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Abstract—Deep learning has demonstrated the important roles
in improving the system performance and reducing computa-
tional complexity for 5G-and-beyond networks. In this paper,
we propose a new channel estimation method with the assis-
tance of deep learning in order to support the least squares
estimation, which is a low-cost method but having relatively high
channel estimation errors. This goal is achieved by utilizing a
MIMO (multiple-input multiple-output) system with a multi-path
channel profile used for simulations in the 5G networks under
the severity of Doppler effects. Numerical results demonstrate
the superiority of the proposed deep learning-assisted channel
estimation method over the other channel estimation methods in
previous works in terms of mean square errors.

Index Terms—Deep Neural Networks, Channel Estimation,
Multiple-Input Multiple-Output, Frequency Selective Channels.

I. INTRODUCTION

The fifth-generation (5G) wireless communication has been
developed to adapt to the exponential increases in wireless
data traffic and reliability communications [1]. The orthogonal
frequency division multiplexing (OFDM) technique has been
demonstrating its inevitable successes in the current networks,
and has continuously adopted in 5G systems to combat the
frequency selective fading in multi-path propagation environ-
ments [2]. Consequently, this technique increases the spectrum
efficiency compared with single-carrier techniques. Through
the wireless multipath channels, the transmitted signals to a
particular receiver is distorted by many detrimental effects
such as multi-path propagation, local scattering, and mutual in-
terference by sharing radio resources. Therefore, channel state
information and its effects must be estimated and compensated
at the receiver to recover the transmitted signals. Generally, pi-
lot symbols known to both the transmitter and receiver are used
for the channel estimation. In a 5G system, the structure of the
pilot symbols may be varied depending on different use cases
[3]. Among the conventional channel estimation methods, least
squares (LS) estimation is a low computational complexity one
since it requires no prior information of the statistical channel
information. However, this estimation method yields relatively
low performance in many application scenarios. Alternatively,
the minimum mean square error (MMSE) estimation method
has been introduced, which minimizes the channel estimation
errors on average [4], [5]. The optimality of MMSE estimation
is based on the assumption that the propagation channels
are modeled by a linear system and each channel response

follows a circularly symmetric complex Gaussian distribution
for which the channel estimates can be derived in the closed
form [6], [7]. Unfortunately, the MMSE estimation method
has high computational complexity due to the requirements
of channel statistic information, i.e., the mean and covariance
matrices. In many environments, such statistical information
is either difficult to obtain or quickly variant in a short time
period [8], [9].

Machine learning has recently drawn much attention in
various applications of wireless communications such as radio
resource allocation, signal decoding, and channel estimation
[10]–[13]. Regarding the channel estimation, the authors in
[13] exploited the non-stationary channel conditions and the
channel fading vectors are considered as conditionally Gaus-
sian random vectors with random covariance matrices. The
MMSE estimation form under those conditions may have an
extremely high cost to obtain, and thus the authors used an
estimation designed under a special channel condition for the
machine learning aided estimation. In [14], the authors studied
channel estimation in a wireless energy transfer system for
which the downlink channel estimation is exploited to harvest
energy feedback information. A deep neural network model is
used to predict better channel estimates than conventional es-
timations as LS or linear MMSE (LMMSE). These researches
have numerically proved the compelling potentials of machine
learning in channel estimation as long as sufficient training
data set is provided. However, they only focused on the quasi-
static propagation models such that channels are static and
frequency flat in each coherence block.

In this paper, we propose two architectures of a deep
neural network (DNN) model, which are applied for the
channel estimation of a 5G MIMO-OFDM system under
frequency selective fading. The performance of the proposed
deep learning-aided channel estimations is then evaluated by
two different scenarios based on the receiver velocity. The
channel parameters in each scenario are generated based on
the tapped delay line type A model (TDL-A), which is reported
by 3GPP and of practical scenarios [15]. The performance of
the two DNN-aided channel estimations is compared with the
traditional estimations, i.e., LS and Linear MMSE (LMMSE),
in terms of mean square error (MSE) and bit error rate (BER)
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versus signal to noise ratio (SNR) criteria.1 In particular, the
proposed DNN structure will exploit a fully connected neural
network to learn the features of actual channels with the
channel estimates obtained by LS estimation as the input. In
comparison to LS estimation, we would like to evaluate how
much the system performance is improved by the assistance of
a DNN. Furthermore, we would like to observe if the proposed
estimation can beat the performance obtained by LMMSE.

The rest of this paper is organized as follows: Section II
describes the 5G MIMO-OFDM system model. Section III
presents the problems of the conventional channel estimation
methods and proposes the DNN-aided methods to solve these
problems. Meanwhile, Section IV shows the simulation re-
sults that evaluate the performance of the proposed methods
and compare with the other benchmarks. Finally, the main
conclusions of this paper are presented in Section V.

II. 5G NEW RADIO MIMO-OFDM SYSTEM
In this paper, we consider a MIMO-OFDM system compris-

ing a transmitter sending signals to a receiver as illustrated in
Fig. 1. Both the transmitter and receiver are equipped with
two antennas and therefore creating a 2 × 2 MIMO channel
model as in Fig. 2.

A. Transmitter

At the transmitter side, the binary data are mapped to the
constellation points by utilizing the modulation block that
exploits a modulation scheme such as quadrature amplitude
modulation (QAM). We suppose that the system needs T time
slots to transmit the data and the QAM symbols at time slot t,
t = 1, · · · , T, are combined to a data vector x(t) ∈ CN as

x(t) = [x1(t), x2(t), · · · , xN (t)], (1)

where N is the total number of the modulation symbols. Then,
the layer mapping block will separate vector x(t) into the two
vectors xodd(t) and xeven(t) corresponding to the two transmit
antennas as follows:

x1(t) = xodd(t) = [x1(t), x3(t), · · · , xN−1(t)], (2)
x2(t) = xeven(t) = [x2(t), x4(t), · · · , xN (t)]. (3)

The signals for each antenna are then converted from the serial
to parallel one. At the pilot insertion block, the pilot symbols
known by both the transmitter and receiver are inserted along
with data subcarriers in every layer for the channel estimation
purposes. Let us denote xa(t) with a = 1, 2, the signal vectors
obtained after the pilot insertion block, then the IFFT (inverse
fast Fourier transform) block is applied to xa(t) such that the
signals are transformed from the frequency domain into time
domain (denoted by x̃a(t)) as

x̃a(t) = IFFT{xa(t)}. (4)

To avoid inter-symbol interference, a cyclic prefix of the
length NG is inserted in each OFDM symbol by utilizing the

1This paper uses LMMSE estimation as a benchmark for comparison
because the channel estimates by MMSE estimation are nontrivial to obtain
for the considered channel profile.

CP (cyclic prefix) insertion block. So the transmitted signal
including cyclic prefix, denoted by x̃ga(t), is represented in
time domain as follows:

[x̃ga(t)]n =

{
[x̃a(t)]n+NFFT

n = −NG,−NG + 1, . . . ,−1
[x̃a(t)]n n = 0, 1, . . . , NFFT − 1,

(5)
where NFFT denotes the FFT size. In more detail, the last NG
samples of x̃a(t) are used as cyclic prefix and inserted to the
beginning of this symbol, resulting in the signal x̃ga(t) with
length of NFFT +NG.

B. 5G Channel Model
The 5G MIMO channel model is depicted in Fig. 2 with the

two transmit antennas and two receive antennas. This paper
exploits the multipath fading channel model, which is time-
variant and frequency selective. We denote the time-variant
channel impulse response from the a-th transmit antenna to
b-th receive antenna (b = 1, 2) is ha,b(τi, t), where τi is the
transmission delay at the i-th path. As reported in [16], the
time-variant channel impulse response is modulated using the
Monte-Carlo method as

ha,b(τi, t) =
1√
M

L∑
i=1

ρ(i)

M∑
l=1

ej((2πfa,b,l,it+θa,b,l,iδ(τ − τi),

(6)
where M is the number of harmonic functions. L is the total
number of paths for which i = 1, . . . , L. The discrete Doppler
frequency and Doppler phase are respectively defined as

fa,b,l,i = fd,max sin(2πua,b,l,i), (7)
θa,b,l,i = 2πua,b,l,i, (8)

where fd,max is the maximum Doppler frequency. The channel
impulse response are simulated based on uniformly indepen-
dent random variables ua,b,l,i in the range [0, 1]. In (6), ρ(i)
is the linear delay power at the i-th path. In particular, the
TDL-A model defined by 3GPP standard [15] for 5G channel
model are exploited as reference power delay profile (PDP).
Consequently, the transmitted signal after passing through the
5G multi-path channel is formulated as

ỹgb(t) =
∑

a∈{1,2}

h̃a,b(τ, t)⊗ x̃ga(t) + w̃b(t), (9)

where ha,b(τ, t) = [ha,b(τ1, t), . . . , ha,b(τL, t)]; w̃b(t) is
additive noise vector, whose elements are independent and
identically distributed random variables following a circularly
symmetric complex Gaussian distribution with zero-mean and
variance σ2

w. ⊗ is the convolutional operator.

C. Receiver
At the receiver, the cyclic prefix is first removed out from

the received signal ỹgb(t) on each antenna by the cyclic
prefix removal module to obtain the vector ỹb(t) of the length
NFFT. The signals are then split into parallel subcarriers and
transformed into frequency-domain by the FFT block, which
gives the frequency-domain signal yb(t) as

yb(t) = FFT{ỹb(t)}. (10)
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Fig. 1. The considered MIMO-OFDM system model with the transmitter and receiver. The proposed DNN-aided module is in blue color. Notations: CP is
Cyclic Prefix; S/P is Serial to Parallel; P/S is Parallel to Serial; IFFT is Inverse Fast Fourier Transform; FFT is Fast Fourier Transform.
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Fig. 2. The MIMO 2×2 channel model where Tx1 and Tx2 are the transmit
antenna indices, while Rx1 and Rx2 are the receive antenna indices.

The received pilot signal is exacted from frequency-domain
signal for channel estimation purposes. Then, the processed
signal yb(t) is equalized and congregated into a serial se-
quence from all the receive antennas by the layer demapping
block. The signal is further demodulated by the demodulation
scheme that corresponds to what the transmitter has used. At
this point, the output of the MIMO-OFDM system model is
obtained as the final binary data sequence.

III. PROPOSED DNN-AIDED CHANNEL ESTIMATION

The coherent detection used in wireless communications
needs knowledge of the propagation channels between the
transmitter and the receiver, which are able to traditionally
obtain by utilizing a channel estimation technique. This section
presents the two widely-used channel estimation techniques,
which motivates us to exploit a DNN architecture to mitigate
the channel estimation errors.

A. Motivation

As long as there is no inter-carrier interference occurs, each
subcarrier can be expressed as an independent channel, and
therefore preserving the orthogonality among the subcarriers.
The orthogonality allows each subcarrier component of the
signal in (10) to be expressed as the Hadamard product of

the transmitted signal and channel frequency response at the
subcarrier [17] as

yb(t) =
∑

a∈{1,2}

ha,b(t)� xa(t) +wa(t), (11)

where � is the Hadamard product. wb(t), ha,b(t), and xa(t)
are the Fourier transforms of noise, channel, and signal re-
spectively (or we are working in frequency domain). In a
conventional estimation, the pilot symbols are supposed to
know to both the transmitter and receiver are inserted along
with data in frequency and time domain. In this paper, we
apply the pilot structure of the 5G system defined in 3GPP
standard [18], which is shown in Fig. 3. The pilot symbols
are uniformly spaced in the time domain, denoted by Dt and
in the frequency domain, denoted by Df . The values of Dt

and Df depend on the different use cases of a 5G system,
which are defined explicitly in, for example [3].

Among all conventional channel estimation techniques, LS
estimation is one of the most common. We denote ĥLS by the
channel estimate from the transmit antennas by this estimation
technique. LS estimation gives the closed-form expression of
the channel estimate as [4]:

ĥLS(t) = (x(t)Hx(t))−1xH(t)yb(t), (12)

where (·)H denotes the Hermitian transpose, and

x(t) =
[
diag(x1(t)),diag(x2(t))

]T
(13)

is the NP×(2NP ) matrix denoting transmitted signal from the
two transmit antennas; NP is the number of the pilot signals
in an OFDM symbol; and (·)T is the regular transpose. The
channel estimate from each transmit antenna can be formulated
as

ĥLSi(t) =
[[
ĥLS(t)

]
(i−1)NP

, . . . ,
[
ĥLS(t)

]
iNP−1

]T
,

i = 1, 2. (14)

Then, the channel responses from all sub-carriers can be
obtained by applying a linear interpolation method. Let us
denote as ĥLS(t). It should be noticed that LS estimation is a
widely-used estimation because of its simplicity. However, this
technique does not exploit the side information from noise and
statistical channel properties in the estimation, and therefore
high channel estimation errors might be obtained when apply-
ing LS estimation for complex propagation environments.



Fig. 3. The pilot structure applied for the considered MIMO-OFDM system.

Fig. 4. The DNN structure used for channel estimation.

To overcome the drawbacks, one can utilize LMMSE es-
timation, which minimizes the mean square error and having
the channel estimation as [17]:

ĥLMMSEi(t) = RhĥLSi

(
Rhh +

σ2
w

σ2
x

INP

)−1
ĥLSi(t),

i = 1, 2, (15)

where ĥLMMSEi(t) is the LMMSE estimated channel from the
i−th transmit antenna, Rhh = E{hhH} is the autocorrelation
matrix of channel response in frequency-domain with the
size of NP × NP with E{·} being the expectation operator;
RhĥLSi

= E{hĥHLSi} is the cross-correlation between the
actual channel and the channel estimate obtained by LS esti-
mation with the size of NFFT×NP ; σ2

x is the variance of the
transmitted signals, respectively; INP

is the identity matrix of
size NP ×NP . Since the impact of noise is taken into account
by LMMSE estimation, which is able to improve the channel
estimation accuracy. However, LMMSE estimation requires
the prior knowledge of channel statistical properties, thus
the computational complexity is higher than LS estimation.
Additionally, it may be difficult to obtain the exact distribution
of channel impulse responses in general [19], the performance
of LMMSE estimation can not always be guaranteed.

B. DNN-Aided Channel Estimation

To overcome the aforementioned drawbacks of LS and
LMMSE estimations, we propose a DNN-aided estimation that
minimizes the MSE between the channel estimate obtained
by LS estimation and the actual channel.2 The structure of
the proposed DNN-aided estimation is depicted in Fig. 4.
As shown in this figure, the proposed DNN structure is
organized as layers including the input layer, hidden layers
and output layer. Notice that a DNN may have many hidden
layers. However, for the considered MIMO-OFDM system,
the proposed DNN structure is designed with 3 hidden layers
which include multiple neurons. In particular, a neuron is a
computational unit which performs the following calculation:

o = f(z) = f

(
M∑
i=1

wixi + b

)
, (16)

where M is the number of inputs to this neuron for which
xi is the i-th input (i = 1, . . . ,M ); wi is the i-th weight
corresponding to the i-th input; b is a bias and o is the
output of this neuron. In (16), f(.) is well-known as a
activation function which is used to characterize the non-
linearity of the data. In our proposed framework, we use the
tanh function as the activation function, which is expressed as:

f(z) =
ez − e−z

ez + e−z
. (17)

To minimize the MSE, the DNN-aided estimation will learn
the actual channel information given the channel estimates
obtained by LS estimation as the input. In detail, we define a
realization of the input for the training process as

Mnt =
{
Re
{[

ĥnLS(t)
]
0

}
, Im
{[

ĥnLS(t)
]
0

}
, . . . ,

Re
{[

ĥnLS(t)
]
3

}
, Im
{[

ĥnLS(t)
]
3

}}
, (18)

where the superscript n denotes the n-th realization; Re{·} and
Im{·} give the real and imaginary part of a complex number,
respectively. The output of the neural network is

Ont =
{
Re
{[

ĥn(t)
]
0

}
, Im
{[

ĥn(t)
]
0

}
, . . . ,

Re
{[

ĥn(t)
]
3

}
, Im
{[

ĥn(t)
]
3

}}
, (19)

where ĥn(t) is the output of the neural network at the n-th
realization. In (18) and (19), we separate the channel estimate
into into the real and imaginary parts to tackle the complex

2According to the universal approximation theorem, there are other deep
neural networks that give the similar or better performance than a fully-
connected neural network with a limited data volume. However, the main
theme of this paper is to point out the assistance of deep learning to channel
estimation for 5G wireless communications. Therefore, the fully-connected
DNN is selected due to its simplicity and low computational complexity. An
optimized DNN structure is left for the future work.



TABLE I
ARCHITECTURE OF DNN MODELS FOR CHANNEL ESTIMATION

Layer DNN-1 DNN-2
Nodes f(.) Nodes f(.)

Input layer 8 - 8 -
Hidden layer 1 16 tanh 32 tanh
Hidden layer 2 16 tanh 32 tanh
Hidden layer 3 16 tanh 32 tanh
Output layer 8 - 8 -

numbers for the neural network. The learning process handles
the one-by-one mapping:(

Re
{[

ĥnLS(t)
]
s

}
, Im
{[

ĥnLS(t)
]
s

})
→(

Re
{[

ĥn(t)
]
s

}
, Im
{[

ĥn(t)
]
s

})
, s = 0, . . . , 3, (20)

As desired, the output of the neural network should be
identical to the actual channels. Alternatively, the purpose of
the DNN-aided estimation is to minimize the MSE between
the prediction and actual channels on average, thus the loss
function utilized for the training phase is defined as

L (W,B) = 1

NT

N∑
n=1

T∑
t=1

∥∥ĥn(t)− hn(t)
∥∥2
2
, (21)

where N is the number of realizations used for training,
and hn(t) is the actual channel corresponding to ĥn(t). W
and B include all the weights and biases, respectively. From
a set of initial values, the weights and biases are updated
by minimizing the loss function (21) with the forward and
backward propagation [12].

Remark 1: The loss function (21) formulates a supervised
learning. It is based on the fact that the actual channels are
available in the training phase, which is obtained if the pilot
power or coherence interval is sufficiently large. Consequently,
the proposed learning-based approach possibly outperforms
LS estimation. For future works, we can investigate the sys-
tem performance under an unsupervised learning framework
together with imperfect channel state information.

In order to train and test the proposed neural network, a set
of data with 250880 realizations are gathered. We use 70%
data for training, 15% as the validation set, and 15% data for
testing. In this paper, the two DNN models, labeled DNN-1
and DNN-2, are proposed for channel estimation with 5 layers
comprising the input layer, 3 hidden layers, and output layer.
As illustrated in Table. I, the number of neurons of each layer
are 8, 16, 16, 16, 8 for DNN-1, respectively. Meanwhile, those
are 8, 32, 32, 32, 8 for DNN-2. Notice that the number neurons
in input and output layers corresponds to the total number of
real and image parts for 4 path channel, which is 8.

IV. SIMULATION RESULTS

To evaluate the performance of the DNN-aided estima-
tion, the simulation has been carried out and the results are
compared with the conventional LS estimation and LMMSE

TABLE II
PARAMETERS FOR MIMO-OFDM SYSTEM

Parameters Values

MIMO 2x2
FFT size 512
Cyclic prefix 64
Type of modulation QPSK
Channel PDP TDL-A
Maximum Doppler frequency 36 Hz, 200 Hz
Noise model Gaussian Noise

TABLE III
PARAMETERS FOR DEEP NEURAL NETWORK MODELS

Parameters Values

Training function Levenberg-Marquardt
Maximum number of epoches 300
Mini-bath size 8
Training error 10−5

Gradient descent accuracy 10−7

Learning rate 0.01
Maximum validation failures 6

estimation by utilizing the bit error rate (BER) and mean
square error (MSE) versus signal to noise ratio (SNR). The
setup parameters of the considered MIMO-OFDM system
are shown in Table II, while those parameters used for the
DNN model are in Table III. In the simulations, we use the
fading multi-path model channel with the TDL-A Power Delay
Profile as aforementioned in Section II. For comparison, LS
and LMMSE estimations are also included as benchmarks.

To investigate the performance of all the considered channel
estimations exploiting in the MIMO-OFDM system through
the 5G channel model, the two different scenarios corre-
sponding to the velocity of mobiles are exploited: In the first
scenario, the receiver moves with a low speed such that the
maximum Doppler frequency is 36 Hz. The pilot symbols are
inserted along with data in both frequency and time domain.
Because the channel is slowly changed over time, the pilot
spacing in the time domain is Dt = 4 and in the frequency
domain is Df = 2; In the second scenario, the system serves
high-speed mobility, which results in the maximum Doppler
frequency of 200 Hz. In this scenario, the setup Dt = Df = 2
is to cope with a rapid change of the channels over time.

Fig. 5 and 6 show the MSE of different channel estimations
utilizing the first and second scenarios, respectively. The
QPSK (quadrature phase-shift keying modulation) is deployed
to modulate the transmitted data in the simulation. As shown in
Fig. 5 and 6, all the channel estimation methods provide MSE
declining gradually as the SNR grows. In both the scenarios,
LS estimation yields the worst MSE performance since it does
not take the statistical channel information into account when
performing the channel estimation. On the contrary, LMMSE
estimation exploits the mean and covariance matrices, which
results in the better MSE performance than the LS counterpart.
Our proposed deep learning methods yield the best MSE
performance, especially at the low and mediate SNR levels.



Fig. 5. The MSE of the channel estimate versus the SNR level for the first
scenario fD = 36 Hz.

Fig. 6. The MSE of the channel estimate versus the SNR level for the second
scenario fD = 200 Hz.

When the SNR increases above 13 dB, the deep learning-
based approaches give worse MSE than the performance of
LMMSE estimation. This may be because the structure of the
DNN models is still not optimal at high SNR levels and the
hyper-parameters should be tuned more carefully. Although
the DNN-2 model has more neurons in each hidden layer than
the DNN-1 model, the results are only slightly different. This
means that a complex DNN structure is not always along with
better accuracy. Although the pilot symbols are inserted more
densely in time domain in the second scenario with the high
speed of the receiver, the MSE of all four channel estimation
methods is worse than those of the first scenario due to the
severity of Doppler effects.

We provide the BER performance of the considered sce-
narios in Fig. 7 and 8 with the different channel estimation
methods, respectively. The discrepancies across the channel es-

Fig. 7. The BER of the channel estimate versus the SNR level for the first
scenario fD = 36 Hz.

Fig. 8. The BER of the channel estimate versus the SNR level for the first
scenario fD = 200 Hz.

timation methods are not seen clearly in the BER performance.
However, we still observe that LS estimation provides the
worst performance among the four methods in both scenarios,
while the BER performance of the remaining ones are almost
the same to each other. Even though LS estimation performs
worse than the others, the performance gap is relatively small.
This can be explained by the fact that the loss function has
been defined to minimize the channel estimation errors instead
of the BER metric. Besides, Fig. 7 and 8 also show the
significant improvements of the BER when increasing the SNR
level with combating the Doppler effects more effectively. For
instance, at fD = 36 Hz, the BER gets 10× better if the SNR
level increases from 5 dB to 10 dB.



V. CONCLUSIONS
In this paper, the deep neural network with the two typical

instances called DNN-1 and DNN-2 has been proposed to as-
sist the channel estimation in a MIMO-OFDM system with the
two different scenarios of fading multi-path channel models
based on the TDL-A model defined in the 5G networks. The
proposed DNN-based channel estimation methods are trained
with the channel estimate from least squares estimation and the
corresponding perfect channels. By utilizing the QPSK modu-
lation scheme, the performance of the proposed estimations is
compared with the conventional LS and LMMSE estimations
in terms of channel estimation errors and bit error ratio as
a function of the SNR levels. Due to learning the channel
properties effectively, we observed the superior improvements
of the proposed DNN-aided estimation in reducing channel
estimation errors. The future work should focus on a design
to reduce the bit error ratio as well.
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