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Abstract

In this paper, we presentour Dual-BeamStructured-Light
Scanner(DSLS),a scanningsystemthat generatesrange
mapsmuch richer thanthoseobtainedfroma conventional
structured-lightscanningsystem.Rangemapsproducedby
DSLSrequire fewer registrations for 3-D modeling. We
showthat the DSLSsystemmore easilysatisfieswhat are
oftendifficult-to-satisfyconditionsfor determiningthe3-D
coordinatesof an arbitrary objectpoint. Two specificad-
vantagesof DSLSover conventionalstructured-lightscan-
ningare: 1) A singlescanby theDSLSsystemis capableof
generating range dataon more surfacesthanpossiblewith
theconventionalapproach usingthesamenumberof cam-
era images.And2) sincethedatacollectedbyDSLSis more
freeof self-occlusions,theobjectneedsbeexaminedfroma
smallernumberof viewpoints.

1 Introduction

Theexisting technologyfor 3-D modelingandbin-picking
has improved significantly in the last few years. The
electronicsdevelopedto datefor structured-lightscanners,
rangescanners,etc., hasallowed for acquisitionof range
datawith resolutionasfine as0.05mm,[10]. All this new
technologyhasmadeit possibleto modelobjectswith sizes
varying from the large statueof Buddha[12] and David
[10], to smallindustrialpartsto bepickedfrom aconveyer-
belt [9]. However, despitethe growing numberof appli-
cationsfound todayand the apparentlyimpressive results
reported,therestill exit a few challengingproblemsin 3-D
modeling.Oneof theseis multiview registration.

Multiview registrationis a problemthat hascaughtthe
attentionof many researchersin recentyears[2, 6, 16]. The
needfor multiview registrationstemsfrom the intrinsic in-
ability of sensorsto perceivetheentireobjectfrom onesin-
gle view angle. Frequently, an objectcontainsdetailsthat
areoccludedby otherpartsof the object. Sometimes,oc-
cludedsurfacesareextrapolatedfrom thosethatarevisible
andlabeledas“unimagedsurfaces”[13], but eventuallythe

informationregardingsuchsurfacesneedsto bereplacedby
actualdataandtheproblemof aligningthetwo setsof range
datahasto befacedagain.

Onealternativeto multiview registrationis to constructa
scanningsystemin sucha way that thetransformationma-
tricescorrespondingto thedifferentviewpointsareknown
in advance. However, this condition is difficult to satisfy
in practice,especiallywhentheviewpointsarechosenwith
specialcriteriasuchastheminimizationof theoccludedar-
eas,asusedin the notionsof the BestPosition (BP) of an
objectandits Next-best-view [5], andin theNext-best-pose
[15] for rangedatacollection.

In order to attack the problem of multiview registra-
tion, different methodshave beenproposed. The early
methodsdevisedfor combiningmultiview rangedatacame
from Chenand Medioni [7], where views are incremen-
tally mergedinto largerviews (metaviews), andfrom Besl
andMcKay’s Iterative ClosestPoints(ICP) algorithm[2],
where featuresfrom different views are paired basedon
their distancesandthenusedto computea rigid 3-D trans-
formation. Many other researchersimproved thesemeth-
odsor proposedyet new ones,suchas: Bergevin et al. [1]
who improved[7] by bringinginformationfrom previously
registeredviews in the merging of metaviews; Carmichael
et al. [3] who proposedan algorithmfor view registration
basedon local 3-D signatures;etc. Themethodin [3], for
example,which wasderived from the work by Johnsonet
al. [8], improved the computationof local surfacesigna-
tures– calledspin-images– by efficiently dealingwith data
setswith largevariationsin resolutionandclutteredscenes.

From the descriptionabove, onecan immediatelypoint
out thetwo majordifficultiesin multiview registration.The
first difficulty is how to efficiently processthelargeamount
of overlappingrangedatathatis acquiredby ascanningsys-
tem for different posesof an object. The rangedata for
thesuccessive posesmustoverlapsinceotherwiseit would
beimpossibleto carryout multiview registration.Thesec-
ond difficulty is the accumulationof error during view-to-
view registration.Althoughtechniquesbasedon curvature
patches[11], multi-resolution[14], etc,havebeenproposed
to solve theseproblems,satisfactorysolutionsremainto be
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Figure1: A conventionalstructured-lightscanningsystem.

found.
In this paper, we proposea scanningsystemthatby gen-

eratingricher rangemapsattacksthesedifficulties at their
veryroot. Theproposedsystem,DSLS,is composedof two
light projectorsandonecamera.Thedevicesarecalibrated
with respectto eachotherandamuchricherrangemapcan
be obtainedwith a single scan. We believe that this set-
ting significantlyreducesthepossibilityof occlusions,and
therefore,the numberof necessaryview anglesand con-
sequentdatasetsis minimized. Also, by minimizing the
numberof datasets,thenumberof views usedin theregis-
tration processis reduced.This hasthe effect of reducing
theaccumulationof theview-to-view error.

2 Structured-Light Scanning

structured-lightscannersarewidely usedfor variousappli-
cationsin roboticsandcomputervision. They areespecially
effectivein 3-D objectbin pickingand3-D objectmodeling
applicationsbecauseof the accuracy andreliability of the
rangedatayielded. A typical structured-lightscannersys-
tem is shown in Figure1. In this system,a planeof light
parallel to the xz-planeis projectedonto the object being
scanned.The intersectionof theplaneof light andthe ob-
ject createsa stripeof illuminatedpointson theobjectsur-
face.Theplaneof light sweepstheobjectasthelinearslide
carriesthe scanningsystemin the y directionwhile a se-
quenceof imagesis taken by the cameraat discretesteps.
An index numberk is assignedto eachof theimagesin the
orderthey aretaken. Therefore,eachk correspondsto a y
positionof theplaneof light. For eachimagek, asetof im-
agecoordinates(i, j) of thepixelsin theilluminatedstripeis
obtained.Thetriples(i, j, k)’sarecovertedto (x, y, z) world
coordinatesusingacalibrationmatrix.

In orderto obtainthepositionof any point on theobject
surface,thefollowing two conditionsmustbesatisfied:

S2 S1

S3

Figure 2: Exampleof threebasiccasesof occlusions. Upper
right: occlusionwith respectto light projector, lower left: occlu-
sionwith respectto camera,lower right: noocclusion.

1. The objectpoint mustbe illuminatedby the planeof
light.

2. Thecameramustbeableto seetheilluminatedpoint.

In otherwords,the objectpoint cannotbe occludedeither
with respectto thelight projectoror with respectto thecam-
era. Consider, for example,threebasiccasesasshown in
Figure2. In thefirst case,thesurfaceS1canbeseenby the
camera,but thereis no intersectionwith the planeof light
andthe above condition1 is not satisfied.Thus,no points
onthesurfaceS1aredetected.In thesecondcase,theplane
of light intersectsthesurfaceS2andit createsastripeof il-
luminatedpointson thesurface.However, thestripecannot
beseenby thecamera,violating condition2. Again,points
on the surfaceS2 cannotbe detected.Finally, in the third
case,the planeof light intersectsthe surfaceS3 creatinga
stripeof illuminatedpointsthatcanbeseenby thecamera.
In this case,both conditionsaresatisfiedandall pointson
thesurfaceS3aredetected.

Someresearcherstry to reduceocclusionswith respectto
thecameraby addinga secondcameraon theothersideof
thelight projector. Themotivationfor thesecondcamerais
thatsomeof theobjectsurfacesthatcannotbeseenby the
initial cameramaybeseenby thesecondcamera.However,
the secondcamerageneratestwice asmany imagesto be
processedandit doesnot reduceocclusionswith respectto
thelight projector(Condition1).

Our proposed system, Dual-Beam Structured-Light
Scanner(DSLS),substantiallyreducesocclusionswith re-
spectto thelight projectorwhile usingthesamenumberof
images. In the next section,we presentthe DSLS system
andits advantagesin 3-D objectmodeling.
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Figure3: Dual-beamstructured-lightscanningsystem

3 Dual-Beam Structured-Light Scan-
ner (DSLS)

3.1 System Integration

The DSLS systemwe have developedis shown in Figure
3. An additional light projector is mountedon the right
endof the linearslide. Theadditionalplaneof light (right
plane)generatedby thisprojectorintersectstheinitial plane
of light (left plane)right below thegroundplane,thuscre-
ating two stripesthat are very closeto eachother on the
groundplane.Thecamerais positionedin themiddleof the
projectorsandit observestheilluminatedstripescreatedby
theleft andtheright planes.Sincethetwo planesdonot in-
tersectabove the ground,the illuminatedstripesgenerated
by theleft planeandthoseby theright planenever overlap
in thecameraview. In otherwords,the illuminatedstripes
by thetwo planesareclosestto eachotherwhenthey both
hit theground.It mustbefurthernotedthattheilluminated
stripescreatedby theleft planeappearonly in regionL (see
Figure3). On the other hand,the illuminated stripescre-
atedby the right planeappearonly in region R. No stripes
areobservedin theregion betweenL andR andthis region
shouldbeminimizedin orderto maximizetheheightabove
the groundplanefor which dual datawould be available.
Althoughwe have workedwith thelaserbeamorientations
asshown in Figure3, onecould alsodesigna DSLS like
systemwith otherorientationsaslong asthetwo beamsdo
not intersetabovethegroundplane.

3.2 Data Acquisition

Thedataacquisitionprocessof theDSLSis easilymodified
from theconventionalstructured-lightscanner. In fact, the
only modificationcomesfrom realizing that the L region
andthe R region (SeeFigure3) provide two differentsets

of data. For eachimagek, the L region is searchedanda
setof triples(i, j, k) � is obtained.Similarly, theR region is
searchedto obtaintheset(i, j, k) � . Thesetwo setsof triples
form two rangemaps.This is anattractive featuresincethe
processingtime for obtainingtwo differentrangemapsby
the DSLS is practicallythe sameasthe time for obtaining
onerangemapwith aconventionalsystem.

Average

DSLS 14.03sec

ConventionalSystem 13.27sec

The table shows the averageprocessingtime for the
DSLSandtheconventionalsystemover5 trials. Theobject
scenewasthe samefor all the trials and200 imageswere
taken. The processingtime wasrecordedfrom the startof
thescanuntil therangemapwasgenerated.

3.3 System Calibration

Thecalibrationof thedualstructured-lightscanneris done
by modifying themethoddescribedin [4]. In this method,� datapointsareusedto solvea
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If werewriteEq. (3)asjlknm-o , thenourproblemis to solve
for k in jlknmpo . Wecanform thenormalequationsandfind
the linear leastsquaressolutionby solving qrjts�jvu�kwmxjts�o
where jts is the transposeof j . The resultingsolution k
forms the transformationmatrix y . Note that Equation3
containsz_{ equationsand11 unknowns,thereforethemin-
imum numberof datapointsneededto solve this equation
is 4.

For the dual-beamstructured-lightscanner, we needto
find two transformationmatricesfor the left andthe right
light projectors. It is possibleto computeonetransforma-
tion matrix and solve for the other if we know the exact
relative positionsof two light projectors. This approach,
however is not practicalsincefinding theexactrelative po-
sitionsis verydifficult.

The calibrationblock we have devisedis shown in Fig-
ure4. Usingthis calibrationblock, we measurethe illumi-
natedpointsontherodsgeneratedby theleft light projector
and their correspondingpoints in the cameraview. Then,
a transformationmatrix y*|~}�� s canbecomputedusingthose
measureddatapoints.Similarly, we computea transforma-
tion matrix y1������� s usingthedatapointsthatwerecreatedby
theright light projector.

We attached9 rodsin thecalibrationblock suchthat the
camerais ableto view all 18 illuminatedpoints. Also, all
therodsareassumedto beparallelto theworld coordinatek�� -plane.

3.4 Advantages of DSLS

In general,with the DSLS systemwe areableto generate
rangedataon moresurfacesthanpossiblewith theconven-
tional approachanddo so in a singlescanusingthe same
numberof cameraimages.

To see the secondand more important advantageof
DSLS, we needto to first describebriefly the shortcom-
ings of the currentbestpracticefor combiningrangeim-
agesfor objectmodeling:3-D modelingrequiresthatall of
the externalsurfacesof an objectbe rangemapped.Since
the different rangemapswould in all likelihoodbe taken
from differentviewpoints,thereis thentheproblemof reg-
istering the rangemapsinto a commoncoordinateframe,
a problemfor which no fully automaticprocedurehasyet
beendevised.Onemaycomputetheregistrationby select-
ing thecorrespondingpointsmanually;however, thatcanbe
tediousanddifficult since,for complex objects,humansare
not alwaysgoodat visualizing3D pointsin 2D projections
of the datacollected. To avoid this painful process,many
researchersareusingthecalibrationbetweenthesensorand
theobjectto computetheregistration.A popularapproach
consistsof placing an objecton a turntablewhich rotates
in front of a structured-lightscanner. To enhancetheaccu-
racy of registrationachieved in this manner, onecanalso
usethe ICP (Iterative ClosestPoint) algorithm[2]. If the
objectof theexampleof Figure2 wasplacedonaturntable,
the surfaceS2 would be detectedby rotatingthe turntable
by 180� but thesurfaceS1wouldnot besincetheturntable
would be rotatingperpendicularto the planeof light. The
only way to detectthesurfaceS1usinga singlestructured-
light scannerwould be to changethe object’s orientation
with respectto the turntablein sucha way that thesurface
S1 would intersectwith the planeof light and the illumi-
natedstripewouldbeseenby thecamera.But changingthe
poseof the objectwould alter the transformationfrom the
objectto the turntable,and,if this new transformationma-
trix is notavailable,would requiremanualregistration.The
DSLSwill reducethe needof changingthe object’s orien-
tationwith respectto theturntable.

4 Experimental Results

We first want to show thata singlescanby the two beams
of DSLScanproducea rangemapfor moresurfacesof an
objectthanpossiblewith just onebeam.Consider, for ex-
ample,theobjectshown in Figure5(a).A singlescanof the
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(a) (b)
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Figure5: (a): photographof object,(b): cloudof pointsdetected
by left light projector, (c): cloudof pointsdetectedby right light
projector, (d): superpositionof (b) and(c).

Figure 6: Eight different objectsto be tested. Top left to top
right: Obj.1- Obj.4,bottom left to bottom right: Obj.5- Obj.8

objectwith just the left light projectorproducesthe range
mapshown in Figure5(b) anda singlescanwith only the
right light projectorthe mapshown in Figure5(c). How-
ever, a singlescanwith the two light beamstogetherpro-
ducesthe rangemapof Figure5(d). The fact thata single
DSLSscanis ableto capturemoresurfacesin someof the
posesof theobjectmeansthatonewould needfewer scans
for modelingtheentireobjectand,consequently, onewould
have to registerfewer rangemaps.

We now illustratehow DSLS improvesupontraditional
structural-lightscanningwith regardto thesingle-scaneffi-
ciency of datacollection.This is doneby usingeightdiffer-
entobjectsof differentshapes,colors,andsurfacetextures
(Figure6). Eachof theseobjectsis scanned5 timesandthe
poseof the object changedrandomlyfor eachscan. Two
rangemapsarecollectedfor eachpose:from the left light
projectorandtheright light projector. Thetwo rangemaps
areanalyzedto find the points that weredetectedonly by

theleft light projector, thepointsdetectedonly by theright
light projector, andthepointsdetectedby bothlight projec-
tors.Figure7 showstheresultof thisexperiment.Whatthe
bargraphsdepictis explainedby thelegendsat thebottom
of the figure. In eachpair of bars,the left bar shows the
numberof objectpointsdetectedby theleft light projector,
theright bar thenumberof pointsby theright light projec-
tor. The gray bottomportion in eachbar shows the num-
berpointsthataredetectedby bothlight projectors,andthe
blacktopportionsthenumberof pointsuniqueto eachlight
projector. The figure shows that the right light projector,
whichprojectsabeamataslantanglewith respectto thedi-
rectionof thescan,consistentlydetectsmoreobjectpoints
thantheleft light projector. This is not surprisingsincethe
verticallyprojectedbeamby theleft light projectorwill fail
to seeany verticalsurfaceson theobjects.In Figure8, the
DSLSrangemapsof theeightobjectsareshown.

To show thecomplementaryrolesplayedby theleft and
theright light projectors,weshow in theleft columnof Fig-
ure9 therangemapsfor thefree-formobject(labeledObj.7
in Figure6). Thetop entry in thecolumnis therangemap
producedby the left light projector, the middle entry the
rangemapproducedby theright light projector, andthebot-
tomentrythecompositerangemapby DSLS.As thereader
cansee,the occludedpartsof the left-projectorrangemap
arecoveredby datain the right-projectorrangemap. The
fact that the oppositeof this statementis alsotrue is made
evidentby examiningthesamerangemapsbut from a dif-
ferentperspective,asshown in theright columnof theFig-
ure9.

5 Conclusions

In thispaper, wedescribedtheDual-BeamStructured-Light
ScanningSystem.Both quantitative andqualitative results
werepresentedto illustratethe advantagesof usinga sec-
ond light projector. Theresultsshowedthat thenumberof
registrationsrequiredfor 3-D modelingcanbesignificantly
reduced.This reductionwaspossiblebecauseof the extra
rangedatathat is obtainedby usingbothprojectorsasop-
posedto onesingleprojector. TheDSLSaddedin average
over 40% more points to the rangedatathan the conven-
tional scanningsystem.
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Figure8: SinglescannedDSLSrangemapsfor objectsshown in Figure6
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Figure7: Numberof pointsdetectedby DSLS.Lt: total number
of points detectedby left light projector, Lo: numberof points
detectedonly by left light projector, Rt: total numberof points
detectedby right light projector, Ro: numberof pointsdetected
only by right light projector, LR: numberof pointsdetectedby
bothlight projectors.
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(e) (f)

Figure9: Objectpointsdetectedby DSLS in a singlescan.The
left column shows in (a) the cloud of points yielded by the left
light projector, in (c) thecloudof pointsyieldedby theright light
projector, andin (e), the compositeDSLS rangemap. The right
columnshows exactly thesamedatabut from a differentperspec-
tive.

7



References

[1] R. Bergevin, M. Soucy, H. Gagnon,andD. Lauren-
deau, “Towards a GeneralMulti-V iew Registration
Technique”, IEEE Transactionson Pattern Analysis
andMachineIntelligence,vol. 18, no. 5, May 1996,
pp.540-47.

[2] P.J. Besl, and N.D. McKay, “A Method for Regis-
tration of 3-D Shapes”,IEEE Transactionson Pat-
tern Analysis andMachineIntelligence,vol. 14, no.
2, February1992,pp.239-56.

[3] O. Carmichael,D. Huber, andM. Hebert,“LargeData
SetsandConfusingScenesin 3-D SurfaceMatching
andRecognition,” Proceedingsof theSecondInterna-
tional Conferenceon 3-D ImagingandModeling,Ot-
tawa,Canada,October1999,pp.358-67.

[4] C.H. Chen,andA.C. Kak, “Modeling andCalibration
of a StructuredLight Scannerfor 3-D RobotVision”,
Proceedingsof theIEEE InternationalConferenceon
RoboticsandAutomation,RaleighNC, March1987,
pp.807-15.

[5] B.T. Chen, W.S. Lou, C.C Chen, and H.C. Lin,
“A 3D ScanningSystemBasedon Low-Occlusion
Approach”, Proceedingsof the SecondInternational
Conferenceon 3-D Imaging and Modeling, Ottawa,
Canada,October1999,pp.506-15.

[6] Y. Chen,andG. Medioni, “Object Modelingby Reg-
istration of Multiple RangeViews”, Proceedingsof
the IEEE InternationalConferenceon Roboticsand
Automation,Sacramento,California,April 1991,pp.
2724-9.

[7] Y. Chen,andG. Medioni, “Object Modelingby Reg-
istrationof Multiple RangeViews,” ImageandVision
Computing,vol. 10, no. 3, April 1992, pp. 145-55,
UK.

[8] A. Johnson,and M. Hebert, “SurfaceMatching for
Object-Recognitionin Complex Three-dimensional
Scenes,” Image& Vision Computing,vol. 16, no. 9-
10,July. 1998,pp.635-51.

[9] A.C. Kak, J.L. Edwards,“ExperimentalStateof the
Art in 3D ObjectRecognitionandLocalizationUsing
RangeData”,Proceedingsof theWorkshopon Vision
andRobots,Pittsburgh,PA, 1995

[10] M. Levoy, K. Pulli, B. Curless,Z. Rusinkiewicz, D.
Koller, L. Pereira,M. Ginzton,S.Anderson,J.Davis,
J. Ginsberg, J. Shade,and D. Fulk, “The Digital
MichelangeloProject:3D Scanningof LargeStatues”,
Proceedingsof SIGGRAPH,2000,pp.131-44.

[11] V. Nguyen,V. Nzomigni, andC. Stewart, “Fast and
robust registrationof 3-D surfacesusing low curva-
turepatches,” Proceedingsof theSecondInternational
Conferenceon 3-D Imaging and Modeling, Ottawa,
Canada,October1999,pp.

[12] K. Nishino, Y. Sato, and K. Ikeuchi, “Appearance
CompressionandSynthesisBasedon 3D Model for
MixedReality”,Proceedingsof theInternationalCon-
ferenceon ComputerVision, Corfu, Greece,Septem-
ber1999,pp.38-45.

[13] M. Reed,and P. Allen, “3-D Modeling from Range
Imagery: An IncrementalMethod with a Planning
Component”,ImageandVisionComputing,February
1999,17(1): pp.99-111.

[14] H. Zha, Y. Makimoto, and T. Hasegawa, “Dynamic
Gaze-ControlledLevels of Detail of PolygonalOb-
jects in 3-D EnvironmentModeling,” Proceedingsof
theSecondInternationalConferenceon 3-D Imaging
and Modeling, Ottawa, Canada,October1999, pp.
321-30.

[15] H. Zha, K. Morooka, T. Hasegawa, and T. Nagata,
“Activemodelingof 3-D objects:planningonthenext
bestpose(NBP) for acquiringrangeimages,” Confer-
enceon RecentAdvancesin 3-D Digital Imagingand
Modeling,Ottawa,Canada,May, 1997,pp.68-75.

[16] Z. Zhang, “Iterative Point Matching for Registra-
tion of Free-FormCurvesandSurfaces,” International
Journalof ComputerVision, vol. 13, no. 2, 1994,pp.
119-52.

8


