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Abstract 
 

This paper describes a recursive multi-resolution 
algorithm that reconstructs high-resolution and high-
accuracy 3D images from low-resolution sparse range 
images or profiles. The method starts by creating a rough, 
partial, and potentially distorted estimate of the model of 
the object from an initial subset of sparse range data; 
then, using ICP algorithms, it recursively improves and 
refines the model by adding new range information. In 
parallel, real-time tracking of the object is performed in 
order to allow the laser scan to be automatically centered 
on the object. The end result is the creation of a high-
resolution and accurate 3D model of a free-floating 
object, and real-time tracking of its position. Examples of 
the method are presented when the object and the 3D 
camera are moving freely with respect to each other. The 
system provides high accuracy hand-held laser scanning 
that does not require complex and costly mechanical 
scanning apparatus or external positioning devices. 

 
 

1. Introduction 
 

Because of their inherent physical properties, 3D 
scanners can only measure one view of an object at a 
time. Therefore to completely reconstruct an object, 
multiple images must be acquired from different 
orientations. Two main solutions have been proposed to 
combine these different views: to use external global 
positioning equipment such as CMM, optical or 
mechanical trackers, inertial guidance systems, or to use 
software algorithms to merge and stitch these multiple 
images together. The introduction of Iterative Closest 
Point (ICP) registration algorithms has greatly simplified 
the reconstruction of complex 3D models of objects 
acquired using 3D scanners.  In the context of this paper, 
the term ICP encompasses the family of Iterative 
Corresponding Point methods [1]. 

 
The Iterative Closest Point algorithms (ICP) have been 

developed mostly for solving the general problem of 
registration of range images acquired from multiple 
partial views of a same object [2].  Many variations of 
these algorithms have been published but basically the 
objective is to find the best rigid transformation matrix 
that maps one set of range data to a reference set. This 
rigid transformation can then be used to stitch a new patch 
image to the reference surface. 

Several algorithms have been proposed to constrain 
convergence: minimizing the quadratic errors of the 
minimum distances between each point on the new patch 
and the reference surface (point-to-surface), between two 
surface patches (surface-to-surface), or between each 
point (point-to-point). To speed up the algorithm, the 
normal to the surfaces or to the segments are often used to 
reduce the complexity of the search. Many other methods 
have also been proposed: error minimization using the 
conventional quadratic and/or absolute errors, outlier 
removal, minimization of error distributions in the 
scanner coordinate system rather than the object [1,3,4]. 

Mathematically, the objective of ICP algorithms is to 
find the rigid transformation matrix Mk that will align the 

range data set 
k

x  in the scanner coordinate system with 

the model reference image data set xmk where 

kk kxMxm =         (1) 

[ ]Tk zyx 1=x        (2) 
ICP algorithms generally assume that the data within 

the images are rigid, accurate, and most importantly, 
stable during the acquisition (still images). Thus, the 3D 
scanning process must meet the requirement that the 
relative position between the scanner reference coordinate 
and the object under inspection is kept perfectly stable 
and distortions free. Unfortunately, relative motion 
between the scanner and the object will introduce two 



undesired sources of errors: blur of the individual 
measurements, and overall motion-induced distortion 
across the scan.  Very short integration time of the light 
on the position detector can reduce blur but distortions 
will still exist and will depend on the acquisition rate, 
processing speed of the data set kx , and the physical 
properties of the scanner.  

From an initial set of sparse 3D points, the method 
presented here estimates a rough, partial, and potentially 
distorted model that provides a first approximation of the 
expected object. This model is also used to track the 
position of the object in a 3D space. New profiles are 
added to this initial set to recursively improve and refine 
the initial model and to simultaneously provide object 
tracking information. The final result is a high-resolution 
accurate representation of free-floating objects. 

An analogy with a sculptor can be made. He will start 
from a large piece of wood or granite, will progressively 
add outlines, and will refine the details of his masterpiece. 
The proposed method is similar; details are added while 
continuously scanning the object.  

In section 2, we will discuss the most important 
physical constraints associated with 3D acquisition that 
will help defining the requirements for the algorithm. 
Sections 3 and 4 will present the algorithm and its 
implementation. Section 5 will present different scanning 
scenarios that we tested and the experimental results that 
were obtained.  
 
2. The constraint of physical rigidity during 

acquisition 
 

Constraining the object to be rigid and stable is still a 
major requirement that must be maintained during the 
acquisition of range data. Constrained rigidity means that 
any motion is predictable and can be accurately 
computed.  

Figure 1 shows a dual-axis range sensor mounted on a 
tripod. The tripod is physically moved around the object 
to create a full 3D model.  Stability is paramount in 
acquiring high accuracy images and will be seriously 
compromised by mechanical oscillations and vibrations, 
amplified by the length of the tripod arm. In this case the 
rigidity constraint between the object and camera depends 
on the stability of the tripod and will not be valid in the 
presence of strong winds, vibrations, or mechanical 
oscillations. The use of positioning equipment such as 
optical trackers is only a partial solution; an absolute 
mechanical rigidity between the optical tracker and the 
object must still be maintained. Such an arrangement 
would not be possible with the hand-held scanning 
method illustrated in Figure 2. 
 

Figure 2 illustrates the hand-held configuration we 
used in this paper. Removing any constraints associated 
with rigidity will solve the stability problem of Figure 2 
and can dramatically reduce the costs associated with 
mechanical structures of Figure 1, since the proposed 
approach works identically when the 3D scanner is being 
moved relative to the object, something that was 

 
 

Figure 1: Range sensor mounted on a tripod; stability is 
paramount in acquiring high accuracy range images. 
Accuracy of range data is the combination of the range 
sensor and its mechanical supporting structure. Vibrations 
and oscillations induced by winds or passing vehicles can 
seriously affect accuracy.  
 

 
 
Figure 2: Hand-held acquisition using fast Lissajous 
scanning patterns and real-time tracking using the 3D 
range data.  External constraints imposed in Figure 1 or 
by using external trackers are completed removed; no 
external equipment is needed. This is one of the 
experimental configurations we used during this work, the 
exactly equivalent opposite being holding the 3D camera. 
 



successfully tested as part of this work by holding the 
scanner in hand. 

Table 1 shows typical acquisition times needed to 
create high-resolution 3D images assuming an acquisition 
rate of 10 kHz. Mechanical stability must be guaranteed 
for more than 2 minutes to acquire an image of 
1024×1024 rigels (Range ImaGe ELements). Even 2 
seconds for a much smaller 128×128 image is still 
problematic in many situations involving motion. 
 

Table 1: Typical acquisition speed using raster 
imaging. 

Image Size (sec) 
128 128 1.6 
256 256 6.6 
512 512 26.2 

1024 1024 104.9 
Acquisition rate 
Retrace time 

10 kHz 
  2 ms  

 
Table 2: Typical acquisition speed using Lissajous 

scanning patterns. 
Pattern Size (msec) (Hz) 

128 13 78 
256 26 39 
512 51 20 
1024 102 10 

Acquisition rate 10 kHz 
   

 
The acquisition rate is important to characterize the 

maximum displacement speed of the object that can be 
measured and to compensate for the ever-present 
oscillations and vibrations, according to the Nyquist 
criteria. Motion is usually slow and therefore its 
equivalent spectrum is low in frequency content. 
Experience shows that mechanical oscillations in the 10 
Hz to 100 Hz are expected and that higher frequencies 
oscillations are usually damped because of the natural 
inertia (weight) of the 3D camera and/or the object. 
Assuming an acquisition rate of 10 kHz, this means that a 
maximum of 100 to 1000 rigels/sec can be used for data 
registration without being hampered by aliasing.  
Unfortunately for the moment, an increase in acquisition 
rates, for example by sub-dividing the detector or using 
pattern projectors, will usually result in much reduced 
accuracy and/or smaller volumes of range measurement 
[5] and is not a practical solution.  

In [6] we have demonstrated the use of Lissajous 
scanning patterns to obtain real-time tracking 
performances. Figures 2 and 3 show the use of different 
scanning scenarios that can be used to acquire high-

resolution accurate 3D profiles. Table 2 shows typical 
pattern rates that can be obtained. 

 
 

3. Algorithm 
 
Many different ICP methods have been demonstrated to 
compute the registration matrix between a subset of data and 
a reference object. In [2] the algorithm searches for the 
closest point to a reference surface. To reduce the search 
space, several authors use the normal to the surface or 
segment and a maximum range window to limit the total 
number of points tested during the computation [3,7,9]. 
Other methods have been developed such as projecting the 
point following the camera point of view [7,10]. This 
method accelerates the computation and is less affected by 
noise, and although it does not represent the physical object 
as well, it better represents the acquired range data. A study 
of the performances of some ICP methods is presented in 
[1]. More recently [4] uses specific attributes of range data 
to improve performances by constraining the pairing. This 
also offers the possibility of avoid slipping of unconstrained 
surfaces. Most ICP algorithms assume uncorrelated and 
uniformly distributed noise ?x, ?y, ?z, which is a correct 
simplification for small volumes but not correct for large 
volumes [6].  

It is not our intention to discuss the pros-and-cons of a 
given ICP algorithm, for the simple reason that they fall 
short when time and motion induced distortions are 
introduced.  Here we therefore consider the ICP algorithm 
and the model reconstruction method as a generalized 
function, and focus instead on the recursive correction and 
transformation of these data and model to be compatible 
with existing ICP. 

 
 
Figure 3: Variations of the scanning patterns, multiple 
Lissajous and combined Lissajous and raster/vector 
imaging.  



Let assume a subset kX of Nk calibrated range data 
acquired by the range sensor. Each point ix  has an 
associated time tag ti:  

[ ]Tzyx 1=x      (3) 

{ } kiik Nit <≤= 0;xX     (4) 
This subset corresponds to a profile or a full pattern as 

illustrated in Figure 3. The time tag ti is used to 
compensate for motion-induced distortions. Let us assume 
that m is a point on the model and m̂ is an 

approximation of that model. The problem of registration 
consists of finding the estimate kR̂ of the rigid 
transformations kR that minimizes the equation 

∑
−

=

−=
1

0

2

,
ˆˆˆ

kN

i
iikikk xDRmε       (5) 

The selection of the point m̂ depends on the ICP 

algorithm. iD̂ is an estimate of the compensation matrix 

iD that removes the residual distortions introduced by 
motion within the profile kX . We are for now assuming 
that the distortion matrix is unity, ID =i . 

Let us also assume that we have a function ℑ  that 
creates our estimate m̂ of the object from the K previous 

profiles or images: 
( ) kiikk ∀ℑ= xDRm ˆˆˆ        (6) 

 
The function ℑ  creates a mesh model from a set of range 
points kX . The first model 0m̂  is obviously a very rough 
estimate. The model creation procedure basically appends 
M new profiles to the previous model estimate Mk −m̂ that 
fill the gaps, expand its surface and refine the geometry of 
the new estimate km̂ . The final step is to re-optimize the 
last model km̂ by iteratively re-evaluating the matrices 

kR̂  and recreate a new model estimate m̂  that will 

minimize the total error 

∑
−

=

=Ε
1

0

K

k
kε           (7) 

Experimental tests show that optimization is fast and 
converges in a few iterations, especially if this 
optimization is implemented at the beginning of the 
optimization for a small number of subsets K, i.e. 

kk RR ≈ˆ       for K small     (8) 
In a practical situation the relative displacement of the 

scanning patterns on the object surface are usually small. 
The initial model estimate m̂ is only a local 

representation of a small patch of the complete object. 

The next few profiles correct this locally distorted patch 
m̂ and quickly converge to a much more accurate 

representation of this same patch m . Subsequent profiles 
mostly expand an already good model ( mm ≈ˆ ).  
Although Equation 7 can be used to automatically verify 
the convergence of Equations 5 and 6, we found that in 
practice a fixed number of iterations is sufficient. 

Final improvements can be included in the algorithm 
by interpolating the estimates iD̂ of the motion distortion 
matrix iD for each measurement i using a function Ω  
and the rigel time tag ti of Equation 4. Motion is 
interpolated from the relative trajectory of the object or 
scanner given by the matrices kR̂  

ikkki t;,ˆ,ˆ,ˆ,ˆ
11 KK +−Ω= RRRD     (9) 

The simplest form for Ω  is a linear interpolation 
between the kk RR ˆ,ˆ

1−  using quaternion for the rotation, 
for example. Better methods can include smoothed 
interpolation using 11

ˆ,ˆ,ˆ
+− kkk RRR , bi-cubic 

interpolations, or to include acceleration. At the time of 
writing this paper, we were still evaluating these different 
scenarios. 

If K is large, the final model should be a very close 
representation of the exact model, that is  

iikkk DDRRmm === ˆ;ˆ;ˆ     (10) 

 
4. Practical implementation 
 

This algorithm includes three quasi-independent 
operations that are easily implemented in parallel using 
asymmetric distributed processing. 
1 Tracking: from kR we know the relative position of 

the object from the scanner.  In an open-loop 
system, this information can be used to update the 
object location on a display screen for example. In a 
closed-loop system, kR  is used to instruct the 
scanner to adjust the position of the scanning pattern 
on the object. 

2 Model creation: new profiles kX  are added to the 
model estimate m̂ , thus expanding it. With enough 
scans, the entire surface of the object can be 
estimated. This operation is identical to the problem 
of multi-view registration but using only sparse data. 

3 Model refinement: the model m̂ is recursively 

optimized using the previous profiles kX∀ , or the 
ones that fit a certain quality criteria such as rigel 
resolution; final removal of the local distortions 
induced by motion can also be taken into account in 
the model estimate using iD . 



We have already mentioned the use of kR̂  in an open-
loop configuration such as, for example, to adjust the 
position of the object on a display screen Figure 5). kR is 
sufficient to provide the tracking information. However, 
in a closed loop system where the position is fed back to 
the scanner to track the object, delays and improper gains 
can easily create an unstable system resulting in 
overshoots or oscillations while tracking.   

Closed-loop control is more complex than simply 
returning the position error signal. Although we will not 
discuss the details of implementation, a deadbeat 
controller is used to guaranty speed and stability [11]. A 
PID controller is a simplified configuration of a deadbeat 
controller and adjusts the proportional (error), integral 
(position), and differential (speed) feedback gains in 
relation to the physical properties of the laser scanner.  

In practice ICP algorithms are unpredictable in terms 
of speed of convergence and therefore tracking will be 
jerky and slow.  To provide stability, we must add a more 
reliable, fast, and real-time tracking mechanism; we are 
here using the approximate geometry of the object and 
fast correlation methods. The center of mass of the local 
geometry is often more than adequate. Possible drifts 
induced by these local but fast linear approximation 
methods will be asynchronously compensated by kR . 

kR is used to predict where the object is located, in other 
words to supervise the tracking. Figure 4 shows the 
tracking architecture. The real-time inner loop is 
implemented using the scanner’s QNX real-time 

operating system. 
From the point of view of the expanded ICP algorithm, 

these operations are mostly hidden except for one 
important physical constraint. The expected scanning 
position on the object may differ from the measured data, 
because of lags for example, and must be considered 
when applying the ICP algorithm. Real-time 
performances requirements also decrease with the 
complexity of a task. Asynchronous operations are 
possible. 

The multi-tasking algorithm can be described as 
follows: 
   Task 1: acquisition and real-time tracking 

a) Acquire a profile jX  

b) Tracking 
• Correlate profile jX with reference profile 

refX or reference geometry 

• Send tracking error to the scanner controller 
system 

• Update jref XX =  

   Task 2: object tracking and scanning prediction 
a) If reference model m̂ defined 

• Find kR according to Equations 5 and 6 
b) Send updated scanning position to the scanner 

using kR  
• Set 0=refX  

   Task 3: object model creation 
a) If reference model m̂ is not defined 

• Wait until tracking error (task 1) small 
• Use Ki profiles kX and kR̂ to create a first 

approximation of the model 0m̂  
b) If reference model m̂ is defined 

• Update previous model Mk −m̂ with the new 
model estimate km̂ using all K profiles. The 
asynchronous nature of this operation is 
illustrated by the fact that in general, M≥1, 
that is, the task is not necessarily performed 
for each new profile.  

    Task 4: model refinement 
a) Recursively, from profiles jX and matrices kR̂   

• Compute better estimates of registration 
matrices kR̂ and motion induced distortions 

matrices kD̂  
• Compute new model m̂  

b) Globally update model m̂ and matrices kR̂ and 

kD̂ , send result to tasks 2 and 3.  
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Figure 4: Real-time tracking consists of two feedback 
loops: a fast real-time linear method based on correlation 
and/or center-of-mass to provide stable and optimum 
tracking, and a non-deterministic quasi real-time 
supervisory loop using the proposed ICP based algorithm. 
 



Task 1 provides real-time “smooth” control of the 
acquisition and tracking. Errors are usually small and 
processing speed is predictable and fast. This is needed to 
avoid loosing the object during tracking. As shown in 
Figure 4, Task 1 is implemented within the scanner 
software to remove any latencies such as those created by 
the communication links or the operating system. Task 2 
is the result of the ICP algorithm; the estimated kR̂  
basically supervises the tracking of Task 1 and 
compensates for cumulative deviations. Although still a 
high priority task, the asynchronous operation of Task 2 
allows latency and delays created by remote processing 
and non-deterministic performances. These estimates 

kR̂ are also used to expand and update the model m̂ of 

Task 3. Finally Task 4 is computationally very expensive 
and, not being part of the tracking loop, can be executed 
at a lower priority. To maximize speed, each task can be 
separately executed on a different processor.  
 
5. Experimentation 
 

Although many ICP algorithms can be used for Tasks 
2 and 3, we used the point-to-surface method [3] 
implemented by Innovmetric in their PolyworksTM 
software package [12]. Its ease of use, versatility and 
reliability, make it an excellent choice for prototyping and 
experimentation.  We intensively used the built-in macro 
language that simplified the testing and integration with 
our own software modules, as well as with the scanner. 
Some compromises were required to resolve 
implementation constraints such as the non-real time 
performances of the program, the Windows environment 
and the extensive use of files. 

Integration with the laser scanner system, data transfer 
and command control is implemented using TCP/IP 
between the non-real time Windows and the real-time 
QNX operating system for the laser scanner. The latency 
and non-deterministic operations imposes the use of an 
asynchronous multi-tasking method such as the one we 
propose here. 

The complete system extensively uses Lissajous 
scanning patterns or a combination of Lissajous, raster, 
and vectors. A Lissajous scanning pattern possesses many 
interesting opto-mechanical properties and is the best 
compromise between scanning speed and accuracy [13]. 
Most importantly in scanning moving objects, they 
remove the retrace time required with the more 
conventional raster of vector image and provide good 2D 
data point distribution on the object surface, needed to 

avoid singularities that 1D line scan or profiles will 
generate in Equation 5 (not enough constraints).  
 
6. Creation of a medium resolution model 

and tracking 
 

This first experiment demonstrates the creation of a 
medium resolution model 0m̂ and the basic tracking 
capabilities of the algorithm. Tasks 1, 2a and 3a are 
illustrated in Figure 5. Here tracking task 2b is used only 
for display purpose and does not control the scanner. 

The model of the object is at priori not known, only its 
overall dimensions.  The system detects an object when it 
enters a specific volume (e.g. < 2 m) within the field of 
view of the scanner. The algorithm then locks on its 
overall geometry and positions a Lissajous pattern on its 
geometrical center-of-mass (Task 1). When the object 
motion slows and is relatively stable, a low-resolution 
128x128 raster image is used to create a first model 
estimate 0m̂ of the object. Tracking is then resumed and 
the model estimate m̂ is refined; 0m̂ is distorted because 
of possible residual displacements during the 1.6 seconds 
needed for the initial raster image. 

 
 
Figure 5: Tracking and imaging video sequence. Top-
left: the system searches for an object within the field of 
view of the scanner; top-right: the object is found and a 
very low-resolution distorted model is created; bottom-
left: tracking is resumed and the model refined; bottom-
right: results of tracking and model creation. 
 
 



Figure 6 illustrates the results of the optimization. 
Figure 5 shows frames extracted from the video sequence 
showing the tracking and the absolute display position of 
the object as detected by the ICP. Close scrutiny shows 
that the laser does not need to be perfectly centered on the 
object (control) to obtain accurate pose estimates kR̂ .   
 
Creation of a high-resolution model km̂   
 

This second experiment tests the creation of a high-
resolution model of a larger object.  Object tracking was 
not performed and the user manually moved the object in 
front and within the field-of-view of the scanner to create 
this complete model. This mode of operation tests the 
hand-held capabilities of the algorithm under user 
supervision. 

Figure 2 shows the experimental set-up and the object 
used. The Lissajous pattern was moved across the surface 
of the object to create a complete model. We used two 
different seed images to create the model of Figure 8: (1) 
a very low resolution and highly distorted raster image as 
illustrated in Figure 7, (2) a single Lissajous pattern scan 
similar to the single pattern of Figure 2. 

Figure 7 shows the low-resolution initial model using a 
128×128 raster image.  Figure 8 shows the final model of 
Figure 2. This same experiment was also performed for 
the object of Figure 5, and Figure 6 shows the initial, 

intermediate, and final models created. Tracking and 
imaging are easily combined. 

 
Tracking and high-resolution imaging 
 

Either a single Lissajous pattern or a simple raster 
image can be used as a seed model 0m̂ , a raster image is 
slightly more stable providing more “lock” points for the 
algorithm to converge but it requires that the object must 
be relatively stationary for a few seconds as shown in 
Table 1. 

These experimental tests demonstrated the 
convergence of these algorithms and the very close 
representation of model km̂ and its true model m . 
Experimentally it seems that the remaining residual errors 
are mostly due to uncompensated local distortion from the 
fact that we assumed ID =k .  

We found that the most important key factor that 
affects the quality of the results is an excellent calibration 
of the range data and the compensation of its dynamic 
properties. Most scanners produce range data in the form 

[ ]Tzyx 1=x , which is only an approximation of 

the true form [ ]Ttztytx 1)()()(=x . This 

 

 
 
Figure 6: Multi-resolution model of Figure5. From the 
initial low-resolution and distorted model 0m̂ to the more 
refined version km̂  (respectively K=1, 20, and 200, 
N=128). 
 

 
 
Figure 7: Initial model 0m̂ of the object and experiment 
shown in Figure 2. 
 

 
 
Figure 8: Final model optimized using multiple 
Lissajous patterns, K= 4000, N=128. 
 



approximation is valid because the scanner is used in 
static mode. Dynamic calibration implies that the range 
data must be converted in the form of Equation 3 and that 
the correlation with time associated with each 3D point 
x(t) be removed, or at least minimized. The time stamp ti 
becomes and independent variable, uncorrelated with 
respect to x, y, and z.  
 
7. Conclusion 
 

This paper has presented a recursive optimisation 
method that, when combined with sparse range data, can 
produce high quality, high-resolution range images. The 
algorithm first creates a very rough and distorted model of 
an object and recursively optimises it using new range 
information and a standard ICP algorithm. The method 
was tested and integrated with a single spot laser scanner. 
Real-time tracking of free moving objects while creating 
high-resolution images was demonstrated providing a 
truly high-accuracy hand-held 3D laser scanning system. 

The main objective and use of this method is, when 
combined with a laser scanner, to create high resolution, 
accurate 3D models of objects without requiring 
complexes and expensive mechanical structures. 
Examples of hard to reach objects and situations where 
the application cannot afford such complex mechanical 
setups are numerous; for example it is impossible to be 
stable on scaffoldings or in ladders when scanning 
detailed façades of historical buildings or when the sensor 
is mounted on the tip of a long robotic arms (e.g. 
Canadarm). Very interesting is also the possible use of 
this 3D scanner and method when mounted on a remotely 
operated vehicle that freely moves around the object 
under inspection without touching it. 

Many other interesting applications can benefit from 
components of these algorithms such as real-time tracking 
and inspection of known CAD objects or using region of 
interest (ROI) of an object. For example, it is 
straightforward to replace the estimate km̂ by the real 
model m , tasks 3 and 4 are then no longer needed. 
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