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Abstract—This research features a deep-learning based frame-
work to address the problem of matching a given face sketch
image against a face photo database. The problem of photo-
sketch matching is challenging because 1) there is large modality
gap between photo and sketch, and 2) the number of paired
training samples is insufficient to train deep learning based
networks. To circumvent the problem of large modality gap,
our approach is to use an intermediate latent space between the
two modalities. We effectively align the distributions of the two
modalities in this latent space by employing a bidirectional (photo
→ sketch and sketch → photo) collaborative synthesis network.
A StyleGAN-like architecture is utilized to make the intermediate
latent space be equipped with rich representation power. To
resolve the problem of insufficient training samples, we introduce
a three-step training scheme. Extensive evaluation on public
composite face sketch database confirms superior performance
of our method compared to existing state-of-the-art methods.
The proposed methodology can be employed in matching other
modality pairs.

Index Terms—Face photo-sketch recognition, Face photo-
sketch synthesis, GAN

I. INTRODUCTION

The goal of this work is to find the best matching photos
for a given sketch in a face database, especially for software
generated composite sketches. An important application of
such systems is to assist law-enforcement agencies. During
criminal investigation, in many cases, facial photo of a suspect
is not available. Instead, a hand-drawn forensic sketch or
software generated composite sketch based on the description
provided by an eye-witness or victim is the only clue to iden-
tify suspect. Therefore, an automatic method which retrieves
the best matching photos from face database for a given sketch
is necessary to quickly and accurately identify a suspect.

Successful photo-sketch matching depends on the solution
to how to effectively deal with large modality gap between
photos and sketches. Moreover, insufficiency of sketch samples
for training makes photo-sketch recognition an extremely
challenging task.

As to classical photo-sketch recognition, generative ap-
proaches [2–4] bring both modalities into a single modality
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Fig. 1. Our proposed framework takes advantage of a bidirectional
photo/sketch synthesis network to set up an intermediate latent space as an
effective homogeneous space for face photo-sketch recognition. We employ a
StyleGAN-like architecture to make the intermediate latent space be equipped
with rich representational power. The mapping networks, Fp and Fs, learn to
encode photo and sketch images into their respective intermediate latent codes,
wp and ws. We learn AdaCos [1] to enforce the separability of latent codes
of different identity in the angular space for the photo-sketch recognition task.

by transforming one of the modalities to the other (either
photo to sketch or vice versa) before matching. The main
drawback of these methods is their dependency on the quality
of the synthetic output, which most of the time suffers due to
large modality gap between the two modalities. On the other
hand, discriminative approaches attempt to extract modality-
invariant features, or learn a common subspace where both
photo and sketch modalities are aligned [5–13]. Although these
methods formulate photo-sketch recognition through modality
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invariant features or a common subspace, their performances
are not satisfactory because 1) the distributions of the two
modalities are not well aligned in the common feature space
and 2) their feature vectors or common spaces fail to provide
rich representation capacity. Recent deep-learning based face
photo-sketch recognition methods [7, 10, 14–20] perform well
compared to classical approaches. However, utilizing deep
learning techniques for face photo-sketch recognition is very
challenging because of insufficient training data.

Recently, Col-cGAN [21] proposed a bidirectional face
photo-sketch synthesis network. They generate synthetic out-
puts by using a middle latent domain between photo and
sketch modalities. However, their middle latent domain does
not provide enough representational power of both modalities.
On the other hand, StyleGAN [22] produces extremely realistic
images by proposing a novel generator architecture. Instead
of feeding the input latent code z directly into the generator,
the StyleGAN network first transforms it into an intermediate
latent space, W , via a mapping network. This disentangled
intermediate latent space, W , offers the StyleGAN generator
more control and representational capabilities. Noting the
strong representation power of the latent code space of Style-
GAN, we opt to use a StyleGAN-like bidirectional architecture
for setting up an intermediate latent space for our photo-sketch
recognition problem.

In this paper, we propose a novel method that exploits an
intermediate latent space, W , between the photo and sketch
modalities as shown in Figure 1. We employ a bidirectional
collaborative synthesis network of the two modalities to set up
the intermediate latent space where the distributions of the two
modalities are effectively aligned. Also, the StyleGAN-like
architecture we utilize enables the intermediate latent space
to have strong representational power to successfully match
the two modalities.

In Figure 1, the mapping networks, Fp and Fs, learn the in-
termediate latent codes wp, ws ∈W . To form a homogeneous
intermediate space, W , we constrain the intermediate features
more symmetrical, using `1 distance between the intermediate
latent codes of photo and sketch The intermediate latent space
also makes use of feedback from the style generators that
translate photo-to-sketch/sketch-to-photo. Hereby enabling the
intermediate latent space to have rich representational capacity
for both photo and sketch. Once this intermediate latent space
is successfully set up, we can then directly take advantage of
any state-of-the-art face recognition methods. In our case, we
employ AdaCos loss [1].

Moreover, we use a three-step training scheme to resolve the
problem of very limited number of training sketch samples. In
the first step, we only learn image-to-image translation without
AdaCos on paired photo-sketch samples. This serves the
purpose of learning an initial intermediate latent space. Then,
in the second step, we pre-train the photo mapping network,
Fp, only with AdaCos, using a publicly available large photo
dataset. This helps our model overcoming the problem of
insufficient sketch samples to train our deep network robustly
for the target task. Lastly, we fine tune the full network on a

target photo/sketch dataset. More details of the model training
are discussed in section III-B.

The main contributions of our work are summarized as
follows.

• We propose a novel method for photo-sketch matching
that exploits an intermediate latent space between the
photo and sketch modalities:

– The intermediate latent space is built through a
bidirectional collaborative synthesis network.

– This latent space has rich representational power
for photo/sketch recognition due to a StyleGAN-like
architecture.

• A three-step training scheme helps overcoming the prob-
lem of insufficient sketch training samples.

• Extensive evaluation on challenging publicly available
composite face sketch databases shows superior perfor-
mance of our method compared with state-of-art methods.

The rest of this paper is organized as follows. Section II
describes related works. In section III, we depict details of
our method. Experimental results are presented in section IV.

II. RELATED WORK

The face photo-sketch recognition problem has been ex-
tensively studied in recent years. Researchers have studied
sketch recognition for various face sketch categories such as
hand-drawn viewed sketch, hand-drawn semi-forensic sketch,
hand-drawn forensic sketch, and software-generated compos-
ite sketch. Compared to hand-drawn viewed sketches, other
sketch categories have much larger modality gap due to
the errors that come from forgetting (semi-forensic/forensic),
understanding of description (forensic), or limitation of com-
ponents in software (composite). Recent researches focus on
more challenging composite and forensic sketches.

Traditional sketch recognition methods can be divided into
two categories: generative and discriminative approaches.

Generative methods convert images from one modality into
the other modality, usually from sketch to photo, before match-
ing. Then, a simple homogeneous face recognition method can
be used for matching. Various techniques have been utilized
for synthesis such as Markov random field model [2], local
linear embeding (LLE) [3], and multi-task gaussian process
regression [4]. However, recognition performance of these
methods heavily depends on the quality of the synthetic
images, which most of the time suffers due to the large
modality gap between the two modalities.

Discriminative methods attempt to learn a common sub-
space or extract particular features in order to reduce the
intra-class difference caused by the modality gap while pre-
serving inter-class separability. Representative methods in this
category include partial linear square(PLS) [5, 6], coupled
information-theoretic projection (CITP) [7], local feature-
based discriminant analysis (LFDA) [8], canonical correla-
tion analysis (CCA) [9], and self similarity descriptor (SSD)
dictionary [10]. Han et al. [11] proposed a component-based
representation approach to measure the similarity between a
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Fig. 2. The overall architecture of the proposed network. Mapping networks, Fp and Fs, map photo and sketch images to intermediate latent codes wp

and ws. These latent codes are then fed into the two opposite style generators Gs and Gp. Gs generates sketch from photo, yp→s, while Gs generates
photo from sketch, ys→p. The collaborative loss Lw , which is `1 distance between wp and ws of same identity, constrains the intermediate modality features
more symmetrical. Through this strategy, we learn an intermediate latent space, W , that retain the common and representational information of photo and
sketch. We apply AdaCos loss, LAdaCos, to the intermediate latent space, W , directly to perform photo-sketch recognition by comparing the cosine distance
between intermediate latent features, wp and ws.

composite sketch and photo. Multi-scale circular Weber’s local
descriptor (MCWLD) is utilized in Bhatt et al. [12] to solve
semi-forensic and forensic sketch recognition problem. In
graphical representation based heterogeneous face recognition
(G-HFR) [13], the authors graphically represented heteroge-
neous image patches by employing Markov networks, and
designed a similarity metric for matching. These methods fail
when the learned feature/common subspace could not have
enough representational capacity for both photo and sketch
modalities. In contrast, our method projects photo and sketch
on homogeneous intermediate space where the distribution of
the two modalities better aligned with rich representational
power.

Over the past few years, deep learning based algorithms
have been developed for face photo-sketch recognition [7,
10, 14–19]. Kazemi et al. [14] and Iranmanesh et al. [15]
proposed attribute-guided approaches by introducing attribute-
centered loss function and joint loss function of identity and
facial attribute classification, respectively. Liu et al. designed
coupled attribute guided triplet loss (CAGTL) to train an end-
to-end network that can effectively eliminates defects of incor-
rectly estimated attributes [16]. Iterative local re-ranking with
attribute guided synthesis based on GAN is introduced in [17].
Peng et al. proposed DLFace [18] which is a local descriptor

approach based on deep metric learning while in [19], a
hybrid feature model was employed by fusing traditional HOG
feature with deep feature. The largest obstacle to utilizing
deep learning techniques for face photo-sketch recognition is
scarcity of sketch data. Even the largest public viewed sketch
database [7] has only 1,194 pairs of sketch and photo, and the
composite sketch database [10] has photos and sketches of 123
identities. To overcome this problem, most approaches employ
relatively shallow network, data augmentation, or pre-training
on a large-scale face photo database.

Recently, cosine-based softmax losses [1, 23–25]
have achieved great success in face photo recognition.
SphereFace [23] penalises the angles between the deep
features and their corresponding weights in a multiplicative
way. Follow-up studies improved the performance by changing
the penalising measure to additive margin in cosine [24] and
angle [25]. AdaCos [1] outperforms previous cosine-based
softmax losses by leveraging an adaptive scale parameter
to automatically strengthen the supervision during training.
However, direct application of these methods to photo-sketch
recognition is not satisfactory because they have not properly
dealt with the modality gap.
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Fig. 3. A three-step training scheme to overcome the problem of insufficient amount of paired photo-sketch training samples. We employ three-step training.
Step 1: Pre-train the bidirectional photo/sketch synthesis network to learn an initial intermediate latent space, W , between photo and sketch. Step 2: Pre-train
the photo mapping network, Fp, on a large face photo database. Step 3: Fine-tune the whole network on the target photo/sketch database.

III. PROPOSED METHOD

Our proposed framework takes advantage of a bidirectional
photo/sketch synthesis network to set up an intermediate latent
space as an effective homogeneous space for face photo-sketch
recognition. Mutual interaction of the two opposite synthesis
mappings occurs in the bidirectional collaborative synthesis
network. The complete structure of our network is illustrated
in Figure 2. Our network consists of mapping networks Fp

and Fs, style generators Gp and Gs, and discriminators Dp

and Ds. Fp and Fs share their weights.
The mapping networks, Fp and Fs, learn to encode photo

and sketch images into their respective intermediate latent
codes, wp and ws. Then, wp and ws are fed into the two
opposite style generators Gs and Gp to map photo-to-sketch
and sketch-to-photo, respectively. We employ a StyleGAN-like
architecture to make the intermediate latent space be equipped
with rich representational power. We also introduce a loss
function to regularize the intermediate latent codes of two
modalities, enabling them to learn a same feature distribution.
Through this strategy, we learn a homogeneous intermediate
feature space, W , that shares common information of the
two modalities, thus producing best results for heterogeneous
face recognition. To enforce latent codes in W separable in
the angular space, we learn AdaCos [1] for the photo-sketch
recognition task.

Fp and Fs employ a simple encoder architecture that
contains convolution, max pooling and fully connected layers.
The style generators, Gp and Gs, consist of several style
blocks and deconvolution layers as in [22]. However, un-
like [22], we do not use noise inputs and progressively growing
architecture because the sole purpose of our style generators
is to help the homogeneous intermediate latent space retain
common representational information of the two modalities for
reducing the modality gap between them. Our style generator
architecture is very light as compared to that of StyleGAN due
to limited number of training samples. The discriminators, Dp

and Ds, distinguish generated photo/sketch and real samples

by taking corresponding concatenated photo and sketch. We
use PatchGAN architecture [26] of 70x70. Unlike the discrim-
inator in [21], our discriminator uses Instance normalization
instead of Batch normalization.

A. Loss functions

The joint loss function used to train our framework is
defined as:

L = LAdaCos + λGANLGAN + λsLs + λwLw (1)

GAN loss function, LGAN [27], along with the similarity loss,
Ls, are used to train the bidirectional photo/sketch synthesis
part of the whole network. LGAN helps generating real and
natural-looking synthetic outputs while the similarity loss,
Ls, measures pixel-wise `1 distance between generated and
real photo/sketch images. To regularize and enforce the same
distribution for photo, wp, and sketch, ws, in the intermediate
latent space, we introduce a collaborative loss, Lw. It mini-
mizes `1 distance between wp and ws of the same identity.
We use AdaCos loss function [1], LAdaCos, to learn identity
recognition. It measures the angular distance in the W space. It
is minimized for intra-class features and maximized for inter-
class features.
λGAN , λs, and λw in Eq. (1) control the relative impor-

tance of each loss function in the bidirectional photo/sketch
synthesis task. We used λGAN = 1, λs = 10, and λw = 1 in
our experiments.

B. Training

To overcome the problem of insufficient amount of paired
photo/sketch training data, we introduce a simple and effective
three-step training scheme as shown in Figure 3. In step
1, we train the bidirectional photo/sketch synthesis network
using paired photo-sketch training samples to set up an initial
homogeneous intermediate latent space, W . We use our joint
loss function in Eq. (1), excluding the AdaCos loss function,
LAdaCos. In step 2, we pre-train the photo mapping network,
Fp, using AdaCos loss only on the publicly available large



TABLE I
RANK 50 RECOGNITION ACCURACY (%) ON THE E-PRIP DATABASE WITH

A GALLERY SIZE 1,500.

Method Faces (In) Identikit (As)
Kazemi et al. [14] 77.50 81.50

Iranmanesh et al. [15] 80.00 83.00
Ours 93.86 90.40

TABLE II
RANK 50 RECOGNITION ACCURACY (%) ON THE E-PRIP DATABASE WITH

A GALLERY SIZE 10,075.

Method Faces (In) Identikit (As)
G-HFR [13] - 51.22
DLFace [18] 70.00 58.93
CAGTL [16] 78.13 67.20

Ours 92.78 88.26

photo database CelebA [28] to overcome the problem of
insufficient sketch training samples. Then, we train our full
network in step 3 using the whole joint loss function in Eq. (1)
on target photo/sketch samples.

IV. EXPERIMENTS

A. Data description and implementation details

We have conducted our experiments using the e-PRIP
composite sketch database. The e-PRIP [10] database consists
of four different composite sketch sets of 123 identities. How-
ever, only two of them are publicly available: the composite
sketches created by an Indian user adopting the FACES tool
[29], and an Asian artist using the Identi-Kit tool [30]. We have
used 48 identities for training and the remaining 75 identities
for test.

All images are aligned by eye position and initially cropped
to 272x272. Then, they are randomly cropped to 256x256 dur-
ing training. We optimize our network using Adam optimizer
with the learning rate of 0.0002 and batch size 8, in step 1
and 3 of training. We use the learning rate 0.0005 and batch
size 32 in step 2. We train our network for 3,000 epochs on
the CUFS [31] viewed sketch database in step 1 of training,
50 epochs on CelebA [28] in step 2, and 3,000 epochs on the
target database in step 3.

The recognition accuracies of our network presented in the
following sections are average results over five experiments
with random partitions.

B. Photo-sketch recognition results

In this section, we compare the performance of our method
with that of representative state-of-the-art photo-sketch match-
ing methods on the two subsets of e-PRIP dataset [10]. Let
us denote them FACES (In) and Identikit (As), respectively.
We perform the experiments with an extended gallery to a
mimic real law-enforcement scenario where multiple numbers
of suspects are selected from a large photo database. With
extended gallery setting, rank 50 accuracy is most commonly
used criteria. Thus we compared rank 50 accuracies. While
some photos in extended galleries of previous works are not
publicly available, we have tried to mimic their gallery as

close as possible using publicly available databases for fair
comparison.

Following [14] and [15], we have constructed an extended
gallery of 1,500 subjects including probe images by using
photos from ColorFERET [32], Multiple Encounter Dataset
(MEDS) [33], and CUFS [31]. The results are presented in
Table I where the accuracies for Kazemi et al. and Iranmanesh
et al. are obtained from their CMC curves. Our method
achieved 93.86% rank 50 accuracy on Faces (In) which was
13.86% higher than [15]. On Identikit (As), our method
achieved 90.40% which outperformed SOTA.

To compare the performance with [13, 18] and [16], we
have built another extended gallery of 10,000 subjects using
face photos collected from the aforementioned photo databases
and the labeled faces in the wild-a (LFW-a) database [34].
The test gallery set contains the total of 10,075 face photos.
Table II shows the comparison results of our method with
the previous state-of-the-art representative methods. As can be
seen, our method shows the far better performance of 92.78%
and 88.26% rank 50 accuracies on Faces (In) and Identikit
(As), respectively, with large margins. These results show
that our bidirectional collaborative StyleGAN-like Synthesis
Network learns an effective intermediate latent space with rich
representational power for face photo-sketch recognition task.

C. Effect of bidirectional collaborative synthesis of photo-to-
sketch and sketch-to-photo

To verify the effectiveness of our StyleGAN-like bidirec-
tional collaborative synthesis network on the recognition task,
we give comparison with three different versions from the full
network. In the first version, we removed the style generators,
Gs and Gp, from the network in Figure 2 and train the
mapping networks, Fp and Fs, using AdaCos loss function.
That is, the first version could not take any advantage of
synthesis network. For this version, the mapping networks are
pre-trained for 50 epochs on the CelebA photo database [28],
then fine-tuned for 3,000 more epochs on the target database.
For the second and third versions, we trained a unidirectional
synthesis based photo-sketch recognition network by using
only one of the style generators, either Gs or Gp. These two
versions employed the three-step training scheme as in the full
network.

The comparison results in Table III indicate that the addition
of either photo or sketch generator improves the recognition
accuracy. The unidirectional sketch-to-photo network shows
better performance than the unidirectional photo-to-sketch
network. This is because sketch-to-photo network translates
the information-poor input to information-rich output, thus
providing better representational feedback to the intermediate
latent space as compared to photo-to-sketch network. How-
ever, it still cannot provide enough representational power.

Our full network which exploited the bidirectional collabo-
rative synthesis network dramatically improved the recognition
performance. It is because our bidirectional synthesis network
warrants the intermediate latent space to have important rep-
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Fig. 4. Synthesis results of our style generators for different values of λw . (a) photo-to-sketch synthesis and (b) sketch-to-photo synthesis. First and second
rows are for Faces (In), while third row is for Identikit (As). Images collapse with high λw so that network could not learn representational information of
photo and sketch. λw=1 shows the best synthesis results. (Please view in color.)

TABLE III
RANK 50 RECOGNITION ACCURACY (%) ON THE E-PRIP DATABASE WITH A GALLERY SIZE 1,500 FOR THE SYNTHESIS NETWORK.

Method Faces (In) Identikit (As)
Only mapping networks 19.74 43.72

Photo-to-sketch (with Gp removed) 68.54 61.58
Sketch-to-photo (with Gs removed) 73.84 73.88

Our full network (with both Gp and Gs) 93.86 90.40

resentational information by utilizing the mutual interaction
between the two opposite mappings.

D. Effect of three-step training scheme

To validate the effectiveness of the proposed three-step
training scheme, we compare three different training settings in
Table IV. For this, we train our model 1) using only step 3, that
is, without pre-training, 2) using step 2 and step 3, and 3) using
all the three steps. We can see that there is significant improve-
ment in recognition accuracy when using pre-training (step
2), especially for Faces (In) dataset. This shows the power
of large-scale pre-training in solving data scarcity problem.
The combination of all the three training steps further boosts
the recognition performance. Step 1 provides an effective
initialization of the intermediate latent space between photo

and sketch for large-scale training in step 2. As the last row
in Table IV shows, our three-step training strategy effectively
overcomes the problem of insufficient sketch training samples.

E. Collaborative loss, Lw

In this section, we analyze the effect of collaborative loss,
Lw, on the recognition accuracy. We experimented our net-
work as we change the value of λw. Table V shows the results
for different values of λw on the extended gallery setting of
1,500 samples.

The performance for λw = 0 is poor. λw = 0 means
that our network is not using collaborative loss Lw. The
network is unable to constrain the two mappings symmetrical.
The accuracy improves when we increase the value of λw
as can be seen in Table V. Through many experiments, we
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Fig. 5. Synthesis results of our style generators for three different versions of Ls. (a) photo-to-sketch synthesis and (b) sketch-to-photo synthesis. First and
second rows are trained on Faces (In), while third and fourth rows are trained on Identikit (As). (Please view in color.)

TABLE IV
RANK 50 RECOGNITION ACCURACY (%) ON THE E-PRIP DATABASE WITH A GALLERY SIZE 1,500 FOR TRAINING SCHEME.

Method Faces (In) Identikit (As)
Without pre-training (step 3 only) 25.32 46.14
Two-step training (step 2 + step 3) 90.66 89.60

Three-step training (step 1 + step 2 + step 3) 93.86 90.40

TABLE V
RANK 50 RECOGNITION ACCURACY (%) ON THE E-PRIP DATABASE WITH

A GALLERY SIZE 1,500 FOR λw .

Method Faces (In) Identikit (As)
λw = 0 72.00 66.40
λw = 0.1 89.32 82.68
λw = 0.5 89.60 85.60
λw = 1 93.86 90.40
λw = 5 85.34 84.28
λw = 10 83.72 83.74

have found that λw = 1 produces the best result for our
task. These results show that our collaborative loss helps
regularizing the intermediate latent representations of the two
different modalities, effectively aligning the two modalities
in the intermediate latent space. However, as λw gets too
large, the performance degrades as can be seen in Table V.
We think that a large λw emphasizes too much on making
latent codes symmetrical, and breaks the learning balance
of the latent space between representational capcacity and
symmetrical mapping.

Figure 4 shows examples of synthesis results produced
by our style generators for different values of λw. There
is a general trend that better synthesis results yield better
recognition accuracies. For λw = 10, the results collapsed
to the same synthesis result for most of the target samples.
This shows that too much weightage to the collaborative
loss strongly enforces the same latent distribution while the
representational capacity of the latent space relatively ignored.

F. Similarity loss, Ls

Figure 5 shows the results produced by our style generators
for three simple variations of Ls. First, we used pixel-wise `1
distance only as our Ls. Second, we used only patch-wise
structural similarity (SSIM) loss [35]. Third, we employed

TABLE VI
RANK 50 RECOGNITION ACCURACY (%) ON THE E-PRIP DATABASE WITH

A GALLERY SIZE 1,500 FOR Ls .

Method Faces (In) Identikit (As)
`1 93.86 90.40

SSIM 81.86 79.74
`1 + SSIM 91.98 89.34

SSIM loss along with `1 distance for Ls. Figure 5 shows that
using only SSIM loss for Ls produces the worst synthetic
results, yielding the lowest recognition accuracy as can be
seen in Table VI. On the other hand, `1 produces the best
recognition results compared to the other two settings. Our
observation is that SSIM loss provides extra structural infor-
mation for synthesis, but it does not help for recognition task.
Thus, we opt to use only `1 distance as our Ls in the joint
loss function in Eq. (1).

V. CONCLUSION

We proposed a novel deep learning based face photo-sketch
recognition method by exploiting a homogeneous intermediate
latent space between photo and sketch modalities. For this, we
introduce a bidirectional photo/sketch synthesis network based
on a StyleGAN-like architecture. In addition, we employ a
simple three-step training scheme to overcome the problem
of insufficient paired training samples. The experiment results
have verified the effectiveness of our method, outperforming
the representative state-of-the-art methods. Our method shows
great promise in matching pairs of other different modalities.
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