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Abstract—QGENIE is a specialized interface toGENIE, a de- offer an “instant gratification” interface. TechnicallyGENIE
cision modeling environment developed by the Decision Syshs s a specialized version of ENIE, a decision modeling
Laboratory, University of Pittsburgh. QGENIE allows for rapid environment developed by the Decision Systems Laboratory,

construction of graphical models in which all variables arepropo- - . .
sitional, almost no numerical probabilities are displayedat the University of Pittsburgh. GNIE has over 20,000 users world-

user interface, and degrees of truth of propositions are dislayed Wide and is slowly becoming a standard tool ir_] _research and
by means of node colors. All numerical parameters, such as in teaching such topics as probability and decision thelry.

prior probability distributions over variables and strengths of has also been used in several business and industrial appli
influences between variables, are entered by means of gragal  ~tions. All variables in QENIE are propositional, almost

sliders. While the underlying computations are all numerial and . L - .
based on Bayesian upd};tir?gQGENlE makes the impression of MO numerical probabilities are displayed at the user iaterf

a qualitative, “order of magnitude” type system that aids rapid and posterior probabilities (interpreted as degrees ahtru
model building and an approximate analysis of systems. of propositions) are displayed by means of node colors. All

numerical parameters, such as prior probability distidng
over variables and strengths of influences between vasgable
NE WAY of supporting business decisions is througlre entered by means of graphical sliders. While the underly
creation of business models and subsequent explorating computations are all numerical and based on Bayesian

of such models by means of “what if” questions. This apipdating, Q@NIE makes the impression of a qualitative,
proach requires that the models are causal, i.e., when that“w“order of magnitude” type system that aids rapid model
if” question involves any kind of manipulation of the systembuilding and an approximate analysis of systems.
the model is able to predict the effects of this manipulation In addition to introducing QENIE and describing the mod-
For example, when ask the question “What if we introduagling techniques that we have made to make facilitate rapid
the third shift on the factory floor?,” the model should stibulmodel building, we describe typical environments where it
be aware that this will change the production capacity, it wihas proven useful: modeling in “soft sciences,” brainsiagn
increase the costs, but will not impact the customer orderssessions of the strategic planning type, involving mugtipl
market price of raw materials or the products. decision makers. Session participants may not be able to

Ideally, a modeling environment for building such modelspecify the exact numerical values of the interactionstoey
should possess the following four characteristics: (1) lo  will typically agree on the structure of the problem and the
be capable of modeling causal asymmetries among variablesjgh magnitude of the influences between variables. Ihstan
(2) it should allow for relatively fast model building, (3) i feedback to “what if” questions based on the model allows
should offer an intuitive user interface that facilitatégaining for quick analysis of the model and reaching consensus and
insight into the problem, and (3) it should be able to work inonclusions in group settings.
what is sometimes called “instant gratification” mode,, itee A few words about the notation. We will use uppercase
computationally efficient and give answers instantly. letters to denote random variables (e.y.) and lowercase

Probabilistic graphical models, such as Bayesian networksters to denote their states (e.g), Because all variables
(BNs) [1], offer two of these. They are acyclic directed drap in this paper will be Boolean, a variabl& will take only
and are capable of modeling causal structure of system [R}o states, andZ. Bold uppercase letters will denote sets
This structure, when displayed, is often intuitive and o of random variables (e.gX) and bold lowercase letters (e.g.,
for analyzing interactions among variables. While infeein  x) will denote value assignments to sets of random variables.
Bayesian networks has been shown to be NP-hard [3], existv@ will usePr(X) to denote the probability distribution over
commercial and academic systems allow for working with variableX.
models consisting of hundreds or even thousands of vasable

This paper describes (EBIIE, a modeling environment
developed at the Decision Systems Laboratory, Univerdity o Bayesian networks (BNs) [1] are acyclic directed graphs in
Pittsburgh. QGNIE is an attempt to build an ideal systemwhich nodes represent random variables and arcs represent
i.e., one that allows for rapid construction of causal medeldirect probabilistic dependencies among them. A Bayesian
that has an intuitive user interface, and that is fast endaghnetwork encodes the joint probability distribution overea of

I. INTRODUCTION

Il. BAYESIAN NETWORKS
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variables{ X1, ..., X,,} and decomposes it into a product ofare independent. The absence of any links betw#emnd the
conditional probability distributions over each varialgiwen remainder of the variables means thdtis independent of
its parents in the graph. When the parent set is empty, tthee other variables. In facf/ would typically be considered
corresponding factor reduces to prior probability over therelevant to the problem of project failure and we addea it t
variable in question. The joint probability distributiorveyx the model only for the sake of presentation.

{X1,..., Xy} can be obtained by taking the product of all of These independence properties imply that
these prior and conditional probability distributions:

N Pr(l,s,p, h, f) = Pr(l) Pr(s) Pr(h) Pr(pll, s) Pr(f|p) ,
Pr(zy,...,2n) = | [ Pr(zi|paz)) . (1)
=l i.e., that the joint probability distribution over the grapodes

Figure 1 shows a highly simplified example Bayesian nety pe factored into the product of the conditional protidsi
work modeling two causes of potential technical problent aR¢ oach node given its parents in the graph. Please note that

a potential project _failure .face.d by an airplane manufastur ;. expression is just an instance of Equation 1.
L?gerzzrarsepé“e/s \Qerg?ilri;g]ngg‘l)s r_}_]eoghér:gja;?gb:‘e ?]?g(g The as_signment of valu_es to observed variables _is u_sually
Project Failure (F), andHigh Fu’el Cost(H). For the sake ,of called e_\(|d_ence The most important ty_pe of reasoning in a
implicity. we assu'methat each of these vériables is biffany probabilistic system based on Bayesian networks is known
ngn Iy’P h _ .2 as belief updatingor evidence propagatigrwhich amounts

. pie,” has two outcom?s, de“not@cb.mdp, representl?g to computing the probability distribution over the variebl
technical problems present” and “technical problems a/se of interest given the evidence. In the example model of

respectively. Figure 1, the variable of interest could @& and the focus
Increazed

of computation could be the posterior probability disttibo
over F' given the observed values éfand S, i.e.,Pr(f|l, s).
Technical
Failure (F}

In addition to computing the effect of observing evidence,
Fig. 1. An example Bayesian network

Higher Speed
Requiremsnts (S}

when Bayesian networks are causal, they can be used to
predict the effect of external manipulation. One approach t
manipulation is spelled out by so callathnipulation theorem

— [4] that asserts that to compute the effect of manipulating
a variable in a model, we need to invalidate its conditional
probability distribution and then compute posterior bielie
over such mutilated network. In the simplest case of perfect

manipulation, i.e., one that fixes the value of the variathis,
amounts to cutting off all its incoming arcs. Cases where the

A direct arc betweer, and P denotes the fact that whether 2C _cutt_ing” fails to model what happens in the system were
or not the customer demands a higher carrying load of tﬁgjd'ed in, for example, [5], [6].
airplane will impact the likelihood of technical problems. The hardest problem with Bayesian networks, commonly
Similarly, an arc fromP to F denotes that technical problemd?€rceived to be the bottleneck in their practical applaratis
increases the likelihood of project failure. model construction. While building the structure of a Bages
Lack of a direct arcs is also a way of expressing knowledg@etwork is perceived doable, obtaining large quantities of
notably assertions of (conditional) independence. Fanire, nNumbers to parameterize them is hard [7]. These, stored as
lack of direct arcd, — F andS — F encodes the know|edgeconditional probability tables (CPTs) inside each of theem
that demands for an increased load and for an increased speletne graph, grow exponentially in the number of parents of
are independent do not impact project failure directly mlyo the node. Because nodes with more than 10 parents are not
indirectly, through technical problems. These causalrtiess Uncommon, this may mean huge quantities of numbers.
can be translated into statements of conditional indeperele One way of handling this problem, directly relevant to
in this case,F is independent ofL and S given P. In the approach taken in this paper is introduction of so called
mathematical notation, “canonical models” and especially their subset, the Inde-
pendence of Causal Influences (IClI) models (see [8] for a
Pr(flp) = Pr(flpl) = Pr(flps) = Pr(f|ph) = Pr(f|plsh) . comprehensive review of the existing ICI models). ICI nodes
Structural independences, i.e., independences that are movide a solution to the problem of quantification of Bagesi
pressed by the structure of the network, are captured by reetworks by assuming that parent variables cause the effect
called Markov condition, which states that a node (hEjas independently of each other. The benefit of this assumpsion i
independent of its non-descendants (here5, and H) given such that the number of required parameters is linear, rathe
its parents (hereé). than exponential, in the number of parent variables. The nex
Similarly, the absence of aré. — S means that the section discusses theEMORGAN model, which forms the
demands for an increased load and for an increased spémdhdations for the basic building block of GGIE.
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[1l. THE DEMORGAN GATE C. Requirement

Of interest in a system like QENIE are such ICI models A requirement is a parent that is required for the child to
that are capable of modeling real-world interactions amomg present. There are perfect requirements, such as being a
variables in models. Such interactions may be of a variefgmale is a requirement for being pregnant but there are also
of types, although as a minimum one has to be able tequirements that are in practice not completely necesBary
model opposing influences, i.e., combinations of influencegsample, a sexual intercourse is generally believed to be a
that increase, and decrease the posterior probability ®f ttequirement for pregnancy, but it is not a strict requiretnen
child variable. This is important because in practice weaglsv as pregnancy may be also caused by artificial insemination.
deal with factors that have positive and negative influences o
The same variable may have a positive influence on oRe Inhibitor
variable and a negative influence on another. In implemgntin An inhibitor is a parent that prevents the child from hap-
QGENIE, we used two interaction models: the CAST gatpening. For example, rain may inhibit wild land fire. Like in
[9] and the EEMORGAN gate [10]. We believe that the CASTthe other types of interactions, the parent may be imperfect
gate is semantically less clear than theNDORGAN gate and it in inhibiting the occurrence of the child. Fire may start mve
causes problems with knowledge elicitation from experts. Vif there is rain. Similarly to the relationship between ceais
have implemented it in QENIE for the sake of completenessand barriers, inhibitors are dual to requirements: Absesfce
and compatibility with existing models and software. Welwilan inhibitor event is a requirement for the child. One might
focus in this paper on the EMORGAN gate and refer the go around the very existence of inhibitors by using negated
interested readers to the paper by Chang [9]. In order tderewersions of the variables that represent them. In the exampl
a CAST gate in QENIE, please hold the SHIFT key whenabove, one might define a variable “No rain,” which would
clicking on the graph window when creating a node. behave as a requirement for the variable “Wild land fire."sThi

The DEMORGAN gate is used to model the interactiorhowever, might become cumbersome if “Rain” participated in
between a variable and its direct causes (parents of thablari other interactions in a model. It might happen that it is apar
in the directed graph). It allows to specify this interantio  of both “Wild land fire” and “Good crop.” Because “Rain” is
terms of a single number per cause-effect link. There are faan inhibitor for the former and a requirement for the latter,
fundamental types of cause-effect interactidbause Barrier, inhibitor, which is a negated requirement, is a useful miogel
Requirementand Inhibitor. construct.

In deterministic terms, the four types of causes and anteffec

interact with their effect through the following logicalrfaula:
A cause is a parent that has a positive influence on the child.

Please note that this influence does not need to be perfect. Fo y=(c1Vea Vb Vbe) AniAng ANiy Nig
example, smoking is generally believed to be a causal fac fere:
in lung cancer. Yet, incidence of lung cancer among smokers, ~
while much larger than incidence of lung cancer among non-* ¢S stand forCauses
smokers, is still within a few percent. Hence, the condiion * 0S stand forBarriers y _
probability of lung cancer given that a person is a smoker is® 7S Stand for necessary conditiorReguirements
still fairly low. « 1S stand forinhibitors
) For the effecty, to happen, alhs need to be present (one of

B. Barrier them absent can bring down the effect) and all is have to be

A barrier is a parent that decreases the probability of @bsent (one of them present can bring down the effect). Any
child. For example, regular exercise decreases the pritgabic or b can cause but bs work through their absent state, i.e.,
of heart disease. While it is a well established factor wittheir absence can affegt bs are just negateds andis are
a negative influence on heart disease, it is unable by itsplft negatechs.
to prevent heart disease. One way of looking at a barrier is o
that it is dual to a cause: Absence of the barrier event isEa Parameter Elicitation
causal factor for the child. One might go around the very Of essence to model builders are the questions that are
existence of barriers by using negated versions of theblasa asked of an expert when eliciting the parameter for each link
that represent them. In the example above, one might defigpe. These questions have to be clear so as to obtain eeliabl
a variable “Lack of regular exercise,” which would behavparameterizations.
as a cause of the variable “Heart disease.” This, however]t is important to realize that the EM ORGAN model is an
might become cumbersome if “Regular exercise” participatéCl model. This means in practice that the parents influehee t
in other interactions in a model. It might happen that it is ehild independently of each other. Influence of each paramt c
parent of both “Heart disease” and “Good physical shapéé specified in separation from the influences of the remginin
Because “Regular exercise” decreases the probability ef goarents. It is assumed that each remaining parent is in its
and increases the probability of the other, barrier, whicla i “distinguished state.” The distinguished state is theestat
negated cause, is a useful modeling construct. which the parent has no effect on the child. Because thetsffec

A. Cause
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of the four types of parents are different, their distinbeid 2) Cause: In order to elicit the strength of the influence
states are also different. of the nodeFire Spreads Quicklyon There Are Casualties

1) Cause:The distinguished state of a cause is the state (0.33 in Figure 2), the knowledge engineer has to ask the
which the cause has no effect on the child. For example, “nfatlowing question:What is the probability of casualties if the
being a smoker” has no effect on “lung cancer” in the examplige spreads quickly, fire escapes are not accessible, people
introduced above. “Not being a smoker” is the distinguisheddill in the building, fire is not quickly controlled, and ndher
state in this interaction. So is “having no cancer.” unmodeled causal factors are present?

2) Barrier: The distinguished state of a barrier is also 3) Barrier: In order to elicit the strength of the influence of
the state in which the cause has no effect on the child. R@le nodeFire Escapes Are Accessibbe There Are Casualties
example, “exercise” may be thought as not influencing the rig0.66 in Figure 2), the knowledge engineer has to ask the
of “heart disease.” “Exercise” is the distinguished stat¢his following question:What is the probability of casualties if the
interaction. So is “no heart disease” in the child node. fire does not spread quickly, fire escapes are not accessible,

3) Requirement:The distinguished state of a requiremengeople are still in the building, fire is not quickly conted,
is the state that is necessary for the effect to take plact. at and no other unmodeled causal factors are present?

For example, “being a female” is a requirement for becoming 4) Requirement: In order to elicit the strength of the
pregnant and it is the distinguished state in this inteoacti influence of the nod®eople Are Still In the Buildingn There
“No pregnancy” is the distinguished state of the child nodeare Casualties(0.88 in Figure 2), the knowledge engineer

4) Inhibitor: The distinguished state of an inhibitor is the,35 to ask the following questiokVhat is the probability of
state that has no effect on the child, i.e., the inhibitingda  casyalties if the fire does not spread quickly, fire escapes ar
being absent. For example, “rain” is an inhibitor of wild ¢n ot accessible, there are no people in the building, fire is no
fire. Its distinguished state is “rain,” in which case the filay  quickly controlled, and no other unmodeled causal factaes a
not happen. _ _ _ present?

‘Now, for each type of interaction, the parameter associatedg) |nnibjtor: In order to elicit the strength of the influence
with the causal link from a parent; corresponds to the ut the nodeFire Is Quickly Controllecbn There Are Casualties
probability of the effect happening if all parents are in their 75 in Figure 2), the knowledge engineer has to ask the
distinguished states (i.e., not acting upernd p; is not i ¢y0wing question:\What is the probability of casualties if the
its distinguished state. There is also an additional par@mes; e qoes not spread quickly, fire escapes are accessibles the

called “leak” which expresses the probability of the effeclye neople in the building, fire is quickly controlled, and no
given that all parents are in their distinguished states. other unmodeled causal factors are present?

F. Example Each of the above questions can be adjusted to the needs
of particular context, i.e., things can be rephrased or techit

Consider the following network based on thelDORGAN |
if they do not make sense.

gate with one causd-ire Spreads Quickly one barrier Fire
Escapes Are Accessibj@ne requirementRegople Are Still In
the Building, and one inhibitor Kire Is Quickly Controlled: IV. MODEL BUILDING WITH QGENIE

Model building with Q@&NIE consists of building the
structure and subsequently estimating the model parameter

.,
¢ Fire Escapes Are

\ Accessble ) i W All QGENIE variables are binary and should refer to some
e I "I:‘t'::;;iﬁg” :‘ proposition. The truth of this proposition will be the suttje
-/F'}r;; Il o of inference in Q&NIE. It is a good heuristic to think of
(T ) " s these propositions as desirable and undesirable. Wheringork
A e with the model, their posterior probability will be dispky
- | 7 { Fire s Quickly "\ by a color. Typically, one assigns green color to desirable
,’@_&{ O;SEi”iGHEd, propositions and red color to undesirable ones. Red has been
i ( There Ar&‘{;}’ ' found to draw user’s attention and we advise that it be used to
U s undesirable propositions. QeBlIE allows its user to define a
o node coloring scheme. When defining this scheme, it is a good
Fig. 2. An example of EMORGAN gate idea to follow the meaning of the majority of nodes. Single

nodes can be designated as having the reverse meaning and
1) The “leak” parameter: In order to elicit the leak pa- the coloring scheme will be reversed for them.

rameter (0.4 in Figure 2), the knowledge engineer has to asKt is best to assign variable names that are meaningful
the following questionWhat is the probability of casualtiesand self-explanatory. Please note that ENBE does not put
if the fire does not spread quickly, fire escapes are nahy limitations on the length of the names. The program
accessible, people are still in the building, and fire is nalso allows for placing groups of nodes into submodels. We
quickly controlled? Please note that this probability cae badvise to make a generous use of submodels in case your
due to other, unmodeled causes. models become larger than, say 50 variables. A large number
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of variables may not fit on the screen and may make the
interaction with the model cumbersome.

Interactions among variables are defined by means of in-
fluence arcs. These are drawn by clicking the mouse on the
parent node and dragging and dropping it onto the child node.
Figure 3 show a screen shot of this process. Please note that

g

/" other

e Distractions /
QGENIE prompts the user to assign the arc one of the four y
types of arcs defined by theEMORGAN gate. Clicking on ‘ ' // /‘P’ef;umh
one of the four types defines the arc as being of that type. ] =X " s 4
J— P— 4 b
-/'"C,_r:::e‘i\) / Higher Speed | . é“ Y \
\\‘ | Requirements / L e y
Ll e \\ ’/ ok .\
R r \ S
e T —‘\ i,
# Technical ? / Insulﬁcient
! F?gb:aﬁs ) i No Future\ ‘g _% (Adveriiz)fl//
[ L \ Contracts/ ;4 \Qz
N b ] ® | T Mg
Cause Sarrier Requrement Inhibitar | Pfﬁﬁf/m
Parent causes | Parentabsence | Parentrequired | Parentinhibits |
child _causese d’|l|d ,,”fﬂ.,,d,’\‘,d,,,, ,,EE,,

Fig. 5. An example static model
Fig. 3. Drawing an arc in a Q8NIE model

Model parameters in QENIE are defined by double- VI. COMPUTATIONAL SUPPORT FORTMOSTEFFECTIVE
clicking on a node or an influence arc. This pops up a slider ACTIONS

that can be used to enter the numerical parameter, as definedl js of interest to a user which propositions can be best
in Section Ill. Figure 4 shows a screen shot of this procesfianipulated in order to affect a specified node most. To
The numerical value in the slider can be chosen by C||Ck|rtg|s effect, Q&NIE allows for Specifying aFocus node

a Corresponding section of the slider or by mOVing the Slidg@noted by a small target icon on the graph. There is a
by means of arrow keys. Slider invoked by double-clicking gpecial dialog window (Figure 6) in which QeBIIE lists all
possible manipulations (every node can be designated to be
observable or manipulable) along with the rough value of thi
manipulation in terms of the magnitude of the expected chang
in the focus variable. This value is essentially the cragsepy
between the focus variable and the node in question.

E® R =
Fig. 4. Entering a numerical parameter value in HE by means A | Ovservatons Meripuatios |
of a slider S (T
Insufficent Advertizing  0.07 [
Penalties <001
node corresponds to the “leak value” (or the prior probgpili e o <001
of the proposition in case the node has no parents) while a el L, N
slider associated with an arc corresponds to the influence of
the parent on the child through that arc. The meaning of each

of the parameters was explained in Section III.

Fig. 6. Value of manipulating various pressure points
V. STATIC MODELS

The most basic type of models created in ENBE are static VIl. TEMPORAL MODELS

models. Static models can be viewed as qualitative abstrsct QGENIE extends static models into temporal domains. A
of Bayesian networks. Figure 5 shows a simple static netwadmporal model allows for tracing the development of a syste
modeling issues related to a project under consideraticembyover time. Figure 7 shows a simple model for a manufacturer,
airplane manufacturer. Colors of nodes express the postesvho is brainstorming whether much attempt should be made
probabilities of the propositions that they represent. athto increase the quality of a newly launched product. The
if” questions are asked by double-clicking a node or an ancodel looks 10 time steps ahead. These can be viewed as
and modifying the value of the parameter. After a short delaonths or years. An additional window allows for viewing a
(introduced on purpose), QBII E calculates the new posteriorplot of the numerical posterior probabilities. Figures & #&n
probabilities and the colors that they correspond to. show this plot for high quality of product and low quality
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o ;m/\a\w T VIIl. A PPLICATIONS OFQGENIE
— Ao i i
/gggbg“i;‘tvﬂ \Ad L—g\\ A. Rapid Prototyping
Suniy %L\\ o Even if the goal is to build a fully quantified Bayesian
s I p%j%m\\ network, QGNIE is extremely valuable as an environment
‘ B = for rapid prototyping. Models developed within@@IE can
\,‘ be exported to GNIE for further elaboration and parameter
\ refinement.
'\ B. Modeling in “Soft Sciences”
( s /L As late Herb Simon convincingly argued [11], “soft sci-
- ( g \@P\ﬂ\/ ences” are really hard sciences. Models of social sciences
S S 4 il systems are really hard to build, because very often little

] ] ) ) ~is known about them. Still, there is ample evidence from
Fig. 7. A dynamic model analyzing the influence of the quality OBehavioraI decision theory (e.g., [12]) that even simplest
new product on business . . ' .

mathematical models typically perform better than unaided
human intuition.
QGENIE has been applied to projects that are truly hard to
of product respectively. Please note the development of ttaekle with formal methods. One example that we are aware

posterior probabilities in each case. of is an application in modeling security in Costa Ricanesiti
[18]. Figure 10 shows a simple Q&BlIE model used in the
Awaiing ) study.
= \\
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Fig. 8. A dynamic model analyzing the influence of the quality o
new product on business: Development of key economic italisa 5 \
when the quality of the new product is high © Sehdwm [T
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{ Advertizing / Fig. 10. A QGENIE model for city security in Costa Rica
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C. Group Decision Making

The original inspiration for Q&NIE was provided by our
collaboration with policy analysts at the United States Mav
War College, Bradd Hayes and Theo Gemelas. A model
T developed there (see Figure 11, the foundations for thisetnod
L et shars e were developed in [13], Figure 5-1, page 101) consisted
PSR, of 99 variables organized into 12 submodels. The goal of
this model was to bring together experts from a variety of
A T S S T areas relevant to stability of a region (in this case, thecBla

Fig. 9. A dynamic model analyzing the influence of the quality msea region). The experts know some aspect of the problem

new product on business: Development of key economic itafisa (-9~ €Conomy, culture, or energy) but not everything.yThe
when the quality of the new product is low may help with building various parts of the model. Asking

“what if” questions of the complete model allows each of
the individual experts to verify their intuitions but alsees
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how manipulations propagate through those submodels tiratependent, i.e., when they are ICI. In particulagNDOR-
they did not know much about. A model of this complexityfGAN gate can handle a combination of positive and negative
cannot typically be understood completely by a single expeinfluences, while preserving both probabilistic soundreexs
Presence of multiple experts in a room, each of whom ke amechanistic property, critical in probability elatibn.
familiar with a parts of the model, usually helps with veiify Each parameter for the M ORGAN model can be elicited
model assumptions and obtaining insight into the problech ahy asking a simple question in the fofr(Y'|X). Probabilis-
consequences of the resulting decisions. tic soundness ensures that it is mathematically correat, an
propositional logic, that lies at its foundations, ensutfest
our model is meaningful and intuitive for humans.

S An important question that arises from this work is whether
an “order of magnitude” system will be reliable enough in
terms of its precision. While this is a good question that
will have to be probed in real applications, there are good

iz in place A
g e e L . .
| ¥ e oy reasons for believing that precision of numerical paramsete
ST, B Teleconunications ™, o By in a Bayesian networks is not critical. Two series of studies
! enhances h infrastructure iz in /5‘; gl faed ¥ ) . . A i .
Ny L Q ;{j:&“@/ v troducing random noise with and without bias, and progvessi
== ion of 1 = =i

| Admirtiztrati

‘ -I J/ justice is )
% ,

\effectwe and faI/

- — o

rounding of parameters led to minimal degradation in diagno
tic quality of real diagnostic models [14], [15], [16], [17]

We have embedded theEM ORGAN model in SMILE and
QGENIE, a qualitative interface to SMILE, our probabilistic
reasoning engine, and made it available to the community
(http://genie.sis.pitt.edu/). QGENIE s usefulin
rapid modeling of problems involving propositional vatied

e We are currently working on extending theEMIORGAN
N e /‘J model to multi-valued variables along the lines of the Neisy

L

R MAX and Noisy-MIN gates.
Fig. 11. A model for stability of Black Sea region

o e :
7 immediate reqiremelts

XI. CONCLUSION

QGENIE is a specialized interface to&BllE, a decision

IX. RELATED WORK modeling environment developed by the Decision Systems
: . - Laboratory, University of Pittsburgh. QeBlI E allows for rapid

A modeling environment similar to th_at of QBIIE V\,'as onstruction of graphical models in which all variables are
developed by SAIC. The program, available at SAICs We%ropositional, almost no numerical probabilities are Bigpd

site (it p: //ww. i net . sai c. corri)-, is_ based on .the t the user interface, and degrees of truth of propositions
CAusal STrength (CAST) model [9], which is an extension 0jre displayed by means of node colors. Its underlying De-

B:\Ihs thaﬁ is able tol model _S|rr|1ulltaneous opposing '(;‘ftg"ne,nc‘i'\ﬁorgan gate formalism allows for quick quantification of the
Alt lqug_ Very popurar, partlﬁu arylnfg(:]vernmentan gel Y models. All numerical parameters, such as prior probgbilit
applications, a major weakness of the CAST model IS iffqyip tions over variables and strengths of influencéwéen

unclear parametrization. Parents can influence a childbei variables, are entered by means of graphical sliders. While

in both of their states and do not have a distinguished staltﬁe underlying computations are all numerical and based

hence, are not amechanistic. This, we believe is a major Bayesian updating, QEMIE makes the impression of a

weakness of the CAST model. We have encountered puzzﬁﬁalitaﬁve, “order of magnitude” type system that aidsidap

looks on the part of our exper’E‘s Wh(?n :Ne tried_ _to_ elic odel building and an approximate analysis of systems.& her
CAST par_ameters, eSPe_C'a”Y the bas_,ellne prob_ablllﬂyloh is ample anecdotal and empirical evidence that precision of
may be viewed as “distinguished belief.” A detailed anajyshumbers is typically not that important

of the CAST parameterization has shown that it can betpaie are several applications of @IE: rapid prototyp-

ne|ther_|.nterpreted as the prior probability, nor it is tieak ing and later elaboration on the model, modeling of vague and
probability. difficult to quantify domains, and group decision making-ses
sions. Interested readers can download and exploreNQ&
athttp://genie.sis.pitt.edu/.

A question that one might ask is whether models created
by means of QENIE are expressive enough to model real
systems. We believe that as long as building a model on propoThis work has been supported by the Air Force Office
sitional logic is sufficient, the answer should be affirmativ of Scientific Research grant FA9550-06-1-0243 and by Intel
The DEMORGAN model is able to model any logical interaclLabs. Q&NIE is based on SMILE, a Bayesian inference
tion between inputs, when their influences on the output agagine developed at the Decision Systems Laboratory and

X. CONCLUSIONS

ACKNOWLEDGMENTS
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available athtt p: // geni e. si s. pi tt. edu/ . First steps
in developing Q&NIE were made during my interactions

with Brad Hayes and Theo Gemelas at US Naval War Colleéle(.)]
| am indebted to both Bradd and Theo for introducing me
to qualitative modeling and for offering many suggestio

improved the quality of QENIE. Almost all of the imple-
mentation work was done by Tomek Sowinski.
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