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Abstract

In this paper we presentour Dual-BeamStructued-Light
Scanner(DSLS),a scanningsystemthat generatesrange
mapsmucd richer thanthoseobtainedfroma corventional
structuied-lightscanningsystemRang mapsproducedby
DSLSrequire fewer registrations for 3-D modeling We
showthat the DSLSsystemmore easily satisfieswhat are
oftendifficult-to-satisfyconditionsfor determiningthe 3-D
coordinatesof an arbitrary objectpoint. Two specificad-
vantagesof DSLSover cornventionalstructured-light scan-
ningare: 1) A singlescanby the DSLSsystenis capableof
genemting range dataon more surfaceghan possiblewith
the conventionalapproac usingthe samenumberof cam-
eraimages.And?2) sincethedatacollectedby DSLSis more
freeof self-occlusionsthe objectneedse examinedfroma
smallernumberof viewpoints.

1 Introduction

The existing technologyfor 3-D modelingandbin-picking
has improved significantly in the last few years. The
electronicsdevelopedto datefor structured-lightscanners,
rangescannersetc., hasallowed for acquisitionof range
datawith resolutionasfine as0.05mm,[10]. All this new
technologyhasmadeit possibleto modelobjectswith sizes
varying from the large statueof Buddha[12] and David
[10], to smallindustrialpartsto be pickedfrom a corveyer-
belt [9]. However, despitethe growing numberof appli-
cationsfound today and the apparentlyimpressve results
reportedtherestill exit afew challengingproblemsin 3-D
modeling.Oneof theseis multiview registration.
Multiview registrationis a problemthat hascaughtthe
attentionof mary researcherim recentyears2, 6, 16]. The
needfor multiview registrationstemsfrom the intrinsic in-
ability of sensordo perceve the entireobjectfrom onesin-
gle view angle. Frequently an objectcontainsdetailsthat
areoccludedby otherpartsof the object. Sometimespc-
cludedsurfacesareextrapolatedfrom thosethatarevisible
andlabeledas“unimagedsurfaces’[13], but eventuallythe

informationregardingsuchsurfacesneeddo bereplacedy
actualdataandthe problemof aligningthetwo setsof range
datahasto befacedagain.

Onealternatve to multiview registrationis to constructa
scanningsystemin suchaway thatthetransformatiorma-
tricescorrespondingo the differentviewpointsare known
in advance. However, this conditionis difficult to satisfy
in practice especiallywhenthe viewpointsarechoserwith
specialcriteriasuchasthe minimizationof the occludedar-
eas,asusedin the notionsof the BestPosition (BP) of an
objectandits Next-best-viev [5], andin the Next-best-pose
[15] for rangedatacollection.

In order to attack the problem of multiview registra-
tion, different methodshave beenproposed. The early
methodgdevisedfor combiningmultiview rangedatacame
from Chenand Medioni [7], where views are incremen-
tally memgedinto larger views (metaviews), andfrom Besl
andMcKay'’s Iterative ClosestPoints(ICP) algorithm[2],
where featuresfrom different views are paired basedon
their distancesandthenusedto computea rigid 3-D trans-
formation. Many otherresearchergmproved thesemeth-
odsor proposedyet nenv ones,suchas: Bergevin etal. [1]
whoimproved[7] by bringinginformationfrom previously
registeredviews in the memging of metaviews; Carmichael
etal. [3] who proposedan algorithmfor view registration
basedon local 3-D signaturesgtc. The methodin [3], for
example,which wasderived from the work by Johnsonret
al. [8], improvedthe computationof local surfacesigna-
tures— calledspin-images- by efficiently dealingwith data
setswith largevariationsin resolutionandclutteredscenes.

From the descriptionabove, one canimmediatelypoint
outthetwo majordifficultiesin multiview registration.The
first difficulty is how to efficiently procesghelargeamount
of overlappingrangedatathatis acquiredoy ascanningys-
tem for different posesof an object. The rangedatafor
the successie posesmustoverlapsinceotherwiseit would
beimpossibleto carry out multiview registration. The sec-
ond difficulty is the accumulatiorof error during view-to-
view registration. Althoughtechniquedasedon curvature
patcheg11], multi-resolution[14], etc,have beenproposed
to solve theseproblems satishictorysolutionsremainto be
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Figurel: A conventionalstructured-lighscanningsystem.

found.

In this paper we proposea scanningsystemthatby gen-
eratingricher rangemapsattacksthesedifficulties at their
veryroot. TheproposedsystemDSLS, is composemf two
light projectorsandonecamera.Thedevicesarecalibrated
with respecto eachotheranda muchricherrangemapcan
be obtainedwith a single scan. We believe that this set-
ting significantlyreducegshe possibility of occlusionsand
therefore,the numberof necessarywiew anglesand con-
sequentdatasetsis minimized. Also, by minimizing the
numberof datasetsthe numberof views usedin theregis-
tration processs reduced. This hasthe effect of reducing
theaccumulatiorof the view-to-view error.

2 Structured-Light Scanning

structured-lighscannersarewidely usedfor variousappli-
cationsin roboticsandcomputewision. They areespecially
effectivein 3-D objectbin pickingand3-D objectmodeling
applicationsbecausef the accurag andreliability of the
rangedatayielded. A typical structured-lightscannersys-
temis shovn in Figure 1. In this system,a planeof light
parallelto the xzplaneis projectedonto the objectbeing
scanned.The intersectionof the planeof light andthe ob-
ject createsa stripeof illuminatedpointson the objectsur
face.Theplaneof light sweepgheobjectasthelinearslide
carriesthe scanningsystemin they directionwhile a se-
quenceof imagesis taken by the cameraat discretesteps.
An index numberk is assignedo eachof theimagesin the
orderthey aretaken. Therefore,eachk correspondso ay
positionof the planeof light. For eachimagek, a setof im-
agecoordinategi, j) of thepixelsin theilluminatedstripeis
obtained.Thetriples(i, j, k)'sarecovertedto (x, y, zZ) world
coordinatesusinga calibrationmatrix.

In orderto obtainthe positionof ary pointonthe object
surface thefollowing two conditionsmustbe satisfied:

Figure 2: Exampleof threebasiccasesof occlusions. Upper
right: occlusionwith respecto light projector lower Ieft: occlu-
sionwith respecto camerajower right: noocclusion.

1. The objectpoint mustbe illuminated by the planeof
light.

2. Thecameramustbe ableto seetheilluminatedpoint.

In otherwords, the objectpoint cannotbe occludedeither
with respecto thelight projectoror with respecto thecam-
era. Considey for example,threebasiccasesasshowvn in
Figure2. In thefirst casethesurfaceS1canbeseerby the
camerajput thereis no intersectionwith the planeof light
andthe above condition1 is not satisfied. Thus,no points
onthesurfaceS1aredetectedin thesecondccasetheplane
of light intersectghe surfaceS2andit creates stripeof il-
luminatedpointson the surface.However, the stripecannot
be seenby the camerayiolating condition2. Again, points
on the surface S2 cannotbe detected.Finally, in the third
case the planeof light intersectghe surfaceS3 creatinga
stripeof illuminatedpointsthatcanbe seenby the camera.
In this case both conditionsare satisfiedandall pointson
thesurfaceS3aredetected.

Someresearchersy to reduceocclusionswith respecto
the cameraby addinga secondcameraon the othersideof
thelight projector The motivationfor the seconccameras
that someof the objectsurfacesthat cannotbe seenby the
initial cameramaybeseerby theseconccameraHowever,
the secondcameragenerateswice as mary imagesto be
processea@ndit doesnotreduceocclusionswith respecto
thelight projector(Condition1).

Our proposed system, Dual-Beam Structured-Light
Scannel(DSLS), substantiallyreducesocclusionswith re-
spectto the light projectorwhile usingthe samenumberof
images. In the next section,we presentthe DSLS system
andits advantagesn 3-D objectmodeling.
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Figure3: Dual-beanstructured-lighscanningsystem

3 Dual-Beam Structured-Light Scan-
ner (DSLYS)

3.1 System Integration

The DSLS systemwe have developedis shavn in Figure
3. An additionallight projectoris mountedon the right
endof thelinear slide. The additionalplaneof light (right
plane)generatedby this projectorintersectgheinitial plane
of light (left plane)right below the groundplane,thuscre-
ating two stripesthat are very closeto eachotheron the
groundplane.The cameras positionedn themiddle of the
projectorsandit obsenestheilluminatedstripescreatedoy
theleft andtheright planes.Sincethetwo planesdo notin-
tersectabove the ground,theilluminatedstripesgenerated
by theleft planeandthoseby theright planenever overlap
in the cameraview. In otherwords,theilluminatedstripes
by the two planesareclosestto eachotherwhenthey both
hit the ground.It mustbe furthernotedthattheilluminated
stripescreatedyy theleft planeappeaonly in regionL (see
Figure3). On the other hand, the illuminated stripescre-
atedby theright planeappearnly in region R. No stripes
areobsenedin theregion betweerlL andR andthis region
shouldbe minimizedin orderto maximizethe heightabove
the groundplanefor which dual datawould be available.
Althoughwe have workedwith the laserbeamorientations
as shawn in Figure 3, one could alsodesigna DSLS like
systemwith otherorientationsaslong asthetwo beamsdo
notintersetabove the groundplane.

3.2 DataAcquisition

Thedataacquisitionprocesf the DSLSis easilymodified
from the corventionalstructured-lightscanner In fact, the
only modificationcomesfrom realizing that the L region
andthe R region (SeeFigure 3) provide two differentsets

of data. For eachimagek, the L region is searchecainda
setof triples(i, j, k), is obtained.Similarly, the Rregionis
searchedo obtaintheset(i, j, k) g. Thesetwo setsof triples
form two rangemaps.Thisis anattractie featuresincethe
processingime for obtainingtwo differentrangemapsby
the DSLSis practicallythe sameasthetime for obtaining
onerangemapwith acorventionalsystem.

| Average
DSLS 14.03sec
CorventionalSystem | 13.27sec

The table shawvs the average processingtime for the
DSLSandthe conventionalsystemover 5 trials. The object
scenewasthe samefor all the trials and 200 imageswere
taken. The processingime wasrecordedrom the startof
thescanuntil therangemapwasgenerated.

3.3 System Calibration

The calibrationof the dual structured-lightscanneiis done
by modifying the methoddescribedn [4]. In this method,
n datapointsareusedto solve a4 x 3 transformatiomrmatrix
T. Letthei th datapointin theworld coordinatebedenoted
by (X;, Vi, z;) andthe correspondingmage coordinatebe
denotedby (r;, ¢;). Also, let variablest;; to t4o bethe
elementof thematrix T'. Then,we have
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We usethefreevariablep to accounfor thenon-unigueness
of thehomogeneousoordinatexpressionsExpandingeq.
(1) andrearrangingt usingEq. (2), we have
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where
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If werewrite Eq. (3)asAz = b, thenourproblemisto solve
for z in Az = b. We canform thenormalequationsandfind
the linearleastsquaresolutionby solving (A A)x = A?b
where A? is the transposeof A. The resultingsolution z
forms the transformatiomrmatrix 7. Note that Equation3
contains3n equationsaand11 unknowns,thereforethe min-
imum numberof datapointsneededo solve this equation
is4.

For the dual-beamstructured-lightscannerwe needto
find two transformatiormatricesfor the left andthe right
light projectors. It is possibleto computeonetransforma-
tion matrix and solve for the otherif we know the exact
relative positionsof two light projectors. This approach,
however is not practicalsincefinding the exactrelative po-
sitionsis very difficult.

The calibrationblock we have devisedis shovn in Fig-
ure 4. Usingthis calibrationblock, we measureheillumi-
natedpointsontherodsgeneratedby theleft light projector
andtheir correspondingpointsin the cameraview. Then,
atransformatiormatrix ;. » canbe computedusingthose
measuredlatapoints. Similarly, we computea transforma-
tion matrix Tp.;4p+ USingthe datapointsthatwerecreatedoy
theright light projector

We attached rodsin the calibrationblock suchthatthe
camerais ableto view all 18 illuminatedpoints. Also, all
therodsareassumedo be parallelto the world coordinate
xy-plane.

3.4 Advantagesof DSLS

In generalwith the DSLS systemwe are ableto generate
rangedataon moresurfacesthanpossiblewith the corven-
tional approachanddo soin a single scanusingthe same
numberof cameramages.

To seethe secondand more important advantageof
DSLS, we needto to first describebriefly the shortcom-
ings of the currentbestpracticefor combiningrangeim-
agesfor objectmodeling: 3-D modelingrequiresthatall of
the external surfacesof an objectbe rangemapped.Since
the differentrangemapswould in all likelihood be taken
from differentviewpoints,thereis thenthe problemof reg-
istering the rangemapsinto a commoncoordinateframe,
a problemfor which no fully automaticprocedurehasyet
beendevised. Onemay computethe registrationby select-
ing thecorrespondingointsmanually;however, thatcanbe
tediousanddifficult since,for complex objects humansare
not alwaysgoodat visualizing3D pointsin 2D projections
of the datacollected. To avoid this painful processmary
researcherareusingthecalibrationbetweerthesensoand
the objectto computethe registration. A popularapproach
consistsof placing an objecton a turntablewhich rotates
in front of a structured-lighiscannerTo enhancehe accu-
ragy of registrationachiezed in this manner one canalso
usethe ICP (lterative ClosestPoint) algorithm[2]. If the
objectof theexampleof Figure2 wasplacedon aturntable,
the surfaceS2 would be detectedby rotatingthe turntable
by 18(° but the surfaceS1would not be sincetheturntable
would berotating perpendiculato the planeof light. The
only way to detectthe surfaceS1usinga singlestructured-
light scannemwould be to changethe object’s orientation
with respecto the turntablein sucha way thatthe surface
S1would intersectwith the planeof light andthe illumi-
natedstripewould be seerby the cameraBut changingthe
poseof the objectwould alter the transformatiorfrom the
objectto theturntable,and,if this new transformatiorma-
trix is notavailable,would requiremanualregistration.The
DSLSwill reducethe needof changingthe object’s orien-
tationwith respecto theturntable.

4 Experimental Results

We first wantto show that a single scanby the two beams
of DSLS canproducea rangemapfor moresurfacesof an
objectthanpossiblewith just onebeam. Considey for ex-

ample theobjectshovnin Figure5(a). A singlescanof the
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Figure5: (a): photograplof object, (b): cloudof pointsdetected
by left light projector (c): cloud of pointsdetectedy right light
projector (d): superpositiorof (b) and(c).

Figure 6: Eight differentobjectsto be tested. Top left to top
right: Obj.1- Obj.4,bottom left to bottom right: Obj.5- Obj.8

objectwith just the left light projectorproducesthe range
map showvn in Figure 5(b) anda single scanwith only the

right light projectorthe map showvn in Figure 5(c). How-

ever, a single scanwith the two light beamstogetherpro-

ducesthe rangemapof Figure5(d). The factthata single
DSLS scanis ableto capturemore surfacesin someof the

posef the objectmeanghat onewould needfewer scans
for modelingtheentireobjectand,consequentlyonewould

have to registerfewer rangemaps.

We now illustrate how DSLS improvesupontraditional
structural-lightscanningwith regardto the single-scareffi-
cieng of datacollection. Thisis doneby usingeightdiffer-
entobjectsof differentshapescolors,andsurfacetextures
(Figure®). Eachof theseobjectsis scanned timesandthe
poseof the objectchangedrandomlyfor eachscan. Two
rangemapsare collectedfor eachpose:from theleft light
projectorandtheright light projector Thetwo rangemaps
are analyzedto find the pointsthat were detectedonly by

theleft light projector the pointsdetectednly by theright
light projector andthe pointsdetectedy bothlight projec-
tors. Figure7 showstheresultof this experiment.Whatthe
bargraphsdepictis explainedby the legendsat the bottom
of the figure. In eachpair of bars,the left bar shows the
numberof objectpointsdetectedy theleft light projector
theright barthe numberof pointsby theright light projec-
tor. The gray bottom portionin eachbar shavs the num-
berpointsthataredetectedy bothlight projectorsandthe
blacktop portionsthe numberof pointsuniqueto eachlight
projector The figure shaws that the right light projector
whichprojectsabeamataslantanglewith respecto thedi-
rectionof the scan,consistentlydetectanore objectpoints
thantheleft light projector Thisis not surprisingsincethe
vertically projectedbeamby theleft light projectorwill fail
to seeary vertical surfaceson the objects.In Figure8, the
DSLSrangemapsof the eightobjectsareshown.

To shav the complementaryolesplayedby the left and
therightlight projectorswe shaw in theleft columnof Fig-
ure9 therangemapsfor thefree-formobject(labeledObj.7
in Figure6). Thetop entryin the columnis therangemap
producedby the left light projector the middle entry the
rangemapproduceddy theright light projector andthebot-
tom entrythecompositaangemapby DSLS.As thereader
cansee,the occludedpartsof the left-projectorrangemap
arecoveredby datain the right-projectorrangemap. The
factthatthe oppositeof this statements alsotrueis made
evidentby examiningthe samerangemapsbut from a dif-
ferentperspectie,asshowvn in theright columnof the Fig-
ure9.

5 Conclusions

In this paperwe describedhe Dual-BeantStructured-Light
ScanningSystem.Both quantitatve and qualitative results
were presentedo illustrate the advantagesf usinga sec-
ond light projector The resultsshoved thatthe numberof
registrationsrequiredfor 3-D modelingcanbesignificantly
reduced.This reductionwas possiblebecausef the extra
rangedatathatis obtainedby usingboth projectorsasop-
posedto onesingleprojector The DSLS addedin average
over 40% more pointsto the rangedatathanthe corven-
tional scanningsystem.



Figure8: SinglescannedSLSrangemapsfor objectsshavn in Figure6
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Figure9: Objectpointsdetectedby DSLSin a singlescan.The
left columnshaws in (a) the cloud of pointsyielded by the left
light projector in (c) thecloud of pointsyieldedby theright light
projector andin (e), the compositeDSLS rangemap. Theright

Figure7: Numberof pointsdetectecby DSLS. Lt: totalnumber ~ columnshaws exactly the samedatabut from a differentperspec-

of points detectedby left light projector Lo: numberof points

tive.

detectedonly by left light projector Rt: total numberof points
detectedby right light projector Ro: numberof pointsdetected
only by right light projector LR: numberof points detectedby

bothlight projectors.
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