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Abstract—Trees are useful entities allowing to model data
structures and hierarchical relationships in networked decision
systems ubiquitously. An ordered tree is a rooted tree where
the order of the subtrees (children) of a node is significant. In
combinatorial optimization, generating ordered trees is relevant
to evaluate candidate combinatorial objects. In this paper, we
present an algebraic scheme to generate ordered trees with n
vertices with utmost efficiency; whereby our approach uses O(n)
space and O(1) time in average per tree. Our computational
studies have shown the feasibility and efficiency to generate
ordered trees in constant time in average, in about one tenth
of a millisecond per ordered tree. Due to the 1-1 bijective nature
to other combinatorial classes, our approach is favorable to study
the generation of binary trees with n external nodes, trees with
n nodes, legal sequences of n pairs of parentheses, triangulated
n-gons, gambler’s sequences and lattice paths. We believe our
scheme may find its use in devising algorithms for planning and
combinatorial optimization involving Catalan numbers.

Index Terms—ordered trees, plane trees, catalan trees, enumer-
ation, combinatorial objects, encoding, graphs, constant amor-
tized time, Catalan numbers, lattice paths, algorithms

I. INTRODUCTION

Trees often arise as fundamental mechanisms to model data
structures and hierarchical relationships in networked decision
systems ubiquitously. For instance, trees enable to model the
optimal connectivity among disjoint entities in an environment
[1], allow to model the efficient routing in distribution systems
[2], [3], and allow to study candidate plans for information
fusion [4], [5] and assembly [6] over classes of combinatorial
problems in decision making.

Well-known books on graphs and combinatorial objects
have studied trees in considerable scrutiny [7]–[9]. Basically,
four major types of trees arise ubiquitously: (1) the free tree,
which is an acyclic connected graph, (2) the rooted tree, which
is a free tree with a distinguished root node, (3) the ordered
tree, which is a rooted tree where the order of the subtrees
(children) of a node is significant, and (4) the binary tree,
which is an ordered tree where every node has degree 0 or 2
[10].

In this paper, we study the problem of generating ordered
trees arbitrarily and exhaustively. In the literature, an ordered
tree is also well-known as plane tree and Catalan tree. The term
plane is due to trees being able to be transformed from one
topology to another topology by using continuous operations
in the plane. Also, due to the Catalan number representation,

ordered trees have 1-1 correspondence to binary trees with n
external nodes, trees with n nodes, legal sequences of n pairs
of parentheses, triangulated n-gons, gambler’s ruin sequences,
and lattice paths.

The problem of generating ordered trees and their related
structures has received favorable attention. For instance, Pallo
proposed the use of integer sequences under a tailored order to
generate ordered trees with n vertices and k leaves in O(n−k)
time [11], Nakano presented the algorithms to generate rooted
ordered trees with at most n vertices in O(n) space and O(1)
time per tree in average [12]. Also, extensions were proposed
to generate rooted ordered trees with exactly n vertices in
O(1) time in average, and rooted ordered trees with exactly n
vertices and k leaves in O(n−k) time. The basic approach in
[12] is based on reversing the removal of the rightmost path
of rooted trees so that the entire genealogy of rooted ordered
trees having at most n edges is traversed.

In line of the above, the idea of using traversing the geneal-
ogy (or family tree) was later extended to generate ordered
trees with specified diameter in O(1) time per tree [13], to
generate bipartite permutation graphs in O(1) in the worst
case [14], and to generate floor plans subject to a rectangle
and n points in the plane. Also, Yamanaka et al. presented
the enumeration of ordered trees with exactly n vertices and k
leaves in O(1) time in the worst case [15]. Generally speaking,
the above approaches are based on the reverse search method
[16] which basically consists in generating objects through a
graph (tree) whose edges model local and bounded operations
on the objects, thus the exhaustive generation of objects (trees)
is possible by traversing the graph backwards by an adjacency
expansion oracle.

By using the main generation principle of Ruskey and Hu
[17], Beyer and Hedetniemi used a level sequence represen-
tation to generate rooted ordered trees with n vertices in
reverse lexicographic order. Their approach achieved Constant
Amortized Time (CAT) overall trees, that is in O(1) time
per tree in average [18]. This method has been reported in
the book of Wilf [9] as well. Beyer and Hedetniemi were
the first to introduce the Constant Amortized Time (CAT)
property. Li and Ruskey used a parent array representation
and recursive algorithms based on depth first traversal to
generate rooted and free trees [19]. Also, the more natural
representation of parent arrays allowed to model constraints in
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height and parenthood seamlessly. Sawada used level sequence
representation to generate all circular ordered trees in O(1)
time per tree on average [20]. Knuth presented the approach
to generate all free trees with O(n) space and O(1) time
per tree in average [21]. Sen-Peng Eu et al. presented the
enumerations and bijections of vertices of rooted ordered trees
with constraints in levels and degrees [22].

Atkinson presented the linear time algorithm to generat-
ing binary trees at random [23]. Knott presented bijection
algorithms between binary trees of n vertices and a segment
of integers [24], Rotem and Varol used a ballot sequence
representation of stack-sortable permutations to allow bijec-
tions between binary trees and these combinatorial objects
[25], and Solomon and Finkel modified Knott’s algorithm by
using recursions and binary searches to allow ranking in O(n),
unranking in O(n log n) and generating the sucessor of a given
tree in O(n) [26]. Jing and Tang presented the generation of
all binary trees by using the triangulation of convex polygons
[27]. In [28], Zerling presented a tailored codeword whose
sum lies in [0, n − 1] and whose bijection to rooted binary
trees is feasible in O(n).

Although the above-mentioned studies enable to gener-
ate ordered trees arbitrarily and exhaustively with utmost
efficiency, the existing approaches are unable to be easily
extrapolated to combinatorial optimization problems involving
ordered trees. One of the main reasons is that the above
approaches are often based on operations on the tree structures;
however, in combinatorial optimization settings, it would be
desirable to generate trees based on numbers portraying lower
and upper bounds on the search space, and sample from
there based on an oracle or heuristic. In this paper, we
present an algebraic approach to generate ordered trees. In
the best of our knowledge, our proposed approach is the first
proposing algebraic and straightforward operations to generate
ordered trees. In particular, our contributions are summarized
as follows:
• an algebraic approach to generate the arbitrary and the

complete set of ordered trees with n nodes. Our approach
uses O(n) space and O(1) time in average per tree.

• the computational studies showing the feasibility and
efficiency to generate ordered trees in constant time in
average, in about one tenth of a millisecond per ordered
tree.

Due to the bijective nature to other combinatorial classes,
we believe our approach is also useful to generate binary trees
with n external nodes, trees with n nodes, legal sequences
of n pairs of parentheses, triangulated n-gons, gambler’s ruin
sequences, lattice paths and other combinatorial objects based
on catalan numbers.

In the rest of this article, we describe our approach and
discuss our computational experiments.

II. PROPOSED METHOD

In this section, we present the main concepts involved in
our proposed approach.

A. Encoding Mechanism

In an ordered tree, the children of every node is ordered,
that is, there exists a first child, second child, third child, and
so on. In order to represent an ordered tree, we use an n-tuple
to encode a tree with n nodes. Here,

t = (t1, t2, ..., ti, ..., tn) (1)

, denotes a tree, in which ti represents the number of children
of the i-th node of the tree t. Thus, a parent node implies
ti > 0, a leaf (terminal) node implies ti = 0.

The above-mentioned representation is inspired on the
BCT representation of binary trees [29], in which B denotes
branching, C denotes continuation and T denotes a terminal.
Basically, the BCT representation of a tree can be rendered
from the sum of entries below the diagonal of the adjacency
matrix and, viceversa, the adjacency matrix is renderable from
the BCT encoding by an O(n) algorithm based on stacks [30].
Thus, assuming nodes are pre-labeled by a user-defined order,
the elements of the tuple t are equivalent to the sum of the
rows of the adjacency matrix representation of the tree.

In order to exemplify the encoding we use here, Fig. 1
shows examples of tree encoding for various tree topologies
and number of nodes; also Fig. 1 shows the equivalence of
the tree encoding (tuples) to generate lattice paths. In Fig. 1,
the reader may note that node labels are defined by the order
of traversal. For simplicity and without loss of generality, we
traverse a tree in preorder (by visiting first the root, then by
visiting the subtrees from left to right). Also, due the above
encoding requiring the traversal from root to children and then
to leaf (terminal) nodes, a natural consequence is that the last
element of the tuple t is a terminal node; thus for a tree with
n nodes,

tn = 0, ti ∈ [0, n− 1]. (2)

Furthermore, due to the tuple t encoding the number of
children in its elements, the following holds

n∑
i=1

ti = n− 1 (3)

, since the ti is equivalent to the number of branches (edges)
at a given node. Thus, the sum of all elements of the tuple t
is equivalent to the number of edges of the tree.

B. Arbitrary Ordered Trees

Here, by using the above-mentioned encoding, we propose
a mechanism to generate arbitrary ordered trees. It is possible
to generate ordered trees by finding each element ti of the
tuple t for i ∈ [n] by

ti ∼ U{Li, Ui} i = 1, 2, ..., n (4)

Li = 1− sgn
(
ti−1 + Si−1 − 1

)
(5)

Ui = Ui−1 − ti−1 (6)
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Fig. 1: Examples of tree encoding showing the number of children of each node in preorder. To represent the lattice path, the digits in the tuple encode the relative column height
in which the first n− 1 digits are used, the last zero digit of the tuple is ignored.

where Li and Ui are the lower and upper bound on ti,
respectively, such that ti ∈ [Li..Ui], and sgn(.) denotes the
signum function. Since the above mechanism is recursive in
nature, the initial conditions S0 = 0, U0 = n, t0 = 1 are
necessary. The variable S is used to compute the accumulation
of elements of the tuple. It is possible to eliminate the variable
S, by which an equivalent expression to Eq. 6 can be obtained

Li = 1− sgn

(
i−1∑
j=0

(tj − 1)

)
(7)

For ordered trees with n nodes, and considering the ordered
nature of the tuple t and of Eq. 5 and Eq. 6, the following
relations hold L1 = 1, U1 = n − 1, and Ln = Un = 0, thus
tn = 0, which aligns well with Eq. 2, and

t1 ∈ [1..n− 1]. (8)

C. Genealogy of Ordered Trees

Let Tn be the set of ordered trees with n nodes. The size
of Tn can be computed from the binomial coefficient

|Tn| =
1

n

(
2(n− 1)

n− 1

)
. (9)

As can be seen from Eq. 9, T1 = 1, T2 = 1, T3 = 2,
T4 = 5, T5 = 14, T6 = 42, ... represent the well-known
Catalan numbers.

Since the bounds for ti are given as

ti ∈ [Li..Ui], (10)

it becomes possible to generate all ordered trees with n
nodes exhaustively by generating each integer ti from [Li..Ui]
consecutively for i = 1, 2, ..., n − 1. Here, we skip the case
i = n due to the fact of Eq. 2. Thus, Tn can regarded as
a genealogical tree rooted at rn with internal nodes being
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Fig. 2: Genealogical tree T4.

labeled with numbers in the interval [0..n− 1]. To exemplify
our argument, Fig. 2 and Fig. 3 show the genealogical trees Tn

for n = 4 and n = 5. The reader may note that the number of
leaves coincide with the size of Tn, that is the Catalan numbers
expressed by Eq. 9, and that Tn−1 is a substructure of Tn.

By traversing all nodes from the root rn to each leaf of Tn,
it is possible to obtain integer sequences of the form

rn : (t1, t2, ..., tn−1, 0), (11)

which is in line with the representation expressed by Eq. 1.
The term ”0” is tacit due to Eq. 2.

Let T i
n be the i-th tree of the set Tn. Then, generating

ordered trees by sampling integer numbers from the inter-
val [Li..Ui] in ascending order implies that the first tree is
(1, 1, 1, ..., 0) and the last tree is (n−1, 0, 0, ..., 0). Conversely,
if one uses the descending order instead, the opposite occurs,
that is the first tree is (n − 1, 0, 0, ..., 0) and the last tree
is (1, 1, 1, ..., 0). The above implies that we can generate all
ordered trees without repetition, which leads to achieve O(1)
time in average to generate each tree.

Furthermore, generating all ordered trees with n nodes im-
plies that we can generate all the set Tn by traversing all leaves
of Tn by a recursive approach, as portrayed by Algorithm 1. As
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Fig. 3: Genealogical tree T5.

such, ordered trees will be generated by a sequence of numbers
within the same line. Algorithm 1 shows numbers in same lines
(new lines) to imply a forward (backward) traversal from the
root (leaves) towards the proximal root (leaves). Assuming we
use the ascending order approach to generate numbers [Li..Ui]
in Fig. 2, the first, second and third ordered trees are encoded
by (1, 1, 1), (1, 2, 0), and (2, 0, 1) respectively (the 0 at the
end is omitted for the sake of simplicity). Thus Algorithm 1
will show 1 1 1 in the first line, 2 0 in the second line, and
2 0 1 (the spaces between numbers are added for the sake of
clarity). The above implies that to obtain the second tree, it
will be necessary to transform 1 1 1 to (1, 2, 0) by changing
its last two digits. Thus, for an ordered tree with n nodes,
the maximum number of changes needed to generate a new
ordered tree is n − 1. As such, Algorithm 1 does not output
entire trees, instead it outputs the difference from the previous
ordered tree. Due to the above-mentioned considerations, our
approach uses O(n) space. Storing all the structure of Tn is
unnecessary.

III. COMPUTATIONAL EXPERIMENTS

In order to evaluate the feasibility and efficiency of our
proposed approach, we performed computational experiments
comprising the generation of ordered trees with distinct num-
ber of nodes. Our approach was implemented in Matlab 2020a
and evaluations occurred considering:
• Number of nodes n = 1, 2, ..., 15.
• For each value of n, all trees were generated over 10

independent runs.
• The time to generate all trees for each n and each

independent run was logged.

Algorithm 1 Generate Genealogy

1: procedure GENEALOGY(L,U, s, n)

2: if n > 0 then

3: for i← L to U do

4: u← U − i

5: s′ ← s+ i− 1

6: l← 1− sgn(s′)

7: Show digit i

8: GENEALOGY(l, u, s′, n− 1)

9: Show a New Line

10: end for

11: end if

12: end procedure

• To compare the performance in distinct hardware config-
urations, we used 4 types of computing environments.

By following the above-mentioned configurations, and due
the sizes of Tn, expressed as Eq. 9 for n = 1, 2, ..., 15,
we generated 148,314,080 trees. The computing environments
used were as follows:
• PC1. Intel Core i7 @2.8GHz (4 CPUs), 16 GB RAM
• PC2. Intel Core i7 @2.9GHz (4 CPUs), 16 GB RAM
• PC3. AMD Ryzen Threadripper 2990WX @ 3.0 GHz (64

CPUs), 128 GB RAM
• PC4. Intel Core i7 @3.4GHz (12 CPUs), 64 GB RAM
In order to show the time performance and efficiency fron-

tiers involved in our algorithm, Fig. 4 shows (a) the total time
used to generate ordered trees and (b) the average time per tree
as a function of the number of nodes. For the sake of clarity
both plots show the log-scale comparisons. As we can see from
Fig. 4-(a), the time needed to generate all ordered trees show
a linear-like behaviour. We believe this is due to relatively
smaller values of n up to 15. In theory, Fig. 4-(a) is expected
to behave in the order O(|Tn|) due to the Catalan numbers
expressed Eq. 9. Investigating the experimental landscape for
very large n is left to future work.

By observing Fig. 4-(b), the time required to generate each
tree is constant in average, within a tenth of a millisecond.
We believe this is due to the simplicity and straightforward
algebraic approach used to generate ordered trees. Here, the
performance over independent runs are shown by thinner
lines, and the mean over independent runs is show by a
thicker line. Also, by observing Fig. 4-(b), the performance
across distinct computing environments is similar between
one another, wherein the relatively improved performance is
lead by clock speed, which is in line with the straightforward
algebraic computations.

In order to show the kind of trees that our approach is able to
generate, Fig. 5 shows the encoding and topologies of ordered
trees for n = 4 (top) and n = 5 (bottom). Here, ordered trees



(a) Total time for all trees
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(b) Average time per tree

Fig. 4: Time to generate all ordered trees.

(1,1,1,0) (1,2,0,0) (2,0,1,0) (2,1,0,0) (3,0,0,0)

root

(1,1,1,1,0) (1,1,2,0,0) (1,2,0,1,0) (1,2,1,0,0) (1,3,0,0,0)

root

Family of ordered trees with 4 nodes

Family of ordered trees with 5 nodes

(2,0,1,1,0) (2,0,2,0,0) (2,1,0,1,0) (2,1,1,0,0)

(3,0,0,1,0) (3,0,1,0,0) (4,0,0,0,0)

(2,2,0,0,0)

(3,1,0,0,0)

Fig. 5: Ordered trees with n = 4 and n = 5 nodes.

are shown in the order of top-down of Fig. 2 and Fig. 3, that

(1,1,1,1,0)       (1,1,2,0,0)         (1,2,0,1,0)         (1,2,1,0,0)     (1,3,0,0,0)

(2,0,1,1,0)        (2,0,2,0,0)         (2,1,0,1,0)        (2,1,1,0,0)       (2,2,0,0,0)

(3,0,0,1,0)                (3,0,1,0,0)                  (3,1,0,0,0)                 (4,0,0,0,0)

(1,1,1,0)            (1,2,0,0)            (2,0,1,0)            (2,1,0,0)            (3,0,0,0)

Family of lattice paths above the diagonal with n = 4

Family of lattice paths above the diagonal with n = 5

Fig. 6: The 1-1 correspondence with the lattice paths above the diagonal of a grid with
(n− 1)× (n− 1) square cells. Top: the case of n = 4. Bottom: the case of n = 5.
To represent the lattice paths, the digits encode the relative column height in which only
the first n− 1 digits are used, the last digit (0) is ignored.

is by traversing all leafs of Tn by the recursive Algorithm
1, and following ti ∈ [Li..Ui] in ascending order. Note that



according to the observation in Eq. 2, the encoding of trees
involve the last element of every encoding to be tn = 0 for all
cases. As we can observe from Fig. 5, our approach is able to
generate the complete set of trees. Due to 1-1 correspondence
with other combinatorial objects involving Catalan numbers,
our approach can be used to generate lattice paths above the
diagonal, as Fig. 6 shows. Here, lattice paths use the relative
column height in a grid of (n− 1)× (n− 1) cells.

The above observations bring implications to generate bi-
nary trees with n external nodes, trees with n nodes, legal
sequences of n pairs of parentheses, triangulated n-gons,
gambler’s ruin sequences, lattice paths and other combinatorial
objects based on catalan numbers. In future work, we aim at
studying the performance for very large n and its applications
in combinatorial optimization in Robotics and Operations Re-
search, e.g. reactive motion planning [31], [32] and binomial
graphs [33]. We believe the proposed encoding and generation
mechanism may find its use in planning and combinatorial
optimization involving catalan numbers.

IV. FINAL NOTES

In this paper, we have proposed an algebraic approach to
generate the arbitrary and the complete set of ordered trees
with n nodes. Our approach uses O(n) space and O(1) time
in average per tree. By using computational studies, we have
also shown the feasibility and efficiency to generate ordered
trees in constant time in average, which in practice translates in
about one tenth of a millisecond per ordered tree. Due to the 1-
1 correspondence to other combinatorial classes, our approach
is also useful to generate binary trees with n external nodes,
trees with n nodes, legal sequences of n pairs of parentheses,
triangulated n-gons, gambler’s ruin sequences, lattice paths
and further combinatorial objects based on catalan numbers.
Further studies in our agenda aim at studying the performance
frontiers for very large n and its applications in combinatorial
optimization in Robotics and Operations Research.
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