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Abstract—QGENIE is a specialized interface toGENIE, a de-
cision modeling environment developed by the Decision Systems
Laboratory, University of Pittsburgh. QGENIE allows for rapid
construction of graphical models in which all variables arepropo-
sitional, almost no numerical probabilities are displayedat the
user interface, and degrees of truth of propositions are displayed
by means of node colors. All numerical parameters, such as
prior probability distributions over variables and streng ths of
influences between variables, are entered by means of graphical
sliders. While the underlying computations are all numerical and
based on Bayesian updating,QGENIE makes the impression of
a qualitative, “order of magnitude” type system that aids rapid
model building and an approximate analysis of systems.

I. I NTRODUCTION

ONE WAY of supporting business decisions is through
creation of business models and subsequent exploration

of such models by means of “what if” questions. This ap-
proach requires that the models are causal, i.e., when the “what
if” question involves any kind of manipulation of the system,
the model is able to predict the effects of this manipulation.
For example, when ask the question “What if we introduce
the third shift on the factory floor?,” the model should should
be aware that this will change the production capacity, it will
increase the costs, but will not impact the customer orders or
market price of raw materials or the products.

Ideally, a modeling environment for building such models
should possess the following four characteristics: (1) it has to
be capable of modeling causal asymmetries among variables,
(2) it should allow for relatively fast model building, (3) it
should offer an intuitive user interface that facilitates obtaining
insight into the problem, and (3) it should be able to work in
what is sometimes called “instant gratification” mode, i.e., be
computationally efficient and give answers instantly.

Probabilistic graphical models, such as Bayesian networks
(BNs) [1], offer two of these. They are acyclic directed graphs
and are capable of modeling causal structure of system [2].
This structure, when displayed, is often intuitive and allows
for analyzing interactions among variables. While inference in
Bayesian networks has been shown to be NP-hard [3], existing
commercial and academic systems allow for working with
models consisting of hundreds or even thousands of variables.

This paper describes QGENIE, a modeling environment
developed at the Decision Systems Laboratory, University of
Pittsburgh. QGENIE is an attempt to build an ideal system,
i.e., one that allows for rapid construction of causal models,
that has an intuitive user interface, and that is fast enoughto

offer an “instant gratification” interface. Technically, QGENIE

is a specialized version of GENIE, a decision modeling
environment developed by the Decision Systems Laboratory,
University of Pittsburgh. GENIE has over 20,000 users world-
wide and is slowly becoming a standard tool in research and
in teaching such topics as probability and decision theory.It
has also been used in several business and industrial appli-
cations. All variables in QGENIE are propositional, almost
no numerical probabilities are displayed at the user interface,
and posterior probabilities (interpreted as degrees of truth
of propositions) are displayed by means of node colors. All
numerical parameters, such as prior probability distributions
over variables and strengths of influences between variables,
are entered by means of graphical sliders. While the underly-
ing computations are all numerical and based on Bayesian
updating, QGENIE makes the impression of a qualitative,
“order of magnitude” type system that aids rapid model
building and an approximate analysis of systems.

In addition to introducing QGENIE and describing the mod-
eling techniques that we have made to make facilitate rapid
model building, we describe typical environments where it
has proven useful: modeling in “soft sciences,” brainstorming
sessions of the strategic planning type, involving multiple
decision makers. Session participants may not be able to
specify the exact numerical values of the interactions, butthey
will typically agree on the structure of the problem and the
rough magnitude of the influences between variables. Instant
feedback to “what if” questions based on the model allows
for quick analysis of the model and reaching consensus and
conclusions in group settings.

A few words about the notation. We will use uppercase
letters to denote random variables (e.g.,X) and lowercase
letters to denote their states (e.g.,x). Because all variables
in this paper will be Boolean, a variableX will take only
two states,x and x. Bold uppercase letters will denote sets
of random variables (e.g.,X) and bold lowercase letters (e.g.,
x) will denote value assignments to sets of random variables.
We will usePr(X) to denote the probability distribution over
a variableX .

II. BAYESIAN NETWORKS

Bayesian networks (BNs) [1] are acyclic directed graphs in
which nodes represent random variables and arcs represent
direct probabilistic dependencies among them. A Bayesian
network encodes the joint probability distribution over a set of
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variables{X1, . . . , Xn} and decomposes it into a product of
conditional probability distributions over each variablegiven
its parents in the graph. When the parent set is empty, the
corresponding factor reduces to prior probability over the
variable in question. The joint probability distribution over
{X1, . . . , Xn} can be obtained by taking the product of all of
these prior and conditional probability distributions:

Pr(x1, . . . , xn) =

n∏

i=1

Pr(xi|pa(xi)) . (1)

Figure 1 shows a highly simplified example Bayesian net-
work modeling two causes of potential technical problems and
a potential project failure faced by an airplane manufacturer.
There are five variables in this model:Increased Load(L),
Higher Speed Requirements(S), Technical Problems(P ),
Project Failure(F ), andHigh Fuel Cost(H). For the sake of
simplicity, we assume that each of these variables is binary. For
example,P has two outcomes, denotedp andp, representing
“technical problems present” and “technical problems absent,”
respectively.

Fig. 1. An example Bayesian network

A direct arc betweenL andP denotes the fact that whether
or not the customer demands a higher carrying load of the
airplane will impact the likelihood of technical problems.
Similarly, an arc fromP to F denotes that technical problems
increases the likelihood of project failure.

Lack of a direct arcs is also a way of expressing knowledge,
notably assertions of (conditional) independence. For instance,
lack of direct arcsL → F andS → F encodes the knowledge
that demands for an increased load and for an increased speed
are independent do not impact project failure directly but only
indirectly, through technical problems. These causal assertions
can be translated into statements of conditional independence:
in this case,F is independent ofL and S given P . In
mathematical notation,

Pr(f |p) = Pr(f |pl) = Pr(f |ps) = Pr(f |ph) = Pr(f |plsh) .

Structural independences, i.e., independences that are ex-
pressed by the structure of the network, are captured by so
called Markov condition, which states that a node (hereF ) is
independent of its non-descendants (hereL, S, andH) given
its parents (hereP ).

Similarly, the absence of arcL → S means that the
demands for an increased load and for an increased speed

are independent. The absence of any links betweenH and the
remainder of the variables means thatH is independent of
the other variables. In fact,H would typically be considered
irrelevant to the problem of project failure and we added it to
the model only for the sake of presentation.

These independence properties imply that

Pr(l, s, p, h, f) = Pr(l) Pr(s) Pr(h) Pr(p|l, s) Pr(f |p) ,

i.e., that the joint probability distribution over the graph nodes
can be factored into the product of the conditional probabilities
of each node given its parents in the graph. Please note that
this expression is just an instance of Equation 1.

The assignment of values to observed variables is usually
called evidence. The most important type of reasoning in a
probabilistic system based on Bayesian networks is known
as belief updatingor evidence propagation, which amounts
to computing the probability distribution over the variables
of interest given the evidence. In the example model of
Figure 1, the variable of interest could beF and the focus
of computation could be the posterior probability distribution
overF given the observed values ofL andS, i.e.,Pr(f |l, s).

In addition to computing the effect of observing evidence,
when Bayesian networks are causal, they can be used to
predict the effect of external manipulation. One approach to
manipulation is spelled out by so calledmanipulation theorem
[4] that asserts that to compute the effect of manipulating
a variable in a model, we need to invalidate its conditional
probability distribution and then compute posterior belief
over such mutilated network. In the simplest case of perfect
manipulation, i.e., one that fixes the value of the variable,this
amounts to cutting off all its incoming arcs. Cases where the
“arc cutting” fails to model what happens in the system were
studied in, for example, [5], [6].

The hardest problem with Bayesian networks, commonly
perceived to be the bottleneck in their practical application, is
model construction. While building the structure of a Bayesian
network is perceived doable, obtaining large quantities of
numbers to parameterize them is hard [7]. These, stored as
conditional probability tables (CPTs) inside each of the nodes
of the graph, grow exponentially in the number of parents of
the node. Because nodes with more than 10 parents are not
uncommon, this may mean huge quantities of numbers.

One way of handling this problem, directly relevant to
the approach taken in this paper is introduction of so called
“canonical models” and especially their subset, the Inde-
pendence of Causal Influences (ICI) models (see [8] for a
comprehensive review of the existing ICI models). ICI nodes
provide a solution to the problem of quantification of Bayesian
networks by assuming that parent variables cause the effect
independently of each other. The benefit of this assumption is
such that the number of required parameters is linear, rather
than exponential, in the number of parent variables. The next
section discusses the DEMORGAN model, which forms the
foundations for the basic building block of QGENIE.
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III. T HE DEMORGAN GATE

Of interest in a system like QGENIE are such ICI models
that are capable of modeling real-world interactions among
variables in models. Such interactions may be of a variety
of types, although as a minimum one has to be able to
model opposing influences, i.e., combinations of influences
that increase, and decrease the posterior probability of the
child variable. This is important because in practice we always
deal with factors that have positive and negative influences.
The same variable may have a positive influence on one
variable and a negative influence on another. In implementing
QGENIE, we used two interaction models: the CAST gate
[9] and the DEMORGAN gate [10]. We believe that the CAST
gate is semantically less clear than the DEMORGAN gate and it
causes problems with knowledge elicitation from experts. We
have implemented it in QGENIE for the sake of completeness
and compatibility with existing models and software. We will
focus in this paper on the DEMORGAN gate and refer the
interested readers to the paper by Chang [9]. In order to create
a CAST gate in QGENIE, please hold the SHIFT key when
clicking on the graph window when creating a node.

The DEMORGAN gate is used to model the interaction
between a variable and its direct causes (parents of the variable
in the directed graph). It allows to specify this interaction in
terms of a single number per cause-effect link. There are four
fundamental types of cause-effect interactions:Cause, Barrier,
Requirement, and Inhibitor.

A. Cause

A cause is a parent that has a positive influence on the child.
Please note that this influence does not need to be perfect. For
example, smoking is generally believed to be a causal factor
in lung cancer. Yet, incidence of lung cancer among smokers,
while much larger than incidence of lung cancer among non-
smokers, is still within a few percent. Hence, the conditional
probability of lung cancer given that a person is a smoker is
still fairly low.

B. Barrier

A barrier is a parent that decreases the probability of a
child. For example, regular exercise decreases the probability
of heart disease. While it is a well established factor with
a negative influence on heart disease, it is unable by itself
to prevent heart disease. One way of looking at a barrier is
that it is dual to a cause: Absence of the barrier event is a
causal factor for the child. One might go around the very
existence of barriers by using negated versions of the variables
that represent them. In the example above, one might define
a variable “Lack of regular exercise,” which would behave
as a cause of the variable “Heart disease.” This, however,
might become cumbersome if “Regular exercise” participated
in other interactions in a model. It might happen that it is a
parent of both “Heart disease” and “Good physical shape.”
Because “Regular exercise” decreases the probability of one
and increases the probability of the other, barrier, which is a
negated cause, is a useful modeling construct.

C. Requirement

A requirement is a parent that is required for the child to
be present. There are perfect requirements, such as being a
female is a requirement for being pregnant but there are also
requirements that are in practice not completely necessary. For
example, a sexual intercourse is generally believed to be a
requirement for pregnancy, but it is not a strict requirement,
as pregnancy may be also caused by artificial insemination.

D. Inhibitor

An inhibitor is a parent that prevents the child from hap-
pening. For example, rain may inhibit wild land fire. Like in
the other types of interactions, the parent may be imperfect
in inhibiting the occurrence of the child. Fire may start even
if there is rain. Similarly to the relationship between causes
and barriers, inhibitors are dual to requirements: Absenceof
an inhibitor event is a requirement for the child. One might
go around the very existence of inhibitors by using negated
versions of the variables that represent them. In the example
above, one might define a variable “No rain,” which would
behave as a requirement for the variable “Wild land fire.” This,
however, might become cumbersome if “Rain” participated in
other interactions in a model. It might happen that it is a parent
of both “Wild land fire” and “Good crop.” Because “Rain” is
an inhibitor for the former and a requirement for the latter,
inhibitor, which is a negated requirement, is a useful modeling
construct.

In deterministic terms, the four types of causes and an effect
interact with their effect through the following logical formula:

y = (c1 ∨ c2 ∨ b1 ∨ b2) ∧ n1 ∧ n2 ∧ i1 ∧ i2 ,

where:

• cs stand forCauses
• bs stand forBarriers
• ns stand for necessary conditions (Requirements)
• is stand forInhibitors

For the effect,y, to happen, allns need to be present (one of
them absent can bring down the effect) and all is have to be
absent (one of them present can bring down the effect). Any
c or b can causey but bs work through their absent state, i.e.,
their absence can affecty. bs are just negatedcs andis are
just negatedns.

E. Parameter Elicitation

Of essence to model builders are the questions that are
asked of an expert when eliciting the parameter for each link
type. These questions have to be clear so as to obtain reliable
parameterizations.

It is important to realize that the DEMORGAN model is an
ICI model. This means in practice that the parents influence the
child independently of each other. Influence of each parent can
be specified in separation from the influences of the remaining
parents. It is assumed that each remaining parent is in its
“distinguished state.” The distinguished state is the state in
which the parent has no effect on the child. Because the effects
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of the four types of parents are different, their distinguished
states are also different.

1) Cause:The distinguished state of a cause is the state in
which the cause has no effect on the child. For example, “not
being a smoker” has no effect on “lung cancer” in the example
introduced above. “Not being a smoker” is the distinguished
state in this interaction. So is “having no cancer.”

2) Barrier: The distinguished state of a barrier is also
the state in which the cause has no effect on the child. For
example, “exercise” may be thought as not influencing the risk
of “heart disease.” “Exercise” is the distinguished state in this
interaction. So is “no heart disease” in the child node.

3) Requirement:The distinguished state of a requirement
is the state that is necessary for the effect to take place at all.
For example, “being a female” is a requirement for becoming
pregnant and it is the distinguished state in this interaction.
“No pregnancy” is the distinguished state of the child node.

4) Inhibitor: The distinguished state of an inhibitor is the
state that has no effect on the child, i.e., the inhibiting factor
being absent. For example, “rain” is an inhibitor of wild land
fire. Its distinguished state is “rain,” in which case the firemay
not happen.

Now, for each type of interaction, the parameter associated
with the causal link from a parentpi corresponds to the
probability of the effecte happening if all parents are in their
distinguished states (i.e., not acting upone and pi is not in
its distinguished state. There is also an additional parameter,
called “leak” which expresses the probability of the effect
given that all parents are in their distinguished states.

F. Example

Consider the following network based on the DEMORGAN

gate with one cause (Fire Spreads Quickly), one barrier (Fire
Escapes Are Accessible), one requirement (People Are Still In
the Building), and one inhibitor (Fire Is Quickly Controlled):

Fig. 2. An example of DEMORGAN gate

1) The “leak” parameter: In order to elicit the leak pa-
rameter (0.4 in Figure 2), the knowledge engineer has to ask
the following question:What is the probability of casualties
if the fire does not spread quickly, fire escapes are not
accessible, people are still in the building, and fire is not
quickly controlled? Please note that this probability can be
due to other, unmodeled causes.

2) Cause: In order to elicit the strength of the influence
of the nodeFire Spreads Quicklyon There Are Casualties
(0.33 in Figure 2), the knowledge engineer has to ask the
following question:What is the probability of casualties if the
fire spreads quickly, fire escapes are not accessible, peopleare
still in the building, fire is not quickly controlled, and no other
unmodeled causal factors are present?

3) Barrier: In order to elicit the strength of the influence of
the nodeFire Escapes Are Accessibleon There Are Casualties
(0.66 in Figure 2), the knowledge engineer has to ask the
following question:What is the probability of casualties if the
fire does not spread quickly, fire escapes are not accessible,
people are still in the building, fire is not quickly controlled,
and no other unmodeled causal factors are present?

4) Requirement: In order to elicit the strength of the
influence of the nodePeople Are Still In the Buildingon There
Are Casualties(0.88 in Figure 2), the knowledge engineer
has to ask the following question:What is the probability of
casualties if the fire does not spread quickly, fire escapes are
not accessible, there are no people in the building, fire is not
quickly controlled, and no other unmodeled causal factors are
present?

5) Inhibitor: In order to elicit the strength of the influence
of the nodeFire Is Quickly ControlledonThere Are Casualties
(0.75 in Figure 2), the knowledge engineer has to ask the
following question:What is the probability of casualties if the
fire does not spread quickly, fire escapes are accessible, there
are people in the building, fire is quickly controlled, and no
other unmodeled causal factors are present?

Each of the above questions can be adjusted to the needs
of particular context, i.e., things can be rephrased or omitted
if they do not make sense.

IV. M ODEL BUILDING WITH QGENIE

Model building with QGENIE consists of building the
structure and subsequently estimating the model parameters.

All QGENIE variables are binary and should refer to some
proposition. The truth of this proposition will be the subject
of inference in QGENIE. It is a good heuristic to think of
these propositions as desirable and undesirable. When working
with the model, their posterior probability will be displayed
by a color. Typically, one assigns green color to desirable
propositions and red color to undesirable ones. Red has been
found to draw user’s attention and we advise that it be used to
undesirable propositions. QGENIE allows its user to define a
node coloring scheme. When defining this scheme, it is a good
idea to follow the meaning of the majority of nodes. Single
nodes can be designated as having the reverse meaning and
the coloring scheme will be reversed for them.

It is best to assign variable names that are meaningful
and self-explanatory. Please note that QGENIE does not put
any limitations on the length of the names. The program
also allows for placing groups of nodes into submodels. We
advise to make a generous use of submodels in case your
models become larger than, say 50 variables. A large number



MAREK J. DRUŻDŻEL: RAPID MODELING AND ANALYSIS 105

of variables may not fit on the screen and may make the
interaction with the model cumbersome.

Interactions among variables are defined by means of in-
fluence arcs. These are drawn by clicking the mouse on the
parent node and dragging and dropping it onto the child node.
Figure 3 show a screen shot of this process. Please note that
QGENIE prompts the user to assign the arc one of the four
types of arcs defined by the DEMORGAN gate. Clicking on
one of the four types defines the arc as being of that type.

Fig. 3. Drawing an arc in a QGENIE model

Model parameters in QGENIE are defined by double-
clicking on a node or an influence arc. This pops up a slider
that can be used to enter the numerical parameter, as defined
in Section III. Figure 4 shows a screen shot of this process.
The numerical value in the slider can be chosen by clicking
a corresponding section of the slider or by moving the slider
by means of arrow keys. Slider invoked by double-clicking a

Fig. 4. Entering a numerical parameter value in QGENIE by means
of a slider

node corresponds to the “leak value” (or the prior probability
of the proposition in case the node has no parents) while a
slider associated with an arc corresponds to the influence of
the parent on the child through that arc. The meaning of each
of the parameters was explained in Section III.

V. STATIC MODELS

The most basic type of models created in QGENIE are static
models. Static models can be viewed as qualitative abstractions
of Bayesian networks. Figure 5 shows a simple static network
modeling issues related to a project under consideration byan
airplane manufacturer. Colors of nodes express the posterior
probabilities of the propositions that they represent. “What
if” questions are asked by double-clicking a node or an arc
and modifying the value of the parameter. After a short delay
(introduced on purpose), QGENIE calculates the new posterior
probabilities and the colors that they correspond to.

Fig. 5. An example static model

VI. COMPUTATIONAL SUPPORT FORTMOST EFFECTIVE

ACTIONS

It is of interest to a user which propositions can be best
manipulated in order to affect a specified node most. To
this effect, QGENIE allows for specifying aFocus node,
denoted by a small target icon on the graph. There is a
special dialog window (Figure 6) in which QGENIE lists all
possible manipulations (every node can be designated to be
observable or manipulable) along with the rough value of this
manipulation in terms of the magnitude of the expected change
in the focus variable. This value is essentially the cross-entropy
between the focus variable and the node in question.

Fig. 6. Value of manipulating various pressure points

VII. T EMPORAL MODELS

QGENIE extends static models into temporal domains. A
temporal model allows for tracing the development of a system
over time. Figure 7 shows a simple model for a manufacturer,
who is brainstorming whether much attempt should be made
to increase the quality of a newly launched product. The
model looks 10 time steps ahead. These can be viewed as
months or years. An additional window allows for viewing a
plot of the numerical posterior probabilities. Figures 8 and 9
show this plot for high quality of product and low quality
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Fig. 7. A dynamic model analyzing the influence of the quality of
new product on business

of product respectively. Please note the development of the
posterior probabilities in each case.

Fig. 8. A dynamic model analyzing the influence of the quality of
new product on business: Development of key economic indicators
when the quality of the new product is high

Fig. 9. A dynamic model analyzing the influence of the quality of
new product on business: Development of key economic indicators
when the quality of the new product is low

VIII. A PPLICATIONS OFQGENIE

A. Rapid Prototyping

Even if the goal is to build a fully quantified Bayesian
network, QGENIE is extremely valuable as an environment
for rapid prototyping. Models developed withinQGENIE can
be exported to GENIE for further elaboration and parameter
refinement.

B. Modeling in “Soft Sciences”

As late Herb Simon convincingly argued [11], “soft sci-
ences” are really hard sciences. Models of social sciences
systems are really hard to build, because very often little
is known about them. Still, there is ample evidence from
behavioral decision theory (e.g., [12]) that even simplest
mathematical models typically perform better than unaided
human intuition.

QGENIE has been applied to projects that are truly hard to
tackle with formal methods. One example that we are aware
of is an application in modeling security in Costa Rican cities
[18]. Figure 10 shows a simple QGENIE model used in the
study.

Fig. 10. A QGENIE model for city security in Costa Rica

C. Group Decision Making

The original inspiration for QGENIE was provided by our
collaboration with policy analysts at the United States Naval
War College, Bradd Hayes and Theo Gemelas. A model
developed there (see Figure 11, the foundations for this model
were developed in [13], Figure 5-1, page 101) consisted
of 99 variables organized into 12 submodels. The goal of
this model was to bring together experts from a variety of
areas relevant to stability of a region (in this case, the Black
Sea region). The experts know some aspect of the problem
(e.g., economy, culture, or energy) but not everything. They
may help with building various parts of the model. Asking
“what if” questions of the complete model allows each of
the individual experts to verify their intuitions but also see
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how manipulations propagate through those submodels that
they did not know much about. A model of this complexity
cannot typically be understood completely by a single expert.
Presence of multiple experts in a room, each of whom is
familiar with a parts of the model, usually helps with verifying
model assumptions and obtaining insight into the problem and
consequences of the resulting decisions.

Fig. 11. A model for stability of Black Sea region

IX. RELATED WORK

A modeling environment similar to that of QGENIE was
developed by SAIC. The program, available at SAIC’s web
site (http://www.inet.saic.com/), is based on the
CAusal STrength (CAST) model [9], which is an extension of
BNs that is able to model simultaneous opposing influences.
Although very popular, particularly in government and military
applications, a major weakness of the CAST model is its
unclear parametrization. Parents can influence a child variable
in both of their states and do not have a distinguished state,
hence, are not amechanistic. This, we believe is a major
weakness of the CAST model. We have encountered puzzled
looks on the part of our experts when we tried to elicit
CAST parameters, especially the “baseline” probability, which
may be viewed as “distinguished belief.” A detailed analysis
of the CAST parameterization has shown that it can be
neither interpreted as the prior probability, nor it is the leak
probability.

X. CONCLUSIONS

A question that one might ask is whether models created
by means of QGENIE are expressive enough to model real
systems. We believe that as long as building a model on propo-
sitional logic is sufficient, the answer should be affirmative.
The DEMORGAN model is able to model any logical interac-
tion between inputs, when their influences on the output are

independent, i.e., when they are ICI. In particular, DEMOR-
GAN gate can handle a combination of positive and negative
influences, while preserving both probabilistic soundnessand
the amechanistic property, critical in probability elicitation.
Each parameter for the DEMORGAN model can be elicited
by asking a simple question in the formPr(Y |X). Probabilis-
tic soundness ensures that it is mathematically correct, and
propositional logic, that lies at its foundations, ensuresthat
our model is meaningful and intuitive for humans.

An important question that arises from this work is whether
an “order of magnitude” system will be reliable enough in
terms of its precision. While this is a good question that
will have to be probed in real applications, there are good
reasons for believing that precision of numerical parameters
in a Bayesian networks is not critical. Two series of studies, in-
troducing random noise with and without bias, and progressive
rounding of parameters led to minimal degradation in diagnos-
tic quality of real diagnostic models [14], [15], [16], [17].

We have embedded the DEMORGAN model in SMILE and
QGENIE, a qualitative interface to SMILE, our probabilistic
reasoning engine, and made it available to the community
(http://genie.sis.pitt.edu/). QGENIE is useful in
rapid modeling of problems involving propositional variables.
We are currently working on extending the DEMORGAN

model to multi-valued variables along the lines of the Noisy-
MAX and Noisy-MIN gates.

XI. CONCLUSION

QGENIE is a specialized interface to GENIE, a decision
modeling environment developed by the Decision Systems
Laboratory, University of Pittsburgh. QGENIE allows for rapid
construction of graphical models in which all variables are
propositional, almost no numerical probabilities are displayed
at the user interface, and degrees of truth of propositions
are displayed by means of node colors. Its underlying De-
Morgan gate formalism allows for quick quantification of the
models. All numerical parameters, such as prior probability
distributions over variables and strengths of influences between
variables, are entered by means of graphical sliders. While
the underlying computations are all numerical and based
on Bayesian updating, QGENIE makes the impression of a
qualitative, “order of magnitude” type system that aids rapid
model building and an approximate analysis of systems. There
is ample anecdotal and empirical evidence that precision of
numbers is typically not that important.

There are several applications of QGENIE: rapid prototyp-
ing and later elaboration on the model, modeling of vague and
difficult to quantify domains, and group decision making ses-
sions. Interested readers can download and explore QGENIE

at http://genie.sis.pitt.edu/.
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