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Abstract
This paper compares two different local surface shape

description methods. The general goal of surface shape
description methods is to classify different surface shapes
from range data. One well-known method to classify
patches of various shapes is the HK classification space
[2, 1, 10]. Another way to classify patches is the SC method
introduced by Koenderink [9]. This paper presents several
experiments designed to show the (1) qualitatively differ-
ent classification, (2) the impact of thresholds and (3) the
impact of different noise levels. We conclude that Koen-
derink’s approach has some advantages at low thresholds,
complex scenes and at dealing with noise.

1 Description of the algorithms
Gaussian (K) and Mean (H) curvatures are the most

widely used indicators for surface shape classification in
range image analysis. The HK segmentation [2, 1, 10]
was introduced by Besl in 1986. He used Gaussian and
Mean curvatures, which are calculated from the two prin-
cipal curvatures ��� and ��� . The Gaussian curvature equals
the product of the principal curvatures.

��� ���	�
��� (1)

The Mean curvature equals the arithmetic average of the
principal curvatures.

��� ��������� (2)

Image points can be labelled as belonging to a view-
point independent surface shape class type based on the
combination of the signs from the Gaussian and Mean cur-
vatures as shown in Table 1. We found that it is not neces-
sary to differentiate between the different kinds of saddles
(ie. K � 0). Therefore, we classify all saddle points as
hyperboloid (Hy) points.

K � 0 K = 0 K � 0

H � 0 Saddle Valley Concave Concave
(Sv Hy) Cylinder (-Cy) Ellipsoid (-El)

H = 0 Minimal Plane Impossible
(M Hy) (Pl)

H � 0 Saddle Ridge Convex Convex
(Sr Hy) Cylinder (+Cy) Ellipsoid (+El)

Table 1: Classification for the HK segmentation based on
the sign of the Mean (H) and Gaussian (K) curvatures

Koenderink defined an alternative curvature representa-
tion [9]. His approach (SC classification) decouples the
shape and the magnitude of the curvedness. The surface in
terms of relative curvature remains invariant under changes
in scale. He defined a shape index S, which is a number in
the range [-1,1]. The index covers all shapes except for
the planar shape which has an indeterminate shape index
( � � � � � ���

). The shape index provides a continuous
gradation between shapes, such as concave shapes (-1 � S� -1/2), hyperboloid shapes (-1/2 � S � 1/2) and convex
shapes (1/2 � S � 1). The image points can be classified as
shown in Table 2. We use the positive principal curvatures
( ����� � � ��� for convex objects.

� � �� �����! �"!��#%$ � � &� �����'(�)�)* ���,+-��� (3)

Beside the shape index, Koenderink introduced the pos-
itive value C for describing the magnitude of the curved-
ness at a point. It is a measure of how highly or gently
curved a point is. At a point that has no curvedness the
value becomes zero. Therefore, this variable can be used
to recognise a planar surface.



� � � � � � �� ��� (4)

The SC classification was used in several publications
as a replacement [5, 4] or an enrichment [8] of the HK
segmentation. Although both algorithms are used, the lit-
erature contains as far as we know no comparison of these
algorithms. Guid compared Koenderink’s approach in an
application-based view with several other surface interro-
gation methods in terms of determining surface fairness,
run-time, sensitivity to changes and invariance to geomet-
ric transformations [7]. His conclusion is that this ap-
proach is appropriate for detecting waveness and searching
extreme curvatures. Inflection points and convex/concave
regions may be properly detected. In his comparison the
SC classification is one of the slowest algorithms. The al-
gorithm has a fair sensitivity to changes in surface and is
invariant to geometric transformations.

2 Thresholds
Both the HK and SC methods have the problem that

it is impossible to have an exact zero value, because of
image noise and small shape variations. Therefore, zero-
thresholds are used to decide if a value is zero or not. Ev-
erything below a certain threshold is recognised as zero.
Figure 1 shows the classification regions for the HK seg-
mentation (top) and the SC segmentation (bottom) for the
same threshold value. The graphs are drawn to the same
scale. Regions are labelled using the shapes from Tables
1 & 2. Data-points are located in the � ������� -graph like in
Figure 6. The classification schema are put over the graph
to classify the points.

The HK segmentation uses two thresholds. The Gaus-
sian ��� and the Mean ��� threshold are used to classify
plane surfaces. With the following formula the Gaussian
threshold can be calculated from the Mean threshold [3].

� � � � � �	� � �  � ��
 ���� � ��� � � � ������������� (5)

Koenderink’s approach uses the threshold ��� to classify
plane surfaces patches (if

� � � � ). We choose � � � � �
for comparison of the algorithms.

Shape Index range
Concave Ellipsoid (-El) S � [-1,-5/8)
Concave Cylinder (-Cy) S � [-5/8,-3/8)
Hyperboloid (Hy) S � [-3/8,3/8)
Convex Cylinder (+Cy) S � [3/8,5/8)
Convex Ellipsoid (+El) S � [5/8,1]

Table 2: Classification for Koenderink’s approach based on
the shape index (S)

K1

K2

Pl

M Hy

M Hy

Sr Hy

Sr Hy

Sv Hy

Sv Hy

+El

−El

+Cy

−Cy

+Cy−Cy

Th Tk

K1

K2

Pl

Hy

Hy +El

−El

+Cy

−Cy

+Cy−Cy

Tc

Figure 1: Classification for the HK (top) and SC (bottom)
methods. Dashed lines are determined by the threshold val-
ues and separate the classification regions

Some implementations use a low and a high threshold.
“Each curvature value is classified as Negative, Zero, Posi-
tive or Unknown based on the values of ’inner’ and ’outer’
thresholds” [6]. Everything below the low threshold is
recognised as zero. A value between the low and high
threshold is recognised as unknown (classification later ac-
cording to local context) and everything above the high
threshold is recognised as a normal value. To make the
comparison easier to perform here the low and high thresh-
olds are the same.

3 Comparison
We separate the comparison into three sections. In each

of the sections below we answer a question:
Section 3.1: Do the algorithms make any qualitatively

different shape classifications?
Section 3.2: Do the two algorithms have any qualita-

tively or quantitatively different behaviour as the classifi-
cation threshold varies?

Section 3.3: How do the two algorithms compare as
noise levels increase?



3.1 Mathematical comparison
The classification of shapes is implemented quite dif-

ferently in the two algorithms. The HK segmentation re-
lies on the the right values of the two thresholds. Because
of the thresholds, the plane area in the HK scheme is not
symmetric (see Figure 1). Furthermore, the cylinder area
contains a part of the ellipsoid area ( � � � ��� ). Beside this,
the cylinder area gets narrower for high curvatures. On
the other hand, with the SC classification the plane area is
symmetric and the cylinder area uses a constant range of
the shape index.

The following shows that the region for the cylinder is
narrower for highly curved objects in the HK algorithm.
For a cylinder just at the classification threshold (assume��� � ��� � � ) we have:

��� � � �� � (6)

If we plot the cross-section ( � � �
) of ellipsoids

(
�� � � � � �  �� � ���� �  �� � � � � � ���

) for 3 decreasing values
of ��� we see a family of shapes as shown in Figure 2. We
use the threshold ��� � ��� � ��� to calculate the shapes. The
allowable “cylindrical shapes” must lie inside these limit
shapes for a given extent in the x direction.

On the other hand, the region for the cylinder is bigger
for Koenderink’s approach at the shape border ( 	
 ):

�
� � �� �����! �"!��#%$ ���	&�)�� � '(� � * (7)

� � � � � � � '� ��� � 	����� �� �� ��� � 	����� ��� � � � ����������� (8)

If we plot a similar family of cross-sections as above
for the same 3 decreasing values of � � we see this family
of shapes as shown in Figure 2. As above, the allowable
“cylindrical shapes” lie inside these limit shapes for a given
extent in the x direction.

What these two figures show us is that as � � becomes
smaller (ie the radius in the x direction becomes bigger)
the HK algorithm becomes more strict about what is cylin-
drical by requiring more elongated shapes to have thinner
radii, whereas the SC algorithm allows the maximal radius
to scale up as the shape elongates.
3.2 Empirical comparison

Both classification methods were implemented in our
range image segmentation program. The curvatures are es-
timated by using the 1st and 2nd fundamental forms of the
surface pixels [1]. The segmentation program was com-
pared with other approaches by Hoover in [6]. The clas-
sification methods label each point of a range image after
smoothing it once as one of six shapes. The shapes are

X

Y

X

Y

Figure 2: The shape family at the border between the posi-
tive cylinder and the positive ellipsoid for HK (top) and SC
(bottom). The shapes of each image are calculated with the
three decreasing � � values 0.06, 0.04 and 0.02. Allowable
cylinders lie inside the limit shape for a given extent in the
x direction. The cylinder is rotationally symmetric about
the X axis.

plane, concave/convex ellipsoid, concave/convex cylinder
and hyperboloid. The results (the classified images) are
compared with the ground truth of the images to count the
number of mislabelled points. The ground truth is a hand
segmentation, which outlines the boundary of each surface
patch.

For testing two kinds of test images were used. First,
some real test images which contain only one type of
shape were used. Then, two more complex test images,
which contain several shapes, were used. Each test image
was segmented 25 times with different thresholds for each
method.

Figures 3 till 5 show graphs of the scores of the two
algorithms applied to real, but simple, shapes. The graphs
describe the percentage of mislabelled points (vertical axis)
for different thresholds. Some points are worth noticing.
First, Koenderink’s approach is slightly shifted to the right
side on all test graphs, because the same threshold creates



a larger central/planar classification region for the HK seg-
mentation in the ��������� -coordinate-system. This difference
is not relevant as one could adjust thresholds accordingly.
Second, for the images that contain only planar or hyper-
bolic surfaces (Figures 3 & 4) and also for elliptical sur-
faces the best result occurs at low or high thresholds, be-
cause the threshold can be used to make the plane region
cover all data-points, or shrink the plane & cylinder re-
gion to zero. Figure 4 shows classification results on a real
hyperbolic surface. As the threshold increases, points are
mislabelled as planar. As the threshold decreases, correct
classification increases, but again levels off as noise limits
classification. In this case the HK algorithm does slightly
better because its cylindrical classification region disap-
pears, allowing more noisy points to be classified correctly.
Thus, the difference between the two algorithms appear for
points having locally cylindrical shape.

The results for the convex cylinder (see Figure 5) are
interesting. At high threshold levels, all points are misclas-
sified as being planar. What is more interesting is at lower
threshold levels. With the HK classification, as the thresh-
old decreases, more points are labelled as cylindrical until
a critical level when points start being misclassified as el-
liptical, because the cylindrical region has been shrunk too
much. This trade off does not occur with the SC classifi-
cation. Of note in both cases is the high level of misclassi-
fication arising from surface shape noise. Figure 6 shows
a scatter plot of the estimated curvatures on the cylindrical
surface, which are clearly very noisy even though the data
itself is reasonably good. This sensitivity arises from the
need to estimate local

� nd derivatives. One can easily see
why many points are misclassified. A few points belong to
a negative cylinder. These points are located at the border
of the positive cylinder.

Figure 7 shows the results from a more complex ob-
ject (see Figure 8) containing multiple shape classes (pla-
nar, elliptical/spherical and cylindrical surfaces). The clas-
sification results here are from a combination of surface
shapes. What seems the case here is the SC algorithm of-
fers a broader range of threshold values where the classifi-
cation performance is best. If optimal threshold values can
be found, the HK algorithm can get slightly better classi-
fication results. However, as seen in Figure 5 & 7, this
optimal value may be hard to find when no ground truth is
known.

A second complex scene were used to compare the ap-
proaches. The scene is a factory scene and contains planes
and cylinders with different radii (see Figure 10). Figure 9
shows that the SC algorithm performs slightly better. The
small dips in the graph mark the thresholds that discrimi-
nate between the different cylinders.

3.3 Behaviour for different noise levels

Image noise is an important issue in vision computing.
To measure the impact of noise on both algorithms we
performed another series of experiments with noisy data.
Firstly, we created several synthetic images with all prim-
itive surfaces (plane, cylinder, ellipsoid and hyperboloid).
The images have the sizes 128x128 points for a single sur-
face images and 192x192 for images with multiple surface
types. The test data were formed by adding uncorrelated
Gaussian distributed noise with zero mean and variable
standard deviation (for the different noise levels) to the im-
ages. The images are not smoothed. Figures 11 until 16
show the minimum percentage of mislabelled points for
the best possible threshold for a certain noise level. Notice
that we can not do this experiment with a single planer sur-
face, since the best threshold for a planer surface is � and
therefore the number of mislabelled points is always 0.

Mislabelled points are increasing along with the noise
level. The noise has an impact on the data after a noise
level of

� �����
. One could think that the noise would im-

pact the data already at a level of
� �����

(resolution of some
laser scanners). Because of the synthetic nature of the im-
ages, the image data is concentrated at a single point in the����� �)� -graph. Therefore, the noise does not have as strong
of an impact on the results. The best threshold for the sur-
faces is zero, except for the cylindrical surface in conjunc-
tion with the HK algorithm, because the classification re-
gion of the cylinder vanishes when using the zero value.
The HK algorithm has an advantage with the hyperboloid
and the ellipsoid surfaces (see Figure 11 & 12), because the
algorithm can shrink the cylindrical region. This creates
a bigger classification region where noisy points are still
recognised as the correct shape. We performed two exper-
iments with two different cylindrical data sets. One data
set contains a circular cylinder with uniform curvedness.
The other data set contains four different curved cylinders.
The HK classification has an advantage with the uniform
curvedness (see Figure 13). This result certainly depends
on the fixed shape border of the SC classification. With the
other data set (see Figure 14), the performance differences
are slightly smaller at lower noise levels.

We did one more test with an image that contains equal
large plane, cylinder, ellipsoid and hyperboloid surfaces.
In images with multiple surfaces the borders between the
surfaces cause irregular shapes. To avoid the labelling of
the irregular shapes the shape borders are eliminated in the
ground truth file and have therefore no impact on the cal-
culation of the mislabelled points. This reduced the total
number of mislabelled points in comparison to the previ-
ous test images. We performed the experiment with one
test image that contains the four shapes and another test
images which contains the four shape regions but the three



curved surfaces are each replaced by four different cylin-
der, ellipsoid and hyperboloid surfaces. The SC segmen-
tation performs slightly better in the first test image (see
Figure 15). The methods perform differently in the sec-
ond test image (see Figure 16), where the HK algorithm is
affected by the noise at much lower levels than in the sin-
gle surface images. The performance of the SC method is
significantly better over all noise levels.

4 Conclusion
The performance of both methods on images contain-

ing single surfaces is basically the same. One difference
is that the HK segmentation is using the zero-threshold to
recognise cylindrical surfaces. What leads to the effect
that cylinder points vanish from the image at low thresh-
olds. Therefore, the SC classification is more stable at
low thresholds on scenes containing cylinders. For the
SC algorithm a slightly higher threshold should be used
for the same error rate as the HK algorithm (but this ef-
fect is largely unimportant in terms of classification per-
formance). In our noise tests, the SC algorithm can deal
better with image noise in images which contain different
surfaces, because the HK segmentation cannot focus with
an optimal threshold on a single surface. Thus we con-
clude Koenderink’s SC classification scheme has a slight
advantage (5-10% lower error rate) when dealing with real
scenes containing multiple surfaces and moderate noise.
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Figure 3: Mislabelled points versus zero threshold for the
plane surface.
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Figure 4: Mislabelled points versus zero threshold for the
hyperboloid surface.
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Figure 5: Mislabelled points versus zero threshold for the
convex cylinder surface.
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Figure 6: Scatter plot for the convex cylinder.
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Figure 7: Mislabelled points versus zero threshold for the
bomb.

Figure 8: The bomb.
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Figure 9: Mislabelled points versus zero threshold for the
factory scene.

Figure 10: The factory scene.
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Figure 11: Mislabelled points versus noise level for the
convex ellipsoid surface.
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Figure 12: Mislabelled points versus noise level for the
hyperboloid surface.
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Figure 13: Mislabelled points versus noise level for one
cylinder surface.
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Figure 14: Mislabelled points versus noise level for four
different cylinder surfaces.
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Figure 15: Mislabelled points versus noise level for an im-
age which contains a single large equal-area large plane,
cylinder, ellipsoid and hyperboloid surface.
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Figure 16: Mislabelled points versus noise level for an im-
age with the single curved surfaces from figure 15 substi-
tuted with four differently curved surfaces for the cylinder,
ellipsoid and hyperboloid regions.


