
Proceedings of the International Multiconference on
Computer Science and Information Technology pp. 515–521

ISBN 978-83-60810-22-4
ISSN 1896-7094

Passive Construction of Diagnostic Decision
Models: An Empirical Evaluation

Parot Ratnapinda
Decision Systems Laboratory
School of Information Science

University of Pittsburgh
Pittsburgh, PA 15260
Email: par34@pitt.edu

Marek J. Druzdzel
Decision Systems Laboratory, School of Information Sciences

and Intelligent Systems Program,
University of Pittsburgh, Pittsburgh, PA 15260, USA

Faculty of Computer Science, Białystok Technical University,
Wiejska 45A, 15-351 Białystok, Poland

Abstract—Bayesian networks have proven their value in solv-
ing complex diagnostic problems. The main bottleneck in ap-
plying Bayesian networks to diagnosis is model construction.
In our earlier work [1], we proposed passive construction of
diagnostic models based on observation of diagnosticians solving
diagnostic cases. This idea has never been tested in practice. In
this paper, we describe an experiment that tests an interactive
prototype system calledMARILYN on implementation of a system
based on passive construction of diagnostic model, by inputting
four hundred help desk cases collected at the University of
Pittsburgh campus computing lab. We show that while the
system’s diagnostic accuracy continues to increase with the
number of cases, it reaches very reasonable levels after merely
tens of cases.

I. I NTRODUCTION

BAYESIAN networks (BN) are convenient tools for build-
ing models in various domains, including diagnosis.

Even though the existing BN models have proven useful in
diagnosing complex problems [2], they have not yet been
widely adopted in practice. One of the main reasons is that
constructing BN models is a complex and time consuming
task. Building a BN for a domain of application involves
three tasks: (1) identifying important variables, (2) identifying
relationships among these variables and (3) obtaining prob-
abilities [3]. If diagnostic models are complex such as the
diagnosis of liver disordersHEPAR [4], it is not uncommon
for this task to take hundreds of hours per model.

We built a prototype of a system that we called MAR-
ILYN [5] that builds diagnostic models by observing user
diagnostic work-flow data. This idea of such a system orig-
inates from our collaborators at Intel Research, John Mark
Agosta and Tom Gardos, who are working on an industrial
version of the system [1]. MARILYN was tested informally
but never before in a real diagnostic environment. In this
paper, we present an evaluation of MARILYN diagnostic model
construction by means of four hundred help desk cases at a
University of Pittsburgh campus computing lab.

The remainder of this paper is structured as follows. Sec-
tion II is an introduction to Bayesian networks. Section III
describes MARILYN . Finally, Section IV reports the results of
an empirical evaluation of MARILYN .

Fig. 1. An example Bayesian network modeling computer hardware problems

II. BAYESIAN NETWORKS

Bayesian Networks [6] are probabilistic models which con-
sist of a qualitative and a quantitative part. The qualitative part
are acyclic directed graphs in which nodes represent variables
and arcs represent probabilistic relations among them. The
quantitative part represents the joint probability distributions
over its variables. Every variable has a conditional probability
table (CPT) representing the probabilities of each state given
the states of its parent variables. If a variable does not have any
parents in the graph, the CPT represents the prior probability
distribution over the variable. The joint probability distribution
over a set of variables{x1, . . . , xn} can be obtained by taking
the product of all of these prior and conditional probability
distributions:

Pr(x1, . . . , xn) =
n∏

i=1

Pr(xi|Pa(xi)) . (1)

Figure 1 shows a simple Bayesian network modeling two
computer hardware problems. The variables in this model are:
Computer is old, Damaged CPU, Damaged VGA card, Hard
disk LED does not workandMonitor LED never goes to steady
green. For simplicity, we took each of these variables to be
binary. For example, theMonitor LED never goes to steady
greennode has two outcomestrue and false.
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TABLE I
AN EXAMPLE OF CONDITIONAL PROBABILITY TABLE OF THE Monitor LED

never goes to steady greenNODE

A directed arc betweenDamaged CPUandHard disk LED
does not workindicates thatDamaged CPUwill affect the
likelihood of Hard disk LED does not work. Similarly, an arc
from Computer is oldto Damaged VGA cardindicates that
computer age influences the likelihood of a damaged VGA
card.

The most important type of reasoning in Bayesian networks
is known as belief updating and amounts to computing the
probability distribution over variables of interest giventhe ev-
idence. This makes Bayesian networks suitable for diagnosis.
For example, in the model of Figure 1, the variable of interest
could be theDamaged CPUnode and the Bayesian networks
could compute the posterior probability distribution overthis
node given the observed values ofComputer is old, Hard disk
LED does not work, and Monitor LED never goes to steady
green. Once the network updates the probability values, these
can be used to make a diagnostic decision.

Bayesian networks have one fundamental problem: The size
of their CPTs grows exponentially with the number of parents
(and so, it is2n for n binary parents). Table I shows the CPT
for the nodeMonitor LED never goes to steady green. The
node has three parents and the size of the CPT is23 = 8.

III. M ARILYN

Passive model building is based on the idea that past cases
solved by diagnosticians can provide considerable information
about the domain. Every case, passively observed by the
system can add information to the model and, in the long
run, construct a usable model.

MARILYN is a web-based application that implements this
idea. It is written in C# and ASP.NET, using the Microsoft
SQL database to store data and utilizes a Bayesian reason-
ing engine based on SMILE running under the Microsoft
Windows Vista Server. MARILYN is available at the Decision
Systems Laboratory’s web site at the following location:
http://barcelona.exp.sis.pitt.edu/.

A. Model Structure

MARILYN is based on the BN3M model [7], which dis-
tinguishes three fundamental types of variables in diagnostic
models.

• Fault variables representing the causes of the problem
that we try to diagnose, which can be, for example, device
malfunctions.

• Observationvariables, which will be observable if the de-
vice is in a faulty state (this includes results of diagnostic
tests).

Fig. 2. An example of three-level Bayesian Network diagnostic model
structure

• Context informationvariables are the background, history,
or other information known by the technician performing
the diagnosis that may influence the risk of afault and,
therefore, are relevant to the diagnosis.

The model structure consists of three levels, with thecontext
information variables on the top, thefault variables in the
middle, and theobservationvariables at the bottom. We call
this structure: 3-level Bayesian network using DEMORGAN

gate (BN3D). Figure 2 shows an example of this structure. We
have two context variables:User is registered student, which
influencesUser has no print quota, andComputer lab is busy,
which influences the faultsPrinter is backing upandPrinter is
out of paper. If the user told us that he or she has not received
his/her job yet, we can set the observation of the nodeNo print
job out. We can observeTray 5 and 6 are emptyby checking
the printer paper tray.

B. DEMORGAN Gate

Independence of Causal Influences (ICI) models [8] provide
a solution to the exponential growth of the CPT parameter
problem, mentioned in Section II, by assuming that parent
variables cause the effect independently of each other. The
advantage of this assumption is that the number of parameters
becomes linear, rather than exponential, in the number of
parents.

MARILYN is based on the ICI model called DEMORGAN

gate [9]. DEMORGAN gate combines Noisy-OR and Noisy-
AND models and is capable of modeling opposing influences.

The DEMORGAN gate models four fundamental types of
cause-effect interactions between an individual parent X and
a child node Y.

• Cause: X is a causal factor for Y.
• Barrier: X is a negated causal factor for Y.
• Requirement: X is required for Y to be present.
• Inhibitor: X inhibits Y, i.e., its presence prevents Y.



PAROT RATNAPINDA ET. AL: PASSIVE CONSTRUCTION OF DIAGNOSTIC DECISION MODELS 517

Fig. 3. MARILYN web interface for adding observation

a) Causes and barriers:are modeled by the Noisy-OR
gate [10], which is a noisy version of the following Boolean
formula

Y = X1 ∨ X2 ∨ . . . ∨ Xm , (2)

whereXs stand for causes or barriers.
b) Requirements and inhibitors:The presence of an

inhibitor Ui is sufficient to cancel the child effect. We can
express the effect that a set of inhibiting influences have on
Y by the following Boolean function

Y ≡ U1 ∨ U2 ∨ . . . ∨ Un , (3)

whereUs stand for requirements or inhibitors.
MARILYN is currently based only on promoting influences.

Although, we plan to add other models of interaction in the
future.

C. Entering Data

MARILYN follows a diagnostician work-flow. There are
three phases of a diagnostic session: observation, context
information, and diagnosis. These correspond to different
screens (1)add observation, (2) add context information, and
(3) add a fault (problem). Figure 3 shows theadd Observation
screen. TheSuggestedarea, located in the left bottom corner,
gives a list of suggested information related to the current
screen ranked from the most to the least probable. The user
will use theBack and theContinuebuttons to move through
these three steps. MARILYN allows for working with other
domains by using theChange the domainicon bar.

Suppose, a lab user has told a lab consultant that she has not
received her print job. This user is a registered student, who
tried to print a PDF document from the UniversityCourseWeb
web site.

In the first step, the lab consultant, who will work with
a new observation window, in which she can input some
related observations to the lab user problems which isNo

Fig. 4. Add observation panels

Fig. 5. Add context information panels

print job out in the text box in theEnter New Observations
(1 of 3) panel shown in Figure 4. TheExisting Observations
panel shows the input so far and allows the lab consultant
also to delete observations. Once she has finished entering
observations, the lab consultant can click thecontinuebutton
on the top right corner shown in Figure 3 to proceed onto the
context information screen.

In the second step, the lab consultant may input history
or information of the problems. She may check the lab user
printing balance to see if the lab user has enough balance to
print. With printing problems, the lab consultant will browse
the print queue server calledPharos to check the history of
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Fig. 6. Add diagnosis or fault panels

the lab user print jobs. After gathering all related information,
she will input three variables:User balance is not zero, No
print job in Pharos systemandPrint PDF from CouseWebin
any order in the text box in theContext (2 of 3)panel shown
in Figure 5. Once entering context information is done, the
lab consultant can clickcontinue in the top right corner to
continue onto selecting possible causes screen.

In the third step, the user enters the final diagnosis for
the case at hand. She can select the diagnoses which were
suggested by the MARILYN model or enter a new diagnos-
tic. MARILYN diagnostic window suggests a list of possible
diagnoses ranked by their posterior probabilities, as implied
by the underlying model (Figure 6). In this example, the lab
consultant worked with the network that is based on twenty
five computing lab help desk cases, and the system was able
to give a correct suggestion to the lab consultant. The first
suggestion wasDocument can not print without saving. This
refers to a specific requirement of the computing lab that the
lab users can not print some documents directly from the web
site without saving them first to local space on the disk. Next,
the lab consultant selects the causes by clicking on check
box in theDiagnosis (3 of 3) paneland confirms the session
by clicking the Confirm Diagnosisbutton in order to save
the session in the database. The lab consultant can cancel
the session by clicking on theCancel Sessionbutton if she
does not want to record the diagnosis session. However, if
the causes do not appear on thecauseslist, the lab consultant
can type in a text field and then click theAdd Additional
Causesbutton, the new causes will be added to thecauses
list. After submitting, the lab consultant can export a built
model in .xdsl format file which can be downloaded from
a link on the last page. The .xdsl file needs to be opened
in a program called QGENIE developed by the Decision
System Laboratory, University of Pittsburgh and availableat
http://genie.sis.pitt.edu/.

D. Storing and Loading Bayesian Networks

The database consists of four tables:arcs, diagnosis,
domainsand nodes, shown in Figure 7. Thearcs table with
seven fields (id, diagnosisid, parentid, childid, type, weight,
anddomainid) stores the information about casual interactions
among variables. Thediagnosis table with three fields (id,
date, and domainid) stores the number of diagnosis session
that have been entered in the system. Thedomains table
with two fields (id, andname) stores the diagnostic domains.

Fig. 7. Database storing diagnostic information in MARILYN

Fig. 8. Problem distribution of four hundred help desk cases

Finally, the nodes table with five fields (id, name, type,
weight, and domainid) stores every variable that have been
entered in any step.

In our example, we worked with the default domain called
CSSDwhich has an id value of 1. The lab consultant entered
one observation, three context information, and one fault.
These were stored in thenodes table. Each of them will
have an unique id and name. There are three types of nodes
indicated by three values: 1 is anobservationnode, 2 is a
context informationnode, and 3 is afault node. Weight values
for each node depend on the number of diagnostic cases that
involve that particular node. Every time we enter MARILYN ,
the diagnosis id will be added to thediagnosistable. If we
enter nothing or cancel the session, the diagnosis id will still be
added. However, this will have no effect on the weight calcu-
lation, because without confirming diagnosis, no information
will be saved in the database. Once we confirm the diagnosis,
MARILYN records and writes all information to the database.

When a user starts MARILYN , the system constructs a
Bayesian network from the existing database. First, the algo-
rithm finds all nodes that contain at least one parent. Second,
for each child, the algorithm finds all the arcs to be created
according to the number of parents that refer to the child
node. Finally, the weight and probabilities are calculatedbased
on the path, the value of that path, and the total number of
diagnostic sessions in which the path occurred.

IV. EMPIRICAL EVALUATION

A. Experiment Data

The first author has been working as a campus computing
lab consultant between fifteen and twenty hours per week
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TABLE II
AN EXAMPLE OF CAMPUS COMPUTING LAB LOG

in the fall of 2008 and the spring of 2009. This has offered
an excellent opportunity to collect real help desk data. Each
user query resulted in a diagnostic session that we recorded
thoroughly. University of Pittsburgh has seven computing
labs that operate twenty four hours a day, seven days a week.
Campus computing lab users consist of staff, faculty, alumni,
visiting scholars, and students. The campus computing lab
help desk problems include, but are not limited to, printing
job problems, printer troubleshooting, and other diagnostic
problems. In each case, the data is collected in three steps.
First, the lab consultant collects the observation of the
problem by asking or receiving data from a lab user. Second,
the lab consultant records context information. This includes
the lab user status findings from the print jobPharosserver
log, and additional questions asked the lab user. Third, thelab
consultant investigates the fault according to the observation
and context. Once all data had been received, then we recorded
in the computing lab log notebook and later organized in the
Microsoft Office Excel work book shown in Table II. The data
consist of three types of variables: observation data, context
information, and final diagnosis. In this campus computing lab
help desk domain, the collected data indicate that there must
be at least one observation and only one problem; however
the context information may be not available for all cases.
Therefore, data range from one to two observations, context
information range from zero to three and only one problem
occurs. Among the four hundred cases, there are a total of 17
different observations, 12 different context information, and
21 different problems. We show the distribution of frequency
for the four-hundred cases in Figure 8. This figure shows
that the distribution of problems is skewed with the top five
problems covering more than 70% of the cases. We suspect
that skewness of the problem set is quite typical of most
diagnostic domains. Essentially, some problems are typical
and occur ofter with others occurring only sporadically.

B. Experimental Design

We entered four-hundred cases, following the order of the
computing lab log into MARILYN and recorded the diagnostic
windows results. We sorted the results from the most to the
lease likely. The default size of the diagnostic windows is
five suggestions. However, we only choose the first three
suggestions by MARILYN to be used for comparing with the
computing lab log. Figure 9 shows the number of different

Fig. 9. The accumulate of the computing lab help desk problems entering
to the MARILYN .

problems covered as a function of the number of cases growth.
In a total of 21 problems in our domain, 13, 15, and 18
problems are covered in the first 50, 100, and 150 cases
respectively. This number assumes that the MARILYN model
should be able to give suggestions for most of the cases after
seeing the first one hundred and fifty cases.

C. Results

Figure 10 shows the Bayesian networks created by MAR-
ILYN after four-hundred cases. Twelvecontext information
nodes are located at the top layer. Twenty oneFault nodes
are located in the middle layer. Sixteenobservationnodes are
located at the bottom layer. The number of parents per child
ranges from one to eight. If the child node has only one parent
node, it indicates that the parent has a strong influence on the
child.

If a child contains many parents, MARILYN distributes a
different weight for each arc. The color of the arcs represents
the strength of influence of the parent on the child node. The
darker the color is, the stronger the influence of the parent.
For example, the observation nodeOnly banner sheet printed
has three fault parent nodes. The model assigns weight for
each arc according to the number of cases that have been
input to MARILYN . Figure 11 shows that from left to right,
the arc weights are 80%, 44% and 5% for the nodesPaper
size not available A4, Paper size not available custom paper,
andPrinter restart, respectively.
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Fig. 10. The four hundred cases BN3D model built by Marilyn.

Fig. 11. An example of weight assigned of a child node with three-parent
nodes

We use the same measure of performance as [11]. We are
interested in MARILYN suggestions that the list of possible
diagnoses contains the correct diagnosis for a small set of
values. We chose awindowof W=1, 2, and 3.

Figure 12 shows the performance of MARILYN (in terms
of percentage accuracy) as a function of the number of cases
that have been entered into the system. With four-hundred
cases, MARILYN reached the accuracy of 83%, 86% and 88%
for W1, W2, and W3 respectively. The result shows that
for the first fifty cases, MARILYN was not too good and
gave an accuracy around 60% for W1, because the system
need to collect enough diagnostic information to be able to
perform well. However, after roughly, 70 cases, MARILYN ’s
performance become very good.

Fig. 12. The graph shows percent of accuracy as a function of the number
of cases

Figure 13 shows MARILYN ’s accuracy as a function of
the number of problems. It looks like there is a direct linear
dependence between the number of problems observed by the
system and its accuracy.

D. Model management

There are two critical practical issues related to MARILYN

model management: (1) dealing with the free text input of the
variables, and (2) model growth [1].

MARILYN allows its users to enter free text, which the pro-
gram interprets as the name of a variable. In our experiment,
we control users input by classifying the information, recorded
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Fig. 13. The graph shows percent of accuracy as a function of the number
of problems

in our computing lab log. Therefore, we do not deal with the
problem of redundant nodes or wrong data. However, if a user
enters redundant nodes or wrong data, it is possible to fix the
model directly in the database in what we call “expert mode.”
For our domains, the number of parameters for each session
was not large. To prevent redundancy and common typos in
the future, we can provide additional drop down lists designed
by domain experts to help a user to understand the parameters
of the domain better.

The second important issue with MARILYN is how the sys-
tem handles the growth of the model structure. Our reasoning
engine SMILE is capable of handling large networks, and
performs Bayesian inferences in a fraction of a second. The
challenge for the algorithm is how to handle the growth of
the number of parents for a single node. We suspect that
MARILYN will perform slower as the number of parent nodes
per node increases. In our experiment, even after four hundred
cases have been entered in the system, this problem was not
noticeable. There were only two nodes that contained the
maximum number of parents per node, which is eight. This
number may not be large enough to degrade the performance
of MARILYN .

V. CONCLUSIONS

MARILYN is a passive diagnostic model construction tool
which is able to give suggestions based on information entered
by diagnosticians. We conducted an experiment to evaluate
MARILYN ’s accuracy, testing the model by means of four-
hundred cases of computing lab help desk data. This is a fairly
realistic and popular application, similar to the problemsfaced
by most call centers. The results of our experiment showed
that MARILYN was capable of giving a very reasonable sug-
gestion once the system has acquired enough information. This
occurred after roughly 70 cases. Even though our experiment
offers just one data point that addresses the problem and this
type of systems need to be tested more in practice. We believe

that the result is very promising, and passive model building
approach will be useful in the future for various diagnosis
domains.

We plan to improve and refine the MARILYN model building
algorithm and probability calculation for better accuracy. With
this data set, we can compare this result with other Bayesian
network learning algorithms such as Naive Bayes. We also
plan to adjust the web user interface, which is the crucial part
of the model, and compare the performance of the learned
model against the performance of a real domain user.
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