF (number
of trees in the forest = 100), LASSO (regression constant
= 0.01), BART-50 (50 trees), and GAM (each feature is
modeled by a functional form with 5 splines). RF, LASSO
and GAM are adapted from scikit-learn package [19] while
BART is implemented using XBART [20]. The results of
Drop-one-out loss are directly reported from [2] due to code
unavailability. We also compare with a linear correlation-based
method where the second-order correlation between x and t are
calculated, and then the features with the highest correlations
are chosen. To compare the behavior of feature selection for
image classification (MNIST), we used SOTA instance-based
feature importance selector like DeepLIFT. We added the SHAP
values of the instances, as DeepLIFT provides local feature
importance. DeepLIFT trains a CNN for the MNIST with the
following structure: Input - Conv2D(32, 3x3) - MaxPool(2x2)
- Conv2D(64, 3x3) - MaxPool(2x2) - Dropout(0.5) - Dense(10)
and ran it over 10 epochs with batch size of 32. All the
comparisons are evaluated over 10 Monte Carlo simulations. In
the end, for all the competing methods we chose the features
having an importance value of greater than 1%.

For implementing NGP, we used different neural network
architectures such as self-size estimating feed-forward network
(SSFN) [21], multilayer perceptron (MLP) [22], and CNN to
show the universality of NGP. We used a single layer SSFN
with 100 random neurons, and a single layer MLP with 500
hidden neurons with ReLU activation trained over 10 epochs.
The CNN model used in NGP is the same as in DeepLIFT to
have a fair comparison across the different competing methods.

NN architecture(s) used in our benchmarking: We used
a simple CNN to show our bottom-up idea as shown in Fig.
2. Hence, we do necessarily outperform the state-of-the-art
approaches. SSFN is also a low complexity algorithm and
it does not have high efficiency, in the sense that it did
not necessarily produce a high training and testing accuracy
when we used 100% of the features. The SSFN provides
around 95% accuracy using all the features, while state-of-the-

art performance for MNIST is more than 99.5%. The main
motivation for us was to train it quickly so that we could
observe the behavior of the feature selector algorithm. Instead
of our chosen CNN or SSFN, if we used a complex NN
that provides high accuracy (such as Efficient-CapsNet), we
believe that a substantial performance improvement would have
happened and be at the level of state-of-the-art.

Fig. 2: CNN architecture.

B. NGP Performance

In this subsection, we illustrate various performance behav-
iors of NGP. Throughout this subsection, NGP uses a SSFN
as its predictor fθ(·) . The reason for choosing SSFN is its
flexibility and low computational complexity in training. That
said, NGP is capable to accommodate other neural networks,
which will be shown later in Section III-C.

Our first hypothesis is that NGP shows improvement in
performance as the size of training data increases. There is a
threshold in training data size where NGP finds all the relevant
features perfectly, which means it shows a phase transition
behavior. Fig. 3 shows experimental results using four datasets
as the number of training samples increases. Here, ε = 0 for
the artificial data model (4). The plots are shown using 100
Monte Carlo simulations. The decrease in average FNSR with
an increase in training data size is shown in Fig. 3a, along with
the phase transition behavior in Fig. 3b. Due to a simulation-
based study, we define the phase change as Pr(Ŝ = S) = 1 if
average FNSR ≤ 0.005, otherwise Pr(Ŝ = S) = 0. Note that
|S| = N is known to NGP for the experiments in Fig. 3.

In practice, we may not know the true cardinality of S. In
that case, NGP will continue to add features unless it reaches a
stopping criterion. To design a practical criterion, we investigate
the behavior of NGP as the number of input features |Ŝ|
increases in Fig. 4 for the three physical laws. In all cases, it
is seen that the increase in the number of features leads to a
sudden change in NME exactly when |Ŝ| is around the true
cardinality of S . Therefore, it is possible to select the necessary
number of features using the changes in NME values and the
threshold η, shown in step 6 of Algorithm 1.

Finally, let us analyze the behavior of NGP from different
aspects on the artificial data generated by (4). In Fig. 5a, it is
interesting to observe that the sudden change of NME happens
where the number of features is equal to five (true cardinality

(a) Average FNSR versus number of samples. (b) Phase transition due to increase in samples.

Fig. 3: Feature selection performance of NGP versus sample size J .

(a) Gravitation law (b) Planck law (c) Ohm law

Fig. 4: Normalized training and testing loss in dB versus the
number of input features |Ŝ|.

of S in (4)). The performance of NGP in detecting this sudden
change depends heavily on the hyperparameter η as shown in
Fig. 5b. Note that it is possible to achieve FNSR = 0 at the cost
of a significantly higher FPSR when η decreases. Conversely,
it is also possible to achieve FPSR = 0 at the cost of a higher
FNSR. Therefore, the choice of η is of paramount importance
depending on the application of NGP.

While providing low FPSR and FNSR, it is also expected
that a feature selection algorithm selects the features according
to their relative importance to each other. We demonstrate
the aspect of feature importance in Fig. 5c, where N = 5 is
made known to the NGP algorithm. The figure illustrates such
characteristics for NGP where we plot the testing NME of NGP
against a random selection of features and reversed selection
in NGP. As expected, NGP selects the most important feature
at first and then continues to find the second most important
and so on. Note that the true cardinality of S is assumed to
be known to NGP only in Fig. 5c.

C. Comparison with other methods

We start with a comparison of visualizing the selected
features for the MNIST image dataset. In addition, we use a
limited amount of training data to test robustness against data
availability. MNIST has 28× 28 pixels grey-scale images of

(a) Normalized error (b) False selection
rate

(c) Feature rank

Fig. 5: NGP behavior for the artificial data generated by (4).

TABLE I: Performance comparison between feature selection
methods (averaged over 10 Monte-Carlo simulations). Here
the artificial data is according to equation (4).

Methods FPSR FNSR F-MSE F-NME P-MSE P-NME

A
rt

ifi
ci

al
da

ta

NGP + SSFN 0.016 0.00 0.144 -11.93 0.076 -12.01
NGP + MLP 0.000 0.02 0.048 -10.95 0.092 -10.57
Drop-one-out? 0.038 0.00 N/A N/A N/A N/A
Correlation 0.990 0.00 N/A N/A N/A N/A
LASSO 0.959 0.00 0.173 -4.393 0.170 -4.155
RF 0.060 0.18 0.038 -18.98 0.099 -10.53
BART-50 0.991 0.00 0.114 -8.305 0.132 -6.655
GAM 0.985 0.00 0.147 -5.841 0.155 -6.167

B
O

ST
O

N
da

ta
se

t

NGP + SSFN 0.120 0.45 0.244 -14.67 0.382 -13.82
NGP + MLP 0.280 0.42 0.543 -7.721 0.764 -7.811
Correlation 0.884 0.00 N/A N/A N/A N/A
LASSO 0.717 0.29 0.289 -13.20 0.467 -12.09
RF 0.000 0.55 0.086 -23.71 0.345 -14.72
BART-50 0.892 0.07 0.614 -6.658 0.889 -6.494
GAM 0.860 0.00 0.288 -13.24 0.463 -12.16

? The results are reported from [2]. N/A stands for ‘Not Applicable.’

TABLE II: MNIST classification accuracy comparison using
top 40% of the selected features. J = 1000.

Methods Training Accuracy (%) Testing Accuracy (%)

M
N

IS
T

da
ta

se
t

NGP + SSFN 93.33 86.45
NGP + CNN 86.69 86.25
LASSO 74.83 73.60
RF 87.26 86.64
BART-50 78.27 67.52
SHAP+DeepLift 70.14 68.85

hand-written digits. Therefore, we have P = 784 input features
(pixels). The visualization of the selected features out of 784

(a) LASSO

(b) RF

(c) BART-50

(d) SHAP with DeepLIFT

(e) NGP, window size = 1×1

(f) NGP, window size = 4×4

Fig. 6: Examples of % of best features selected for MNIST.

features in percentage is shown in Fig. 6. We show that a
vanilla NGP with window size of 1x1 provides a semantically
meaningful feature selection (Fig. 6e). It is known that
neural networks capture spatial correlations in an image for
classification. Therefore, instead of choosing one pixel at a
time, we chose a window of 4x4 pixels. Then we greedily
select the best feature group by moving the window across the
whole image and subsequently select the window which has the
lowest MSE loss (Fig. 6f). We note that the selected features
of NGP cover almost all the pixels in the area of digit ‘9’. The
group selection parameter is a tunable hyper-parameter.

We now show quantitative comparison results in Table I for
regression and Table II for MNIST classification. From Table
I, we observe that NGP provides a competitive performance
or significantly better vis-a-vis other methods. For example,
let us consider the performance for the artificial data model
(4) where we note that NGP with SSFN provides 58% FPSR
improvement compared to the top-down approach Drop-one-
out loss. NGP is found to be significantly better than all the
other competing methods including RF.

Next we consider the Table II for MNIST digit classification.
Here, we consider, best 40% feature selection by respective
methods for classification accuracy. We use J = 1000 training
samples for feature selection to show robustness against a
limited amount of data availability. Predictors are tested using
10000 samples. It is observed that NGP with the best 40%
feature selected, provides a classification accuracy similar to
RF and significantly better than other methods.

IV. CONCLUSION

We conclude that the sequential feature selection in NGP as a
bottom-up approach is efficient in the sense of computation and
performance. NGP provides semantically meaningful feature
importance, demonstrated for image data in a classification
task. We also show a phase transition behavior - N features
are perfectly selected in N iterations when the training data
size exceeds a threshold. The NGP method can work with
different predictors as well as a combination of predictors in
each iteration. To explore the generality of NGP, other variants
of predictors and their combinations can be considered in the
future.

V. ACKNOWLEDGEMENTS

This research has been conducted as part of development
of autonomous transport solutions at Scania. It was jointly
funded by Swedish Foundation for Strategic Research (SSF)
and Scania. The research was also affiliated with Wallenberg
AI, Autonomous Systems and Software Program (WASP).

REFERENCES

[1] G. V. Trunk, “A problem of dimensionality: A simple example,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 1, no. 3, pp. 306–307, Mar. 1979.

[2] M. Ye and Y. Sun, “Variable selection via penalized neural network: a
drop-out-one loss approach,” Stockholmsmässan, Stockholm Sweden,
10–15 Jul 2018, vol. 80 of Proceedings of Machine Learning Research,
pp. 5620–5629, PMLR.

[3] S. Hooker, D. Erhan, P. Kindermans, and B. Kim, “A benchmark
for interpretability methods in deep neural networks,” in Advances in
Neural Information Processing Systems 32, H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, Eds., pp. 9737–
9748. Curran Associates, Inc., 2019.

[4] D.L. Donoho, “Compressed sensing,” IEEE Transactions on Information
Theory, vol. 52, no. 4, pp. 1289–1306, 2006.

[5] Y. C. Eldar and G. Kutyniok, Compressed Sensing: Theory and
Applications, Cambridge University Press, 2012.

[6] S. Mallat and Z. Zhang, “Matching pursuits with time-frequency
dictionaries,” IEEE Trans. Signal Process., vol. 41, pp. 3397–3415,
1993.

[7] S. Chen, S. Billings, and W. Luo, “Orthogonal least squares methods
and their application to non-linear system identification,” International
Journal of control, vol. 50, no. 5, pp. 1873–1896, 1989.

[8] R. Tibshirani, “Regression shrinkage and selection via the lasso,” Journal
of the Royal Statistical Society: Series B (Methodological), vol. 58, no.
1, pp. 267–288, 1996.

[9] L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1, pp. 5–32,
Oct. 2001.

[10] H. Chipman, E. George, and R. McCulloch, “BART: Bayesian additive
regression trees,” The Annals of Applied Statistics, vol. 4, no. 1, pp. 266
– 298, 2010.

[11] A. Shrikumar, P. Greenside, and A. Kundaje, “Learning important
features through propagating activation differences,” in Proceedings of
the 34th International Conference on Machine Learning - Volume 70.
2017, ICML’17, p. 3145–3153, JMLR.org.

[12] S. Lundberg and S. Lee, “A unified approach to interpreting model
predictions,” in Advances in Neural Information Processing Systems
30, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, Eds., pp. 4765–4774. Curran Associates,
Inc., 2017.

[13] D. Donoho and J. Tanner, “Sparse nonnegative solution of underde-
termined linear equations by linear programming,” Proceedings of the
National Academy of Sciences, vol. 102, no. 27, pp. 9446–9451, 2005.

[14] L. Saitta, A. Giordana, and A. Cornuejols, Phase transitions in machine
learning, Cambridge University Press, 2011.

[15] A. Adadi and M. Berrada, “Peeking inside the black-box: A survey
on explainable artificial intelligence (xai),” IEEE Access, vol. 6, pp.
52138–52160, 2018.

[16] Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad, “Orthogonal matching
pursuit: Recursive function approximation with applications to wavelet
decomposition,” pp. 40–44, 1993.

[17] D. Harrison Jr and D. L. Rubinfeld, “Hedonic housing prices and
the demand for clean air,” Journal of environmental economics and
management, vol. 5, no. 1, pp. 81–102, 1978.

[18] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86, no.
11, pp. 2278–2324, 1998.

[19] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas,
A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay,
“Scikit-learn: Machine learning in Python,” Journal of Machine Learning
Research, vol. 12, pp. 2825–2830, 2011.

[20] J. He, S. Yalov, and P. R. Hahn, “Xbart: Accelerated bayesian additive
regression trees,” in Proceedings of the Twenty-Second International
Conference on Artificial Intelligence and Statistics, Kamalika Chaudhuri
and Masashi Sugiyama, Eds. 16–18 Apr 2019, vol. 89 of Proceedings
of Machine Learning Research, pp. 1130–1138, PMLR.

[21] S. Chatterjee, A. M. Javid, M. Sadeghi, S. Kikuta, D. Liu, P. P. Mitra,
and M. Skoglund, “SSFN – self size-estimating feed-forward network
with low complexity, limited need for human intervention, and consistent
behaviour across trials,” 2020.

[22] J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural
Networks, vol. 61, pp. 85–117, Jan 2015.

	I Introduction
	II Neural Greedy Pursuit
	II-A Problem Formulation
	II-B Proposed algorithm

	III Experiments and Discussion
	III-A Datasets, Performance Measures and Competing Methods
	III-B NGP Performance
	III-C Comparison with other methods

	IV Conclusion
	V Acknowledgements
	References

