
A comprehensive and comparative analysis of the patching behavior
of open source and closed source software vendors

Guido Schryen
RWTH Aachen University, Institute of Business Information Systems, Germany

schryen@gmx.net

Abstract

While many theoretical arguments against or in favor of open source and closed source

software development have been presented, the empirical basis for the assessment of

arguments is still weak. Addressing this research gap, this paper presents a comprehensive

empirical investigation of the patching behavior of software vendors/communities of widely

deployed open source and closed source software packages, including operating systems,

database systems, web browsers, email clients, and office systems. As the value of any

empirical study relies on the quality of data available, this paper also discusses in detail data

issues, explains to what extent the empirical analysis can be based on vulnerability data

contained in the NIST National Vulnerability Database, and shows how data on vulnerability

patches was collected by the author to support this study. The results of the analysis suggest

that it is not the particular software development style that determines patching behavior, but

rather the policy of the particular software vendor.

1. Introduction

During the past few decades we have got used to acquiring software by procuring licenses

for a proprietary, or binary-only, immaterial object. We have come to regard software as a

good we have to pay for just as we would pay for material objects. However, in more recent

years, this widely cultivated habit has begun to be accompanied by a software model, which

is characterized by software that comes with a compilable source code. This source code is

often free of charge and may be even modified or redistributed. The software type is referred

to by the term “open source software” (OSS).

The application fields of OSS are manifold. Internet programs, such as the mail transfer

agent Sendmail, the Web server Apache, the operating system Linux, the database system

MySQL, and the office package OpenOffice are some of the most popular examples. Beyond

these application types, we also find computer games (http://osswin.sourceforge.net/

games.html) and even business applications, such as AvErp, which is a German stock

inventory system for small- and medium-sized businesses (http://www.synerpy.de/), or an

Enterprise Resource Planning (ERP) system that is being built by a group of U.S. universities

and that is being overseen by the Kuali Foundation (http://kuali.org/). OSS has even become

part of the core infrastructure of sophisticated technology companies, such as Amazon,

Google, and Yahoo [1]. Obviously, OSS has arrived in the world of important and critical

information systems that need security protection against attacks. Its increasing availability

and deployment makes it appealing for hackers and others who are interested in exploiting

software vulnerabilities, which become even more dangerous when software is not applied in

a closed context, but interconnected with other systems and the Internet.

While there is consensus about the fact that opening source code to the public increases the

potential number of reviewers, its impact on finding security flaws is controversially debated.

Proponents of OSS stress the strength of the resulting review process [2] and argue in the

sense of Raymond [3] that, “Given enough eyeballs, all bugs are shallow.” (p. 19), while

some opponents follow the argument of Levy [4], who remarks “Sure, the source code is

available. But is anyone reading it?” Viega [5] further doubts the superior effectiveness of the

open source community and argues that (1) most code reviewers do not explicitly look for

vulnerabilities and (2) those who do, are mostly interested in finding those vulnerabilities that

are easy to detect and that bring them high reputation.

While the security discussion is pervaded with “beliefs and guesses”, only few quantitative

models and some empirical studies [6-15] appear in the literature. Most of these empirical

studies investigate one package or few software packages only, and to the best knowledge of

the author no prior study has been conducted to comprehensively study differences between

the patching behavior of open source and closed source software vendors. The reason why

comprehensive empirical studies have been neglected in general is probably much due to the

fact that the collection and analysis of reliable data is still laborious and much manual work is

required. However, empirical research is necessary, as it has the potential to provide insights

in the security of widely deployed information systems, to support researchers in developing

models for security measurement, and to enrich the security discussion with the provision of

facts.

Interestingly, past empirical studies focus on the number of vulnerabilities and neglect to

consider their severities and its‟ impact on vendors‟ patching behavior. However, this

perspective is important as a single highly severe vulnerability that enables attackers to get

root access to a system is usually more crucial than 10 low severe vulnerabilities that only

grant reading access to unauthorized users. Addressing this lack in research, this study

collects comprehensive empirical data and analyzes open and closed source software with

regard to vendors‟ behavior in patching vulnerabilities. Thereby, it extends an earlier study

[14] in two ways: it builds up a new data pool of patching data, which is not available in

publicly accessible databases, and it uses these data to investigate vendors‟ behavior in terms

of which vulnerabilities have been patched.

The remainder of this paper is organized as follows. The following section presents the

background of open source and closed source software. Section 3 proposes a vulnerability

lifecycle model and applies this model to (a) synthesize literature findings on software

vulnerabilities and patches, and (b) to discuss patching activities through a theoretical lens.

Section 4 explains the research methodology of this study, including the selection of

investigated software packages and used data, before Section 5 presents the findings of this

empirical study. Finally, the results are summarized and conclusions are presented.

2. Open and closed source software

Generally, the availability of source code to the public is a precondition for software being

denoted as “open source software”. Beyond this requirement, the Open Source Initiative

(OSI) has defined a set of criteria that software has to comply with [16]. The (open source)

definition (OSD) includes the permission to modify the code and to redistribute it. However,

it does not govern the software development process in terms of who is eligible to modify the

original version. When what is called “bazaar style” by Raymond [3] is in place, any

volunteer can provide source code submissions. Software development is then often based on

informal communication between the coders [17]. In a more closed environment, software is

crafted by individual wizards and the development process is characterized by a relatively

strong control of design and implementation. This style is referred to as “cathedral style” [3].

As the particular development style might have an impact on the security of software, a

detailed discussion of open source security should take this into account.

Several OSD-compliant licenses have come into operation, such as the Apache License,

BSD license, and GNU General Public License (GPL), which is maintained by the Free

Software Foundation (FSF). The FSF provides a definition of “„free software‟ [as] a matter of

liberty, not price.” [18] In contrast to the OSD definition, the FSF definition explicitly focuses

on the option of releasing the improvements to the public, thereby rejecting a strong

supervision of the modification process. More specifically, the definition says: “If you do

publish your changes, you should not be required to notify anyone in particular, or in any

particular way.” Similar to the discussion of what open or free software is, we need to define

what “closed software” is: Software is usually regarded as being “closed”, if the source code

is not available to the public.

The categorization of software and its development process as “open source software

(development)” or “free software (development)” in contrast to “closed source software

(development)” reflects the perspective of developers and specifies the type of development.

Complementarily, one could also adopt the software user‟s point of view by distinguishing

between software that needs to be paid for and software for which no fee applies. The

resulting (two-dimensional) classification scheme is shown in Table 1.

Table 1. Classification of software [19; p. 2018]

 Open Source

(license)

Closed Source

(source code

 not available)

Free of

charge

Linux, Apache web server Adobe Acrobat Reader

Subject to charge MySQL

(dual licensing: GPL/proprietary

license for Enterprise Edition)

Microsoft Windows operating

systems

3. The vulnerability lifecycle

When software is executed in a way different from what the original software

designers intended, this misbehavior is rooted in software bugs. Anderson [20] assumes

the ratio between software bugs and software lines of code (SLOC) to be about 1:35,

i.e. Windows 2000 with its 35 Mio. SLOC would have one million bugs included. When

bugs can be directly used by attackers to gain access to a system or network, they are

termed (information security) “vulnerabilities” by MITRE [21]. Although there are

other definitions of “vulnerabilities” [22;23], the adoption of the MITRE definition is

useful (in a pragmatic, but not necessarily normative sense) for four reasons:

(1) Most empirical studies implicitly use this definition by analyzing “Common

Vulnerability and Exposures (CVE)” entries, which are based on the

understanding of MITRE. CVE names are not only widely used by researchers,

they are also used by information security product/service vendors. Thereby, the

CVE definition has become a “de facto standard”.

(2) The process of accepting a potential software bug as CVE vulnerability is well

documented and the assessment is conducted by security experts [21].

(3) The U.S. National Institute of Standards and Technology (NIST) adopts the

MITRE understanding of vulnerabilities in their National Vulnerability Database

(NVD), which is probably the largest database of security-critical software bugs

and which provides comprehensive CVE vulnerability data feeds for automated

processing.

(4) The definition is precise (http://cve.mitre.org/about/terminology.html):

A vulnerability is a state in a computing system (or set of systems) that either:

• allows an attacker to execute commands as another user

• allows an attacker to access data that is contrary to the specified access

restrictions for that data

• allows an attacker to pose as another entity

• allows an attacker to conduct a denial of service

 It should be noticed that this definition does not exactly match the US-CERT

vulnerability definition, but is closely related: “While the mapping between CVE names

and US-CERT vulnerability IDs are usually pretty close, in some cases multiple

vulnerabilities may map to one CVE name, or vice versa. The CVE group tracks a large

number of security problems, not all of which meet our criteria for being considered a

vulnerability.”[23]

Vulnerabilities and their dynamic behavior can be described with the “vulnerability

life cycle”, which is shown in Figure 1 as a UML statechart diagram. The diagram

provides a process-oriented perspective on a single vulnerability and its patch (for the

consideration of exploits see the study of Frei [8]), integrates states that have been

introduced by Arbaugh et al. [24], and uses a cycle to account for the fact that (the

patching of) vulnerabilities can create new vulnerabilities [24]. The lifecycle starts with

the injection of a vulnerability into software. In principle, a vulnerability can find its

way into software through (a) the intentional behavior of software developers, who

strive for selling or exploiting vulnerabilities, or for harming the employer, or (b)

unintentional behavior, which can be rooted in careless programming or in using

“insecure” development tools. This behavior can be economically rational as companies

often do not have sufficient incentives to avoid vulnerabilities [25]. After some testing,

the software is finally released and the search for vulnerabilities begins for the public

(and potentially continues for the software vendor).

Figure 1. Vulnerability life cycle

The discovery of a vulnerability can be based on coincidental detection or on the active

search of persons with intrinsic motivation (to make software more secure) or with extrinsic

motivation (to get reputation, to gain financial advantage, or “to do their job”). When a

vulnerability is discovered, the question occurs whether it should be published or not. If the

vulnerability is detected by a “black hat”, his or her decision depends on whether s/he aims at

making the vulnerability available to as many other “black hats” as possible and to gain

reputation, or to a closed group of potential attackers, who can exploit the vulnerability

exclusively. If the vulnerability is detected by a “white hat”, including the software vendor, it

is still not clear whether the vulnerability should be published or not, as vulnerability

information is useful for both the good guys, who can provide patches, and the bad guys, who

probably would not have gained knowledge of the vulnerability otherwise. Some researchers

have addressed this question: Rescorla [13] argues against disclosure as he finds the

probability of vulnerability rediscovery being vanishingly small. However, investigating the

operating system OpenBSD, Ozment [15] finds vulnerabilities being correlated regarding

their rediscovery and argues in favour of disclosure. Using game-theoretic models, Arora et

al. [26] and Nizovtsev and Thursby [27] address the question of when software vulnerabilities

should be disclosed and conclude that neither instant disclosure nor non-disclosure is optimal.

Arora et al. [28] use empirical analysis to support their hypothesis, pointing out that the

optimal policy depends upon how quickly vendors provide patches and upon how likely

attackers are to find and exploit vulnerabilities. Choi et al. [29] discuss different disclosure

regimes and conclude that mandatory disclosure improves welfare only when the probability

of attack is high and the expected damage is small. An overview of the classification of

vulnerabilities is provided in Figure 2, which also shows that in this paper only published

vulnerabilities are considered, as no reliable data is available for unpublished vulnerabilities.

Figure 2. Classification of software bugs and vulnerabilities,
source: [14; p. 2]

Once a vulnerability is published, at a first glance it seems obvious that the vendor should

provide a patch as soon as possible. But it can be economically reasonable for the vendor to

not provide a patch, when it is the customers who suffer most cost of failure and when

competitors behave alike. Arora et al. [30] analyze the timing of patch release and find that

both the competition effect and disclosure threat effect hasten patch release, with competition

having an even stronger effect. Cavusoglu et al. [31] apply game theory to compare liability

and cost-sharing as mechanisms for incentivizing vendors to patch their software and

conclude that liability helps where vendors release less often than optimal, while cost-sharing

helps where they release more often.

If the vulnerability is not published (and detected by “white hats” other than the vendor),

again, the question arises of whether the vendor should provide a patch or not. While the

aforementioned economic arguments still hold, the decision to not provide a patch might be

additionally rooted in the assumptions that (a) a non-published vulnerability is hardly exposed

to attacks, (b) any vulnerability disclosure reduces the vendor‟s reputation, and (c) the patch

reveals the vulnerability to attackers who then try to compile exploits and to use them to

attack unpatched systems.

When a vulnerability patch is available, the search for newly injected vulnerabilities starts

since it is known that patches can contain new vulnerabilities [32]. As the injection refers to

new vulnerability, Figure 1 shows a dashed line.

The uncertainty of whether a vulnerability should be published and patched also applies to

the decision of whether a software patch should be installed. The customers – be they private

users or institutions – still have to determine the risk of installing the patch (immediately) for

two reasons: First, the patch might contain even more critical vulnerabilities than the patched

ones. Second, the benefit from having one or several vulnerabilities removed needs to be

opposed to the risk that the patch installation makes applications dysfunctional, which can

lead to considerably economic harm when production systems discontinue working or online

shops are shut down, for example.

The previous discussion of the lifecycle stresses that the empirical security of software

goes beyond technological phenomena and also depends on economic conditions. In the

particular context of open source and closed source software, Anderson [33] draws on

software reliability models and statistical thermodynamics to show that although, under ideal

conditions, open and closed systems are equally secure, this symmetry can be broken due to

economic phenomena, such as transaction costs and the behavior of vendors.

4. Research methodology

The research framework used in this paper is shown in Figure 3. In order to answer the

research questions whether (particular styles of) open source development or closed source

development lead to more effective patching behavior of vendors, it is most essential to select

appropriate software packages and to have comprehensive and reliable data on vulnerabilities

and patches available. Subsection 4.1. explains the software selection process in detail. As

prior works [8;15] argue that data quality is still a serious issue for the empirical analysis of

vulnerabilities and consequently also of patches, Subsection 4.2 reveals how this empirical

study addresses the challenge to have reliable data available.

Figure 3. Research framework

4.1. Investigated software packages

In order to draw a picture of empirical open source and closed source software security is

seems alluring to consider as many software packages and vulnerability data as possible. But

this approach suffers from at least two problems. First, for many software packages only (too)

few vulnerability data are available as the packages are rarely deployed and probably hardly

attractive for attackers. Second, a comparison of open source and closed source software

remains strongly biased, unless the software packages under consideration are comparable in

terms of functionality. However, for many open source and closed source software packages,

no functional counterparts are available. Due to these issues, I decided to follow the

qualitative approach and to manually select software packages for empirical analysis. The

selection of software was driven by the goal to have different groups of widely deployed

(open source and closed source) software available, which contemporaneously show diversity

in functionality across groups (comprehensiveness) and homogeneity in functionality inside

the groups (comparability). Consequently, it cannot be proved that the results of this

empirical study also apply to other, less deployed packages, but the results provide a

comprehensive overview of software that is widely used in private and institutional

environments and that is thus in the focus of attackers and defenders.

Assuming that most software is usually attacked through the (client-server-based) Internet,

I adopt the client-server perspective to frame the selection of software packages (see Figure

4). At the client side, the most widely deployed operating systems (OS) are Microsoft OS,

MAC OSX and Linux derivations [34]. Among the Microsoft OP, Windows 2000, Windows

XP and Windows Vista are the leading ones in terms of market share, but I excluded the latter

due to its short history (release date: January 30, 2007). Regarding Linux, I (arbitrarily)

selected Red Hat Linux and Debian Linux, which are widely deployed Linux distributions. In

addition to operating systems, I analyze web browsers, email clients and office software,

which are widely used in both private and commercial environments. Regarding web

browsers, Internet Explorer and Firefox are the most widely used programs

[34], regarding

email clients and office software, I found no reliable statistics. I selected Outlook Express and

Thunderbird, which are comparable in terms of functionality in contrast to Outlook, which

integrates much more functionality, and MS Office and OpenOffice.

On the server site, I analyze web servers and (relational) database management systems

(DBMS), which are widely used application types. Internet Information Services and Apache

are the most frequently used web servers [35]. Oracle and DB2 are two of the mostly used

closed source DBMS [36], while for open source DBMS no reliable data could be found.

Having explored many database-related websites, I decided to use DB2 and PostgreSQL,

which are widely deployed. The specific versions of the software packages are given in Table

2.

Figure 4. Selected open source and closed source software packages

4.2. Vulnerability data

The MITRE CVE group does not only provide a definition of vulnerabilities (see

discussion above), but also provides a dictionary of vulnerabilities [21]. This dictionary

contains for each vulnerability a standard identifier number (e.g. CVE-1999-0067), a brief

description, and references to related vulnerability reports and advisories. As the data sources

of CVE are manifold and include trustful organizations, such as US-CERT and

SecurityFocus, the CVE input can be assumed to be comprehensive, although it cannot be

guaranteed that all disclosed vulnerabilities are considered. The analysis of potential

vulnerabilities by the MITRE content team assures that each CVE candidate has been

inspected by security professionals. For a detailed description of MITRE CVE see Appendix

A. Overall, the CVE dictionary is a valuable resource for vulnerability analysis in terms of

both quantity and quality. The CVE group recommends to use the NIST National

Vulnerability Database (NVD) (http://nvd.nist.gov/), which is the only data pool that provides

full database functionality for the complete MITRE CVE dictionary.

The NVD, formerly known as ICAT, contains information on all CVE identifiers. The

NVD is updated immediately whenever a new vulnerability is added to the CVE dictionary of

vulnerabilities. New vulnerabilities are then analyzed by NVD analysts on a first-in, first-out

basis and augmented with attributes (see below) usually within two U.S. government business

days [37]. The NVD team then adds additional information, some of which is as follows [38]:

 Affected software and versions: The NVD applies the structured naming scheme CPE

(Common Platform Enumeration) provided by MITRE. An example is

“cpe:/o:redhat:enterprise_linux:3”. The NVD team does not actively test products to

determine affected products, but the NVD team consults MITRE, public vulnerability

sites, vendors and security researches when analyzing CVEs. NVD also supports a vendor

comment process that allows vendors to publish comments to the NVD regarding affected

products. These cooperation activities also include the determination of severity base

scores (see below).

 (Base) Score: The NVD provides vulnerability scores for almost all published

vulnerabilities using the “Common Vulnerability Scoring System” (CVSS) 2.0

(http://www.first.org/ cvss/cvss-guide.html). The scores are between 0 and 10 (highest

severity) and the particular value depends on several characteristics of the vulnerability,

such as the level of authentication needed to exploit the vulnerability and the impact of a

security breach on confidentiality and integrity. CVSS scores for vulnerabilities published

prior to 11/9/2005 were approximated by the NVD team from prior CVSS metric data

(CVEs were originally scored using CVSS Version 1, these scores were converted to

CVSS Version 2 scores based on an approximation algorithm).

 Original release date (ORD): The ORD assigned to a CVE identifier does not necessarily

mirror the actual date of disclosure due to two potential time gaps: 1) Time between the

actual disclosure of a vulnerability (on the web or in mailing lists, for example) and its

consideration in the “Assigned” phase of the MITRE CVE workflow. (2) Time between

the “Assigned” date and the NVD publication date. This gap is usually not larger than

some days [37], but as information on time gap (1) is available, the computation of patch

times and exploit times would contain errors of unknown size.

For a detailed description of the NVD see Appendix B, which contains information that I

gained through personal communication with the current NVD program manager. The

following analysis of NVD vulnerabilities is based on NVD xml data feeds as available at 31

January 2009. All feeds were imported into MS Office Excel 2007 and processed using filters

and MS Query. In order to assure that vulnerabilities listed in the NVD data feeds have not

been accidentally misattributed regarding the affected software version – the NVD team does

not explicitly check versions [35] –, I doublechecked the affected software versions of each

vulnerability on the websites of vendors, MITRE, and SecurityFocus. In very few cases of

inconsistencies I excluded the particular vulnerability from any further analysis. This

procedure was extremely time-consuming, but useful to assure the correctness of NVD

information on affected software versions.

4.3. Patch data

While the analysis of vulnerabilities and their publication refers to the first three phases of

the software vulnerability lifecycle and thereby mirrors software communities‟ behavior in

terms of creating, detecting, and publishing vulnerabilities, the investigation of the provision

of patches aims at identifying communities‟ behavior regarding actively addressing and

finally removing vulnerability issues. In order to detect differences in the patching behavior

of open source and closed source vendors, I analyze how many of the vulnerabilities

remained unpatched and whether any correlation between the patch status and the severity of

vulnerabilities exists. Although vendor sites provide patch dates, I do not analyze the time gap

between vulnerability disclosure and vendor‟s provision of patches, as the vulnerability

publication dates contained in the NVD do not necessarily give the actual publication date

(cmp. discussion above). In contrast to vulnerability publication data, reliable data on patches

can be (manually) collected by directly looking up vendors‟ sites and vendor-neutral

websites. More specifically, I used the following data sources to obtain reliable patch data:

NVD, MITRE site, US-CERT Vulnerability Notes Database, SecurityFocus, Microsoft

Security Bulletins, OpenOffice.org, The Open Source Vulnerability Database, The X-Force

database (IBM), Mozilla Foundation Security Advisories, Red Hat Network, Apache Security

Reports, Apple Mailing Lists, IBM FixPaks, VUPEN Security, mySQL Forge, and Oracle

Security Alerts and Patch Updates. For each CVE vulnerability, I searched these data sources

in order to find a corresponding patch. Those vulnerabilities for which I could not find any

patch information this way are regarded as unpatched. The newly compiled data pool contains

patch data on the aforementioned browsers, email clients, web servers, office products,

operating systems and database management systems.

5. Empirical results

Table 2 shows aggregated patch data for each software package. Vulnerabilities for which

I could not find any patch information by February 28, 2009 are classified as “still

unpatched”. Figure 5 illustrates the proportions of unpatched vulnerabilities.

It is remarkable to see that 17.6% (30.4%) of the published open (closed) source software

vulnerabilities (in terms of the median) are still unpatched. However, applying statistical

analysis (Mann-Whitney U-test) on the proportions of unpatched vulnerabilities, no

statistically significant differences between open and closed source software can be found: the

two-tailed test provides a high number for p (p=0.48). Furthermore, all proportions greater

than 30% are related to Microsoft products. Regarding open source software developed in

bazaar or in cathedral style (see Appendix A), again, no statistically significant difference

appears (p=0.79). Apparently, the proportion of still unpatched vulnerabilities largely depends

on the specific vendor. I discuss this behavior in detail below.

Figure 5. Proportions of unpatched vulnerabilities

Interestingly, the case of Microsoft also shows that even the same vendor can apply

different patching behavior dependent on the particular application type: while only 4% of

MS Office 2003 vulnerabilities remain unpatched, one out of three vulnerabilities of both

operating systems remain unpatched, every second vulnerability of IIS is still open, and even

two out of three vulnerabilities of the Internet clients remain unpatched. The case of operating

systems shows that the proportion of unpatched vulnerabilities of software cannot be

explained by simply considering the number of vulnerabilities, it rather depends on the

vendors‟ patching priorities.

It is interesting to compare the severity median of unpatched vulnerabilities with the

median of patched vulnerabilities, in order to detect vendors‟ patching priorities and

differences between open source and closed source software. The data in Table 2 reveal that,

for all six Microsoft products, there is a strong bias towards patching the most severe

vulnerabilities. This result indicates that Microsoft decides to leave less severe vulnerabilities

unpatched, probably because the economic efforts would not be compensated by the (minor)

gain in software security. However, on the other hand the result also shows that Microsoft is

interested in patching severe vulnerabilities, which reveals that software security is regarded a

serious market issue. Apple (MAC OSX) shows a similar behavior in their operating system

in terms of the severities of patched and unpatched vulnerabilities, but, in contrast to

Microsoft, Apple seems to be interested in patching most of the vulnerabilities. We find this

strong interest in patching vulnerabilities also in the cases of Oracle and IBM (DB2), but the

severity medians of unpatched vulnerabilities are higher than those of the patched ones. To

sum up, three out of four closed source software vendors leave only few vulnerabilities

unpatched and the other vendor focuses on patching severe vulnerabilities.

Table 2. Patched and unpatched vulnerabilities

Application
type

Product

Vulnerabilities (un)patched Median of severities
#vuln. #vuln.

unpatched
Prop. of
unpatched
vuln.

unpatched patched overall

Browser
Internet
Explorer 7

74 49 66.22% 5.0 9.3 6.8

Firefox 2 167 34 20.36% 5.0 6.8 6.4

Email client
MS Outlook
Express 6

23 15 65.22% 5.0 7.3 5.1

Thunderbird 1 110 6 5.45% 3.45 6.95 6.8

Web server
IIS 5 83 40 48.19% 5.0 7.2 5.0
Apache2 80 21 26.25% 4.7 5.0 5.0

Office
MS Office 2003 99 4 4.04% 5.05 9.3 9.3
OpenOffice 2 19 4 21.05% 5.25 9.3 7.6

Operating
system

Windows 2000 385 117 30.39%

5.1 7.2 7.2

Windows XP 297 91 30.64% 5.0 7.5 7.2
MAC OSX 300 20 6.67% 5.0 6.8 6.8
Red Hat
Enterprise
Linux 4

264 39 14.77% 4.9 4.9 4.9

Debian 3.1 207 30 14.49% 4.9 4.9 4.9

Database
management
system

mySQL 5 33 8 24.24% 4.6 4.9 4.9
PostgreSQL 8 25 3 12.00% 9.0 6.3 6.8
Oracle 10g 63 8 12.70% 7.35 5.5 5.5
DB2 v8 13 1 7.69% 7.8 7.2 7.2

Regarding the medians of patched and unpatched vulnerabilities of open source vendors

and their particular development style (bazaar vs. cathedral), I do not find any pattern. In

addition, the patching behavior of open source vendors shows that the proportion of

unpatched vulnerabilities varies between 12% and 26.25% and can differ considerably. On

the other hand, none of the eight open source software packages shows an outlier, in contrast

to closed source software. Consequently, I hypothesize that open source software

development at least prevents “extremely bad” patching behavior.

As a result of the analysis of the patching behavior of software vendors, it turns out that the

behavior is not determined by the particular software development style, but by the policy of

the particular vendor.

6. Conclusion

This work presented the first comprehensive empirical study on the security of open

source and closed source security. It compared 17 well known and widely deployed

browsers, email clients, web servers, office systems, operating systems, and database

systems regarding the patching behavior of the particular vendor. In order to assure

high data quality, vulnerabilities were taken from the NIST NVD and manually

doublechecked. Patch data for each vulnerability were collected by using vendor sites

and vendor neutral platforms.

The empirical results showed that open source and closed source software do not

significantly differ in terms of vendors‟ patching behavior. Although open source

software development seems to prevent “extremely bad” patching behavior, overall

there is no empirical evidence that the particular type of software development is the

primary driver of patching activities. Rather, the policy of the particular development

community or vendor determines the behavior. Consequently, in order to make software

less vulnerable, it is most important to provide strong economic incentives for software

producers to provide patches (at least for disclosed vulnerabilities) or, even better, to

avoid vulnerabilities at the outset.

7. Appendix

A. Investigated packages

Application

type

Product

Vendor/Community Devel. Type
1)

Browser
Internet Explorer 7 Microsoft Closed

Firefox 2 Mozilla Open (BS)

Email

client

MS Outlook Express 6 Microsoft Closed

Thunderbird Mozilla Open (CS)

Web

server

IIS 5 Microsoft Closed

Apache 2

Apache Software

Foundation

Open (CS)

Office
MS Office 2003 Microsoft Closed

OpenOffice 2 Openoffice.org Open (CS)

Operating

System

Windows 2000 (all versions) Microsoft Closed

Windows XP Microsoft Closed

MAC OSX 10.4 (Tiger) Apple Closed
3)

Red Hat Enterprise Linux 4
2)

 Red Hat Open (CS)

Debian 3.1
2)

 Debian Project Open (BS)

Database

Management

System

mySQL 5 Sun Open (BS)

postgreSQL 8

PostgreSQL Global

Development Group

Open (CS)

Oracle 10g Oracle Closed

DB2 v8 IBM Closed

BS: Bazaar style CS: Cathedral style

1) Regarding the identification of the particular open source development style (cathedral vs.

bazaar) I checked the particular community websites. In some cases I found elements of both

styles. The binary classification in the table reflects the author‟s assessment according to

whether they are more “cathedral style” or “bazaar style”.
2) The NVD lists linux kernel vulnerabilities separately from vulnerabilities of specific Linux

distributions. Red Hat Enterprise Linux 4 uses Linux kernel 2.6.9, Debian 3.1 uses Linux
kernels 2.4.27 or 2.6.8. I consider only those kernel vulnerabilities that were published
after the release date of Red Hat Enterprise Linux 4 and Debian 3.1, respectively.

3) Some open source components are included.

B. Data sources: MITRE CVE and NIST NVD

MITRE CVE (Common Vulnerabilities and Exposures) [21]:

 CVE is a dictionary of publicly known information security vulnerabilities and

exposures and is managed by the U.S. MITRE Corporation, which is a not-for-profit

organization.

 The CVE dictionary contains for each vulnerability the standard identifier number (e.g.

CVE-1999-0067) with status indicator, a brief description, and references to related

vulnerability reports and advisories.

 How the CVE dictionary is built:

1) Initial submission stage: MITRE has a content team whose primary task is to analyze,

research, and process incoming vulnerability submissions from CVE's data sources

(SecurityFocus.com weekly Newsletters, Network Computing and the SANS Institute -

weekly Security Alert Consensus, ISS - monthly Security Alert Summary, NIPC

CyberNotes - biweekly issues, National Cyber Alert System), transforming the

submissions into candidates.

2) Candidate stage: Candidates are normally created in one of three ways: (i) they are

refined by the content team using submissions from CVE's data sources; (ii) they are

reserved by an organization or individual who uses it when first announcing a new issue;

or (iii) they are created "out-of-band" by the CVE Editor, typically to quickly create a

candidate for a new, critical issue that is being widely reported. Candidates are proposed

to the CVE Editorial Board for review and voting.

3) Entry stage: If the candidate has been accepted, the candidate is converted into an entry.

NIST NVD (National Vulnerability Database) [37;38]:

 NIST NVD, formerly known as ICAT, is the U.S. government repository of standards

based vulnerability management data.

 It contains information on all CVE identifiers (both candidate status and entry status),

adds additional information, such as affected product versions, vulnerability types and

severity scores, and provides full database functionality for the MITRE CVE dictionary.

How the NVD is built:

1) Acquisition procedure: NVD is updated immediately whenever a new vulnerability is

added to the CVE dictionary of vulnerabilities. New vulnerabilities are then analyzed by

NVD analysts on a first-in, first-out basis and augmented with attributes (see below)

usually within two U.S. government business days. NVD does not typically carry any

persistent analysis backlog. The overall process has not substantially changed during

past years.

2) Vulnerability scores: Vulnerabilities are scored by the NVD analysis team regarding

their severity. The “Common Vulnerability Scoring System” (CVSS) 2.0 provides for

different scores, with score values being between 0 and 10 (highest severity): The base

score (used in my analysis) can be refined by considering temporal and environmental

characteristics.

i. The base score is an aggregation of six base score metrics (three are related to how

the vulnerability is accessed, three describe the degree of loss of confidentiality,

integrity, and availability). This score is mandatory and specified by vulnerability

bulletin analysts and software vendors. The NVD team works closely with the CVSS

working group and user community to come to a consensus on scoring some of the

more commonly-occurring vulnerabilities.

ii. The temporal score represents the characteristics of a vulnerability that change over

time. It aggregates five modifiers (optionally, specified by vulnerability bulletin

analysts and software vendors).

iii. The environmental score represents the characteristics of a vulnerability that are

relevant and unique to a particular user's environment. It aggregates three metrics

(optionally, determined by users).

The NVD scoring system changed over time: CVSS 2.0 scores for the CVE

vulnerabilities published prior to 11/9/2005 were approximated by the NVD team from

prior CVSS metric data. The investigation of the NVD conversion script reveals that for

all CVSS 2 characteristics corresponding CVSS 1 characteristics are available [35] and a

“natural” conversion was conducted, which allows comparing scores converted into

CVSS 2 with “new” CVSS 2 scores.

3) Affected software and versions: The NVD applies the structured naming scheme CPE

provided by MITRE (an example is “cpe:/o:redhat:enterprise_linux:3”.) to assign a CPE

for each affected version. The NVD uses the MITRE descriptions and data obtained

from product vendors to determine vulnerable product versions. On the rare occasions

when information sources are not in agreement, the NVD works with MITRE and/or

vendors to perform disambiguation.

4) Vulnerability types: The NVD analysis team assigns a type (e.g. buffer overflow) to a

vulnerability based on the MITRE CWE (Common Weakness Enumeration). The NVD

classification uses only a portion of the overall CWE structure; for the NVD-CWE

mapping see http://nvd.nist.gov/cwe.cfm#cwes.

5) Original Release Date: This date corresponds to the date the CVE was originally

published in NVD. In contrast, MITRE issues the “Assigned Date” to indicate when a

CVE enters the “Assigned” phase of their CVE workflow. The NVD dating

methodology has not changed over time.

8. References

[1] M. Schwarz and Y. Takhteyev, “Half a Century of Public Software Institutions: Open Source as a Solution to
Hold Up Problem”, http://www.takhteyev.org/papers/Schwarz-Takhteyev-2008.pdf, 2008.

[2] C. Payne, “On the security of open source software”, Information Systems Journal (12:1), 2002, pp. 61-78.

[3] Raymond, E.S. The Cathedral and the Bazaar: Musings on Linux and Open Source by an Accidental
Revolutionary, O‟Reilly, Beijing, China, 2001.

[4] E. Levy, “Wide open source”, http://www.securityfocus.com/news/19, 2000.

[5] J. Viega, “Open Source Security: Still a Myth”,
http://www.onlamp.com/pub/a/security/2004/09/16/open_source_security_myths.html, 2004.

[6] O.H. Alhazmi and Y.K. Malaiya, “Measuring and enhancing prediction capabilities of vulnerability discovery
models for Apache and IIS HTTP servers”, in: Proceedings of the 17th International Symposium on Software
Reliability Engineering (ISSRE‟06), Washington, DC, USA, 2006, pp. 343–352.

[7] O. Alhazmi, Y. Malaiya, and I. Ray, “Measuring, analyzing and predicting security vulnerabilities in software
systems”, Computers & Security (26:3), 2007, pp. 219-228.

[8] S. Frei, M. May, U. Fiedler B. Plattner, “Large-Scale Vulnerability Analysis, in: Proceedings of the ACM
SIGCOMM 2006 Workshop, November 11, 2006, Pisa, Italy.

[9] R. Gopalakrishna and E.H. Spafford, “A trend analysis of vulnerabilities”, Technical Report 2005-05,
CERIAS, Purdue University, May 2005.

[10] S. Neuhaus, T. Zimmermann, C. Holler and A. Zeller, “Predicting Vulnerable Software Components“, in:
Proceedings of the 14th ACM Conference on Computer and Communications Security (CCS 2007), Alexandria,
VA, USA, October 2007, pp. 529-540.

[11] S.-W. Woo, O.H. Alhazmi, and Y.K. Malaiya, “An analysis of the vulnerability discovery process in web
browsers”, in: Proceedings of the 10th IASTED International Conference on Software Engineering and
Applications, Dallas, TX, USA, November 13-15, 2006.

[12] S.-W.Woo, O.H. Alhazmi Y.K. Malaiya, “Assessing vulnerabilities in Apache and IIS HTTP servers, in:
Proceedings of the 2nd International Symposium on Dependable, Autonomic and Secure Computing, Indianapolis,
IN, USA, September 29-October 01, 2006, pp. 103-110.

[13] E. Rescorla, “Is finding security holes a good idea?”, in: Proceedings of the Third Annual Workshop on
Economics and Information Security, Minneapolis, Minnesota, May 13-14, 2004.

[14] G. Schryen, “Security of open source and closed source software: An empirical comparison of published
vulnerabilities”, in: Proceedings of Americas Conference on Information Systems, San Francisco, California,
August 6 - 9, 2009.

http://nvd.nist.gov/cwe.cfm#cwes

[15] A. Ozment, “The Likelihood of Vulnerability Rediscovery and the Social Utility of Vulnerability Hunting”,
in: Proceedings of the Fourth Workshop on the Economics of Information Security, Cambridge, Massachusetts,
June 2-3, 2005, pp. 1-21.

[16] Open Source Initiative (OSI), “The Open Source Definition”, http://www.opensource.org/docs/osd, 2006.

[17] J. M. Gonzalez-Barahona, “Free Software/Open Source: Information Society Opportunities for Europe?”,
Working group on Libre Software, http://eu.conecta.it/paper/cathedral_bazaar.html, 2000.

[18] Free Software Foundation (FSF), “The Free Software Definition”, http://www.fsf.org/licensing/essays/free-
sw.html, 2007.

[19] G. Schryen and R. Kadura, “Open Source vs. Closed Source Software: Towards Measuring Security”, in:
Proceedings of the 2009 ACM Symposium on Applied Computing, Honolulu, Hawaii, March 8-12, 2009, pp.
2016-2023.

[20] R. Anderson, “Why Information Security is Hard – An Economic Perspective”, in: Proceedings of the
Seventeenth Computer Security Applications Conference, New Orleans, Louisiana, December 10-14, 2001, pp.
358-365.

[21] MITRE, “Common Vulnerabilities and Exposures”, http://cve.mitre.org, 2009

[22] A. Ozment, “Improving Vulnerability Discovery Models: Problems with Definitions and Assumptions”, in:
Proceedings of the Third Workshop on Quality of Protection (QoP‟07), Alexandria, VA, USA. October 29, 2007.

[23] US-CERT, “Vulnerability Notes Database Field Descriptions”, http://www.kb.cert.org/vuls/html/fieldhelp,
2009.

[24] W.A. Arbaugh, W.L. Fithen and J. McHugh, “Windows of vulnerability: A case study analysis”, IEEE
Computer (33:12), 2000, pp. 52–59.

[25] Anderson, R. and Moore, T., “Information Security Economics – and Beyond”, Information Security Summit
2008, http://www.cl.cam.ac.uk/~rja14/Papers/econ_czech.pdf.

[26] A. Arora, R. Krishnan, A. Nandkumar, R. Telang, and Y. Yang, “Impact of Vulnerability Disclosure and
Patch Availability – An Empirical Analysis”, in: Proceedings of the Third Workshop on the Economics of
Information Security, Minneapolis, Minnesota, May 13-14, 2004, pp. 1-20.

[27] D. Nizovtsev and M. Thursby, “To disclose or not? An analysis of software user behavior”, Information
Economics and Policy (19:1), 2007, pp. 43-64.

[28] A. Arora, A. Telang, and H. Xu, “Optimal Policy for Software Vulnerability Disclosure”, in: Proceedings of
the Third Annual Workshop on Economics and Information Security, Minneapolis, Minnesota, May 13-14, 2004,
pp. 52-59.

[29] J.P. Choi, C. Fershtman, and N. Gandal, “Network Security: Vulnerabilities and Disclosure Policy”,
Discussion paper, http://www.msu.edu/~choijay/Internet_Security.pdf, 2007.

[30] A. Arora, C.M. Forman, A. Nandkumar, and R. Telang, “Competitive and strategic effects in the timing of
patch release”, in Proceedings of the Fifth Workshop on the Economics of Information Security, Cambridge, UK,
June 26-28, 2006.

[31] H. Cavusoglu, H. Cavusoglu, and J. Zhang, “Economics of Security Patch Management”, in: Proceedings of
the Fifth Workshop on the Economics of Information Security, Cambridge, UK, June 26-28, 2006.

[32] S. Beattie, S. Arnold, C. Cowan, P. Wagle, C. Wright, and A. Shostack, “Timing the Application of Security
Patches for Optimal Uptime”, in: Proceedings of Sixteenth Systems Administration Conference, Philadelphia,
Pennsylvania, November 3–8, 2002, pp. 233-242.

[33] R. Anderson, “Open and Closed Systems are Equivalent (that is, in an ideal world)”, in: Perspectives on Free
and Open Source Software, Feller, J., B. Fitzgerald, S.A. Hissam, and K.R. Lakhani (Eds.), MIT Press,
Cambridge, 2005, pp. 127–142.

[34] NetApplications, “Global Market Share Statistics, http://marketshare.hitslink.com, 2009.

[35] Netcraft, “Web Server Survey”, http://news.netcraft.com/archives/web_server_survey.html, 2009.

[36] Gartner, “Gartner Says Worldwide Relational Database Market Increased 14 Percent in 2006”,
http://www.gartner.com/it/page.jsp?id=507466, 2007.

[37] NIST, Personal communication with C. Johnson, National Vulnerability Database - Program Manager,
Computer Security Division Personal communication, May 2009.

[38] NIST, National Vulnerability Database, http://nvd.nist.gov, 2009.

