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are compared against a threshold to determine any anomaly.
Depending on the criteria, the anomaly may be above or below
the threshold. The main advantage of this method is that it
can give a sense of collective behaviour of a group of flows,
a feature that is crucial to DDoS attack detection.

II. RELATED WORKS

In [4], Feinstein et al. used entropy analysis along with
frequency distributions to detect anomalies. Yu et al. [9], [10]
showed that packet count statistics have higher similarity in at-
tack flows compared to similarity in normal flows. In [8] Wang
and Jia designed a flow statistics process based on openflow
protocol in the switch. In [3] David and Thomas proposed
a method based on fast entropy with adaptive threshold to
detect DDoS attack anomalies. In [6] Mousavi and St-Hilaire
proposed a method based of entropy variation in destination
IP to detect DDoS attacks that exhaust controller resources. In
[7] Qin et al. proposed a method to calculate entropy vector of
multiple features and applied a clustering algorithm to create
normal pattern model.

Entropy-based methods produce results based on aggregated
information from one or more group of flows, which means
that flows need to be grouped based on some criteria before
being fed into the entropy-based detection machine. Grouping
of flows will have direct effect on entropy of each group, and
hence our deduction from the aggregated behaviour of flows.
This work introduces a new set of grouping criteria for flows.

Although entropy calculation of a group of flows can
determine existence of abnormality in aggregated behaviour of
flows, it cannot by itself give any clue on exactly which flows
are contributing the most to the abnormality. Nevertheless,
to the best of our knowledge, there are no works that have
investigated grouping of flows for entropy analysis.

III. THE PROPOSED METHOD

A. Partial flow statistics collection

This method performs real-time analysis of partial flows.
Partial flow is a subsection of the flow which falls in a time
window. Therefore, flow statistics of each partial flow pertains
only to its corresponding time window. In other words, in
each time window, statistics of flows are extracted with no
information from previous time windows statistics. Figure 1
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to extract these features is devised with respect to some openflow-
based switch capabilities. These features provide us with a higher 
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I. INTRODUCTION

With advancements in technologies such as IoT, server 
virtualization, cloud computing and etc., Internet and computer 
networks have entered a new phase, facing challenges some 
of which are unprecedented. One of the major challenges of 
computer networks is Distributed Denial-of-Service (DDoS) 
attacks [5].

The goal of a Denial-of-Service (DoS) attack is to con-
sume resources of network nodes and components such that 
they would fail to deliver their services to incoming benign 
requests. Carl et al. categorize resource consuming attack into 
two; 1) vulnerability attacks, which attempt to abuse bugs in 
the protocol or system to consume resources and 2) flooding 
attacks, which tend to saturate and exhaust system resources, 
making the node fail to respond to incoming requests [2].

Usually, if the attack is coming from a small number of 
nodes, it is possible to detect their malicious behaviour, and 
subsequently block any other incoming packet from them. In 
contrast, the nature of a Distributed Denial-of-Service (DDoS) 
is such that it uses a large number of nodes to carry out an 
attack. Analyzing network behaviour of any single malicious 
node might not reveal a significant abnormality. However, their 
aggregated behaviour will have drastic effect on the victim, 
making it deny services to non-malicious requests.

One of the widely adopted methods for DDoS attack de-
tection is entropy method. Entropy methods evaluate entropy 
level of a set of network flows statistics, such as packet count 
for each flow. In this method, entropy of a set of flow statistics
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shows four hypothetical flows in a sequence of time windows.
In time window T1, flows f1 and f2 are created and partial flow
statistics is performed on the two in this time window. In T2,
f3 joins and partial flow statistics is performed on three flows.
In T3 however, we don’t have any packets for f2, therefore,
partial flow statistics reduces to two flows, f1 and f3. In T4,
we see only one packet for f4 which creates its corresponding
flow entry. Also f2 becomes active again. Therefore in this
time window, partial flow statistics is performed on all four
flows. The progress goes on until eventually in T7, we are left
with only one flow to perform flow statistics on.

Fig. 1. A hypothetical view of four flows. In each time window, T1 through
T7, a partial view of each flow is extracted for partial flow statistical analysis.

B. Analysis of aggregated flow tables

After all flow tables are received in controller and aggre-
gated into one, a variety of entropy method can be applied
to obtain entropy level and monitor anomalies. Application of
entropy method on flow table entries is already well studied.
Anomalies can be observed in entropy levels of selected packet
features.

In a DDoS attack we expect to see an attack pattern in
entropy levels, i.e drastic increase in source IP entropy level,
while destination IP entropy level sinks simultaneously. The
reason is that since traffic is coming from multiple sources,
we expect to see a surge in source IP entropy. In the mean
time, high number of packets targeting a victim node should
make destination IP entropy level plummet.

C. Grouping flows based on temporal and packet count cate-
gories

As mentioned earlier, applying entropy method on a set,
does not reveal much about contributing elements. According
to Yu et al. in [10], attack flows have similar flow packet
count distributions. Also when an attack starts, flow packet
distribution of the whole traffic changes.

Smart criteria for grouping partial flows in each time
window provides us with a better view into the attack flows
packet count distributions.

The first criteria is based on the temporal creation of flows,
grouping them into two groups of new and previous flows.
DDoS attack flows are usually created in a short time duration.
Therefore, we expect to see an attack pattern in entropy level in
the group of partial flows that were just created. In this paper,

this group of flows are called ”new flows” and other non-new
flows that were created in a previous time window are called
”previous flows”. Previous flows are expected to have normal
packet count distributions, same as historical patterns when
there was no attack. Therefore, entropy level of partial flows
that were created in previous windows should have normal
entropy pattern.

The next criteria is based on flow packet count. In each
time window, partial flows are grouped based on their packet
count categories. Normal flows packet count distribution fol-
lows an exponential pattern, with the largest group of flows
sending only one packet in a time window. Therefore a log-
based categorization criteria, with one category specifically
for one-packet partial flows would be be the right choice.
In experimental results section, log10-based categorization are
studied.

After flows are grouped, an entropy formula is applied on
each group of partial flows, and the resulting entropy levels is
compared for attack analysis. In case of high-rate DDoS attack,
we expect to observe attack pattern in entropy level of groups
of partial flows with larger number of packet counts, while
in low-rate DDoS attacks, the pattern should be observable in
groups with low number of packets in each window.

D. Grouping implementation
In this work, flow packet count in each time window is

of interest. These information are distributed on flow tables
in switches. Each flow entry includes total packet count data.
These data will be periodically collected by the controller. In
order to aggregate the distributed information, flow tables from
edge switches are collected by controller. To calculate flow
packet count for the current time window, controller calculates
difference of packet count of entries in the newly received flow
tables against entries from previously received flow tables.

Furthermore, in order to reduce traffic between switch and
controller, only flow entries that have at least one packet in
the current time window will be sent to the controller. One
way to implement this is by using dirty flag for flow entries.
Initially, dirty flag for all entries are reset. With each incoming
packet, dirty flag of its corresponding flow entry will be set.
Therefore, upon request from the controller, switch can send
flow entries with dirty flags set. After successful transmission
of flow table to the controller, all dirty flags will be reset and
ready for the next time window.

E. Entropy formulation
Equation 1 shows Shannon’s entropy formula

H(X) = −
∑
i∈Ω

pi log (pi) (1)

where Ω is the range of the random variable X and pi is its
probability and

∑
i∈Ω pi = 1.

In the formulation pertaining to this paper, H(X)k is
entropy level of the k-th set, Ωk, and probability distribution
of each element in the set is based on the equation 2,

pi = ni/
∑
i∈Ωk

ni (2)



Fig. 2. Source IP and destination entropy analysis of partial flows at different time intervals. No grouping is applied.

where ni is the number of all packets that have feature i, and∑
i∈Ωk

ni is sum of all packets pertaining to partial flows in
the group Ωk.

IV. EXPERIMENTAL RESULTS

In this work, the proposed method was applied on the
CAIDA ”DDoS Attack 2007” dataset [1]. We applied log10-
based categorization, grouping flows in 4 sets, each set being
split into newly created and previously created flows. Also
each categorization criteria was experimented on time window
intervals of 10, 30 and 60 seconds. In total, 24 results
were obtained, proofing strength of this real-time partial-flows
categorization method.

Applying log10-based criteria for this experiment, the partial
flows are separated into groups using equation 3. In this
equation, pktCnt is the number of packets of a flow, and
groupNo is number of the group to which the flow belongs.
Group numbers and corresponding packet count range are
presented in table I.

groupNo =


0 if pktCnt=0
dlog10(pktCnt)e+ 1 if 0 < pktCnt ≤ 100
4 if 100 < pktCnt

(3)

TABLE I
log10-BASED GROUPING PER PACKET COUNT

Group No. Packet count range
1 1
2 2-10
3 11-100
4 101 and up

Figure 2 shows source and destination IP entropy levels of
partial flows at various time windows with no categorization.
The timeline for analysis starts from time 0, indicating times-
tamp of the first packet in this dataset. According to entropy
analysis with 10 seconds time window, the DDoS attack starts
in time window 1580-1590 seconds. In this window, source IP
entropy level jumps drastically to 4.61, while destination IP
entropy level dips to 0.85 which is far lower than its historical
level in previous windows. The two other entropy diagrams
show partial flow entropy analysis with time windows 30 and
60 seconds, which are consistent with the 10 seconds interval
diagram. Using basic machine learning tools we can observe
start of a DDoS attack in real time.

Subsequent figures show entropy level of groups of partial



flows based on categories. Each figure pertains to a category
of flows and has three grid charts, ”prv” (group of previously
created partial flows in this category), ”new” (group of newly
created partial flows in this category) and ”any” (union of
”prv” and ”new” groups).

Figures 3 through 6 show entropy charts of 10 seconds time
windows. It can be clearly observed that the group of partial
flows contributing the most to the attack are in categories 3 and
4, sending 10 or more packets in each window of 10 seconds.
Also, start and end of the attack is vividly observable by the
ridge in entropy of category 3, from windows 1590-1600 to
1790-1800.

Figures 7 through 10 have time window of 30 seconds. Start
and end of the attack is vividly observable by the ridge in
entropy of categories 3 and 4, from windows 1590-1620 to
1770-1800.

Comparing ”prv” and ”new” entropy charts in categories 3
and 4, it is conspicuous that during attack, entropy level in
”prv” chart is one time window behind ”new”. Rapid surges
in source IP entropy level of ”new” partial flows in a current
windows will have effect on the group of ”prv” partial views
in the subsequent window. This is clear, since newly created
flows in the ”new” group will be considered previously created
in the subsequent window, being moved from ”new” to ”prv”
group.

Figures 11 through 14 show the results for time window
60 seconds. The results of time window are consistent with
the previous ones, although with worse time resolution. Nev-
ertheless, start and end of the attack is observable between
windows 1560-1620 to 1760-1800.

V. CONCLUSION

In this paper, the idea of partial flow entropy analysis was
proposed. Furthermore, grouping partial flows into groups
based on flow packet count categories was proposed and
investigated.

The proposal was investigated on three various time win-
dows of 10, 30 and 60 seconds. The 10 seconds time win-
dow provides us with better view into groups of flows that
contribute the most to the attack. However, collecting partial
view statistics from switches in short time intervals can induce
a huge traffic to the network. Therefore, a trade off needs to
be considered. Alternatively, variable time windows can be
applied, zooming time window from larger range to smaller
time window. This zooming can be applied if any anomaly is
detected.

The next goal is designing a machine learning tool which
obtains categorical partial flow entropies and separate flows
into normal and attack flows.

Fig. 3. Entropy charts of category 1 (1 packet partial flows) with time window
10 seconds.

Fig. 4. Entropy charts of category 2 (2-9 packets partial flows) with time
window 10 seconds.

Fig. 5. Entropy charts of category 3 (10-99 packets partial flows) with time
window 10 seconds.

Fig. 6. Entropy charts of category 4 (100+ packets partial flows) with time
window 10 seconds.



Fig. 7. Entropy charts of category 1 (1 packet partial flows) with time window
30 seconds.

Fig. 8. Entropy charts of category 2 (2-9 packets partial flows) with time
window 30 seconds.

Fig. 9. Entropy charts of category 3 (10-99 packets partial flows) with time
window 30 seconds.

Fig. 10. Entropy charts of category 4 (100+ packets partial flows) with time
window 30 seconds.

Fig. 11. Entropy charts of category 1 (1 packet partial flows) with time
window 60 seconds.

Fig. 12. Entropy charts of category 2 (2-9 packets partial flows) with time
window 60 seconds.

Fig. 13. Entropy charts of category 3 (10-99 packets partial flows) with time
window 60 seconds.

Fig. 14. Entropy charts of category 4 (100+ packets partial flows) with time
window 60 seconds.
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