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Abstract 

While many theoretical arguments against or in favor of open source and closed source 

software development have been presented, the empirical basis for the assessment of 

arguments is still weak. Addressing this research gap, this paper presents a comprehensive 

empirical investigation of the patching behavior of software vendors/communities of widely 

deployed open source and closed source software packages, including operating systems, 

database systems, web browsers, email clients, and office systems. As the value of any 

empirical study relies on the quality of data available, this paper also discusses in detail data 

issues, explains to what extent the empirical analysis can be based on vulnerability data 

contained in the NIST National Vulnerability Database, and shows how data on vulnerability 

patches was collected by the author to support this study. The results of the analysis suggest 

that it is not the particular software development style that determines patching behavior, but 

rather the policy of the particular software vendor. 

 
1. Introduction 

During the past few decades we have got used to acquiring software by procuring licenses 

for a proprietary, or binary-only, immaterial object. We have come to regard software as a 

good we have to pay for just as we would pay for material objects. However, in more recent 

years, this widely cultivated habit has begun to be accompanied by a software model, which 

is characterized by software that comes with a compilable source code. This source code is 

often free of charge and may be even modified or redistributed. The software type is referred 

to by the term “open source software” (OSS).  

The application fields of OSS are manifold. Internet programs, such as the mail transfer 

agent Sendmail, the Web server Apache, the operating system Linux, the database system 

MySQL, and the office package OpenOffice are some of the most popular examples. Beyond 

these application types, we also find computer games (http://osswin.sourceforge.net/ 

games.html) and even business applications, such as AvErp, which is a German stock 

inventory system for small- and medium-sized businesses (http://www.synerpy.de/), or an 

Enterprise Resource Planning (ERP) system that is being built by a group of U.S. universities 

and that is being overseen by the Kuali Foundation (http://kuali.org/). OSS has even become 

part of the core infrastructure of sophisticated technology companies, such as Amazon, 

Google, and Yahoo [1]. Obviously, OSS has arrived in the world of important and critical 

information systems that need security protection against attacks. Its increasing availability 

and deployment makes it appealing for hackers and others who are interested in exploiting 

software vulnerabilities, which become even more dangerous when software is not applied in 

a closed context, but interconnected with other systems and the Internet. 

While there is consensus about the fact that opening source code to the public increases the 

potential number of reviewers, its impact on finding security flaws is controversially debated. 

Proponents of OSS stress the strength of the resulting review process [2] and argue in the 

sense of Raymond [3] that, “Given enough eyeballs, all bugs are shallow.” (p. 19), while 



some opponents follow the argument of Levy [4], who remarks “Sure, the source code is 

available. But is anyone reading it?” Viega [5] further doubts the superior effectiveness of the 

open source community and argues that (1) most code reviewers do not explicitly look for 

vulnerabilities and (2) those who do, are mostly interested in finding those vulnerabilities that 

are easy to detect and that bring them high reputation. 

While the security discussion is pervaded with “beliefs and guesses”, only few quantitative 

models and some empirical studies [6-15] appear in the literature. Most of these empirical 

studies investigate one package or few software packages only, and to the best knowledge of 

the author no prior study has been conducted to comprehensively study differences between 

the patching behavior of open source and closed source software vendors. The reason why 

comprehensive empirical studies have been neglected in general is probably much due to the 

fact that the collection and analysis of reliable data is still laborious and much manual work is 

required. However, empirical research is necessary, as it has the potential to provide insights 

in the security of widely deployed information systems, to support researchers in developing 

models for security measurement, and to enrich the security discussion with the provision of 

facts. 

Interestingly, past empirical studies focus on the number of vulnerabilities and neglect to 

consider their severities and its‟ impact on vendors‟ patching behavior. However, this 

perspective is important as a single highly severe vulnerability that enables attackers to get 

root access to a system is usually more crucial than 10 low severe vulnerabilities that only 

grant reading access to unauthorized users. Addressing this lack in research, this study 

collects comprehensive empirical data and analyzes open and closed source software with 

regard to vendors‟ behavior in patching vulnerabilities. Thereby, it extends an earlier study 

[14] in two ways: it builds up a new data pool of patching data, which is not available in 

publicly accessible databases, and it uses these data to investigate vendors‟ behavior in terms 

of which vulnerabilities have been patched. 

The remainder of this paper is organized as follows. The following section presents the 

background of open source and closed source software. Section 3 proposes a vulnerability 

lifecycle model and applies this model to (a) synthesize literature findings on software 

vulnerabilities and patches, and (b) to discuss patching activities through a theoretical lens. 

Section 4 explains the research methodology of this study, including the selection of 

investigated software packages and used data, before Section 5 presents the findings of this 

empirical study. Finally, the results are summarized and conclusions are presented. 

 

2. Open and closed source software 

Generally, the availability of source code to the public is a precondition for software being 

denoted as “open source software”. Beyond this requirement, the Open Source Initiative 

(OSI) has defined a set of criteria that software has to comply with [16]. The (open source) 

definition (OSD) includes the permission to modify the code and to redistribute it. However, 

it does not govern the software development process in terms of who is eligible to modify the 

original version. When what is called “bazaar style” by Raymond [3] is in place, any 

volunteer can provide source code submissions. Software development is then often based on 

informal communication between the coders [17]. In a more closed environment, software is 

crafted by individual wizards and the development process is characterized by a relatively 

strong control of design and implementation. This style is referred to as “cathedral style” [3]. 

As the particular development style might have an impact on the security of software, a 

detailed discussion of open source security should take this into account.   

Several OSD-compliant licenses have come into operation, such as the Apache License, 

BSD license, and GNU General Public License (GPL), which is maintained by the Free 



Software Foundation (FSF). The FSF provides a definition of “„free software‟ [as] a matter of 

liberty, not price.” [18] In contrast to the OSD definition, the FSF definition explicitly focuses 

on the option of releasing the improvements to the public, thereby rejecting a strong 

supervision of the modification process. More specifically, the definition says: “If you do 

publish your changes, you should not be required to notify anyone in particular, or in any 

particular way.” Similar to the discussion of what open or free software is, we need to define 

what “closed software” is: Software is usually regarded as being “closed”, if the source code 

is not available to the public. 

The categorization of software and its development process as “open source software 

(development)” or “free software (development)” in contrast to “closed source software 

(development)” reflects the perspective of developers and specifies the type of development. 

Complementarily, one could also adopt the software user‟s point of view by distinguishing 

between software that needs to be paid for and software for which no fee applies. The 

resulting (two-dimensional) classification scheme is shown in Table 1. 

Table 1. Classification of software [19; p. 2018] 

 Open Source 

(license) 

Closed Source 

(source code 

 not available) 

Free of 

charge 

Linux, Apache web server Adobe Acrobat Reader 

Subject to charge MySQL  

(dual licensing: GPL/proprietary 

license for Enterprise Edition) 

Microsoft Windows operating 

systems 

 

3. The vulnerability lifecycle 

When software is executed in a way different from what the original software 

designers intended, this misbehavior is rooted in software bugs. Anderson [20] assumes 

the ratio between software bugs and software lines of code (SLOC) to be about 1:35, 

i.e. Windows 2000 with its 35 Mio. SLOC would have one million bugs included. When 

bugs can be directly used by attackers to gain access to a system or network, they are 

termed (information security) “vulnerabilities” by MITRE [21]. Although there are 

other definitions of “vulnerabilities” [22;23], the adoption of the MITRE definition is 

useful (in a pragmatic, but not necessarily normative sense) for four reasons:  

(1) Most empirical studies implicitly use this definition by analyzing “Common 

Vulnerability and Exposures (CVE)” entries, which are based on the 

understanding of MITRE. CVE names are not only widely used by researchers, 

they are also used by information security product/service vendors. Thereby, the 

CVE definition has become a “de facto standard”. 

(2) The process of accepting a potential software bug as CVE vulnerability is well 

documented and the assessment is conducted by security experts [21]. 

(3) The U.S. National Institute of Standards and Technology (NIST) adopts the 

MITRE understanding of vulnerabilities in their National Vulnerability Database 

(NVD), which is probably the largest database of security-critical software bugs 

and which provides comprehensive CVE vulnerability data feeds for automated 

processing. 

(4) The definition is precise (http://cve.mitre.org/about/terminology.html):  



A vulnerability is a state in a computing system (or set of systems) that either: 

• allows an attacker to execute commands as another user 

• allows an attacker to access data that is contrary to the specified access  

restrictions for that data 

• allows an attacker to pose as another entity 

• allows an attacker to conduct a denial of service 

 It should be noticed that this definition does not exactly match the US-CERT 

vulnerability definition, but is closely related: “While the mapping between CVE names 

and US-CERT vulnerability IDs are usually pretty close, in some cases multiple 

vulnerabilities may map to one CVE name, or vice versa. The CVE group tracks a large 

number of security problems, not all of which meet our criteria for being considered a 

vulnerability.”[23] 

Vulnerabilities and their dynamic behavior can be described with the “vulnerability 

life cycle”, which is shown in Figure 1 as a UML statechart diagram. The diagram 

provides a process-oriented perspective on a single vulnerability and its patch (for the 

consideration of exploits see the study of Frei [8]), integrates states that have been 

introduced by Arbaugh et al. [24], and uses a cycle to account for the fact that (the 

patching of) vulnerabilities can create new vulnerabilities [24]. The lifecycle starts with 

the injection of a vulnerability into software. In principle, a vulnerability can find its 

way into software through (a) the intentional behavior of software developers, who 

strive for selling or exploiting vulnerabilities, or for harming the employer, or (b) 

unintentional behavior, which can be rooted in careless programming or in using 

“insecure” development tools. This behavior can be economically rational as companies 

often do not have sufficient incentives to avoid vulnerabilities [25]. After some testing, 

the software is finally released and the search for vulnerabilities begins for the public 

(and potentially continues for the software vendor). 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Vulnerability life cycle 

 



The discovery of a vulnerability can be based on coincidental detection or on the active 

search of persons with intrinsic motivation (to make software more secure) or with extrinsic 

motivation (to get reputation, to gain financial advantage, or “to do their job”). When a 

vulnerability is discovered, the question occurs whether it should be published or not. If the 

vulnerability is detected by a “black hat”, his or her decision depends on whether s/he aims at 

making the vulnerability available to as many other “black hats” as possible and to gain 

reputation, or to a closed group of potential attackers, who can exploit the vulnerability 

exclusively. If the vulnerability is detected by a “white hat”, including the software vendor, it 

is still not clear whether the vulnerability should be published or not, as vulnerability 

information is useful for both the good guys, who can provide patches, and the bad guys, who 

probably would not have gained knowledge of the vulnerability otherwise. Some researchers 

have addressed this question: Rescorla [13] argues against disclosure as he finds the 

probability of vulnerability rediscovery being vanishingly small. However, investigating the 

operating system OpenBSD, Ozment [15] finds vulnerabilities being correlated regarding 

their rediscovery and argues in favour of disclosure. Using game-theoretic models, Arora et 

al. [26] and Nizovtsev and Thursby [27] address the question of when software vulnerabilities 

should be disclosed and conclude that neither instant disclosure nor non-disclosure is optimal. 

Arora et al. [28] use empirical analysis to support their hypothesis, pointing out that the 

optimal policy depends upon how quickly vendors provide patches and upon how likely 

attackers are to find and exploit vulnerabilities. Choi et al. [29] discuss different disclosure 

regimes and conclude that mandatory disclosure improves welfare only when the probability 

of attack is high and the expected damage is small. An overview of the classification of 

vulnerabilities is provided in Figure 2, which also shows that in this paper only published 

vulnerabilities are considered, as no reliable data is available for unpublished vulnerabilities. 
 

 
 

Figure 2. Classification of software bugs and vulnerabilities, 
source: [14; p. 2] 

 

Once a vulnerability is published, at a first glance it seems obvious that the vendor should 

provide a patch as soon as possible. But it can be economically reasonable for the vendor to 

not provide a patch, when it is the customers who suffer most cost of failure and when 

competitors behave alike. Arora et al. [30] analyze the timing of patch release and find that 

both the competition effect and disclosure threat effect hasten patch release, with competition 

having an even stronger effect. Cavusoglu et al. [31] apply game theory to compare liability 



and cost-sharing as mechanisms for incentivizing vendors to patch their software and 

conclude that liability helps where vendors release less often than optimal, while cost-sharing 

helps where they release more often. 

If the vulnerability is not published (and detected by “white hats” other than the vendor), 

again, the question arises of whether the vendor should provide a patch or not. While the 

aforementioned economic arguments still hold, the decision to not provide a patch might be 

additionally rooted in the assumptions that (a) a non-published vulnerability is hardly exposed 

to attacks, (b) any vulnerability disclosure reduces the vendor‟s reputation, and (c) the patch 

reveals the vulnerability to attackers who then try to compile exploits and to use them to 

attack unpatched systems.        

When a vulnerability patch is available, the search for newly injected vulnerabilities starts 

since it is known that patches can contain new vulnerabilities [32]. As the injection refers to 

new vulnerability, Figure 1 shows a dashed line. 

The uncertainty of whether a vulnerability should be published and patched also applies to 

the decision of whether a software patch should be installed. The customers – be they private 

users or institutions – still have to determine the risk of installing the patch (immediately) for 

two reasons: First, the patch might contain even more critical vulnerabilities than the patched 

ones. Second, the benefit from having one or several vulnerabilities removed needs to be 

opposed to the risk that the patch installation makes applications dysfunctional, which can 

lead to considerably economic harm when production systems discontinue working or online 

shops are shut down, for example.  

The previous discussion of the lifecycle stresses that the empirical security of software 

goes beyond technological phenomena and also depends on economic conditions. In the 

particular context of open source and closed source software, Anderson [33] draws on 

software reliability models and statistical thermodynamics to show that although, under ideal 

conditions, open and closed systems are equally secure, this symmetry can be broken due to 

economic phenomena, such as transaction costs and the behavior of vendors. 

 

4. Research methodology 

The research framework used in this paper is shown in Figure 3.  In order to answer the 

research questions whether (particular styles of) open source development or closed source 

development lead to more effective patching behavior of vendors, it is most essential to select 

appropriate software packages and to have comprehensive and reliable data on vulnerabilities 

and patches available. Subsection 4.1. explains the software selection process in detail. As 

prior works [8;15] argue that data quality is still a serious issue for the empirical analysis of 

vulnerabilities and consequently also of patches, Subsection 4.2 reveals how this empirical 

study addresses the challenge to have reliable data available.  

 
 



 
 

Figure 3. Research framework 
 

4.1. Investigated software packages 

In order to draw a picture of empirical open source and closed source software security is 

seems alluring to consider as many software packages and vulnerability data as possible. But 

this approach suffers from at least two problems. First, for many software packages only (too) 

few vulnerability data are available as the packages are rarely deployed and probably hardly 

attractive for attackers. Second, a comparison of open source and closed source software 

remains strongly biased, unless the software packages under consideration are comparable in 

terms of functionality. However, for many open source and closed source software packages, 

no functional counterparts are available. Due to these issues, I decided to follow the 

qualitative approach and to manually select software packages for empirical analysis. The 

selection of software was driven by the goal to have different groups of widely deployed 

(open source and closed source) software available, which contemporaneously show diversity 

in functionality across groups (comprehensiveness) and homogeneity in functionality inside 

the groups (comparability). Consequently, it cannot be proved that the results of this 

empirical study also apply to other, less deployed packages, but the results provide a 

comprehensive overview of software that is widely used in private and institutional 

environments and that is thus in the focus of attackers and defenders. 

Assuming that most software is usually attacked through the (client-server-based) Internet, 

I adopt the client-server perspective to frame the selection of software packages (see Figure 

4).  At the client side, the most widely deployed operating systems (OS) are Microsoft OS, 

MAC OSX and Linux derivations [34]. Among the Microsoft OP, Windows 2000, Windows 

XP and Windows Vista are the leading ones in terms of market share, but I excluded the latter 

due to its short history (release date: January 30, 2007). Regarding Linux, I (arbitrarily) 

selected Red Hat Linux and Debian Linux, which are widely deployed Linux distributions. In 

addition to operating systems, I analyze web browsers, email clients and office software, 

which are widely used in both private and commercial environments. Regarding web 

browsers, Internet Explorer and Firefox are the most widely used programs
 
[34], regarding 

email clients and office software, I found no reliable statistics. I selected Outlook Express and 

Thunderbird, which are comparable in terms of functionality in contrast to Outlook, which 

integrates much more functionality, and MS Office and OpenOffice. 



On the server site, I analyze web servers and (relational) database management systems 

(DBMS), which are widely used application types. Internet Information Services and Apache 

are the most frequently used web servers [35]. Oracle and DB2 are two of the mostly used 

closed source DBMS [36], while for open source DBMS no reliable data could be found. 

Having explored many database-related websites, I decided to use DB2 and PostgreSQL, 

which are widely deployed. The specific versions of the software packages are given in Table 

2. 
 

 
 

Figure 4. Selected open source and closed source software packages  
 

4.2. Vulnerability data  

The MITRE CVE group does not only provide a definition of vulnerabilities (see 

discussion above), but also provides a dictionary of vulnerabilities [21]. This dictionary 

contains for each vulnerability a standard identifier number (e.g. CVE-1999-0067), a brief 

description, and references to related vulnerability reports and advisories. As the data sources 

of CVE are manifold and include trustful organizations, such as US-CERT and 

SecurityFocus, the CVE input can be assumed to be comprehensive, although it cannot be 

guaranteed that all disclosed vulnerabilities are considered. The analysis of potential 

vulnerabilities by the MITRE content team assures that each CVE candidate has been 

inspected by security professionals. For a detailed description of MITRE CVE see Appendix 

A. Overall, the CVE dictionary is a valuable resource for vulnerability analysis in terms of 

both quantity and quality. The CVE group recommends to use the NIST National 

Vulnerability Database (NVD) (http://nvd.nist.gov/), which is the only data pool that provides 

full database functionality for the complete MITRE CVE dictionary. 

The NVD, formerly known as ICAT, contains information on all CVE identifiers. The 

NVD is updated immediately whenever a new vulnerability is added to the CVE dictionary of 

vulnerabilities. New vulnerabilities are then analyzed by NVD analysts on a first-in, first-out 



basis and augmented with attributes (see below) usually within two U.S. government business 

days [37]. The NVD team then adds additional information, some of which is as follows [38]: 

 Affected software and versions: The NVD applies the structured naming scheme CPE 

(Common Platform Enumeration) provided by MITRE. An example is 

“cpe:/o:redhat:enterprise_linux:3”. The NVD team does not actively test products to 

determine affected products, but the NVD team consults MITRE, public vulnerability 

sites, vendors and security researches when analyzing CVEs. NVD also supports a vendor 

comment process that allows vendors to publish comments to the NVD regarding affected 

products. These cooperation activities also include the determination of severity base 

scores (see below).  

 (Base) Score: The NVD provides vulnerability scores for almost all published 

vulnerabilities using the “Common Vulnerability Scoring System” (CVSS) 2.0 

(http://www.first.org/ cvss/cvss-guide.html). The scores are between 0 and 10 (highest 

severity) and the particular value depends on several characteristics of the vulnerability, 

such as the level of authentication needed to exploit the vulnerability and the impact of a 

security breach on confidentiality and integrity. CVSS scores for vulnerabilities published 

prior to 11/9/2005 were approximated by the NVD team from prior CVSS metric data 

(CVEs  were originally scored using CVSS Version 1, these scores were converted to 

CVSS Version 2 scores based on an approximation algorithm). 

 Original release date (ORD): The ORD assigned to a CVE identifier does not necessarily 

mirror the actual date of disclosure due to two potential time gaps: 1) Time between the 

actual disclosure of a vulnerability (on the web or in mailing lists, for example) and its 

consideration in the “Assigned” phase of the MITRE CVE workflow. (2) Time between 

the “Assigned” date and the NVD publication date. This gap is usually not larger than 

some days [37], but as information on time gap (1) is available, the computation of patch 

times and exploit times would contain errors of unknown size.  

For a detailed description of the NVD see Appendix B, which contains information that I 

gained through personal communication with the current NVD program manager. The 

following analysis of NVD vulnerabilities is based on NVD xml data feeds as available at 31 

January 2009. All feeds were imported into MS Office Excel 2007 and processed using filters 

and MS Query. In order to assure that vulnerabilities listed in the NVD data feeds have not 

been accidentally misattributed regarding the affected software version – the NVD team does 

not explicitly check versions [35]  –, I doublechecked the affected software versions of each 

vulnerability on the websites of vendors, MITRE, and SecurityFocus. In very few cases of 

inconsistencies I excluded the particular vulnerability from any further analysis. This 

procedure was extremely time-consuming, but useful to assure the correctness of NVD 

information on affected software versions. 

 

4.3. Patch data 

While the analysis of vulnerabilities and their publication refers to the first three phases of 

the software vulnerability lifecycle and thereby mirrors software communities‟ behavior in 

terms of creating, detecting, and publishing vulnerabilities, the investigation of the provision 

of patches aims at identifying communities‟ behavior regarding actively addressing and 

finally removing vulnerability issues. In order to detect differences in the patching behavior 

of open source and closed source vendors, I analyze how many of the vulnerabilities 

remained unpatched and whether any correlation between the patch status and the severity of 

vulnerabilities exists. Although vendor sites provide patch dates, I do not analyze the time gap 



between vulnerability disclosure and vendor‟s provision of patches, as the vulnerability 

publication dates contained in the NVD do not necessarily give the actual publication date 

(cmp. discussion above). In contrast to vulnerability publication data, reliable data on patches 

can be (manually) collected by directly looking up vendors‟ sites and vendor-neutral 

websites. More specifically, I used the following data sources to obtain reliable patch data: 

NVD, MITRE site, US-CERT Vulnerability Notes Database, SecurityFocus, Microsoft 

Security Bulletins, OpenOffice.org, The Open Source Vulnerability Database, The X-Force 

database (IBM), Mozilla Foundation Security Advisories, Red Hat Network, Apache Security 

Reports, Apple Mailing Lists, IBM FixPaks, VUPEN Security, mySQL Forge, and Oracle 

Security Alerts and Patch Updates. For each CVE vulnerability, I searched these data sources 

in order to find a corresponding patch. Those vulnerabilities for which I could not find any 

patch information this way are regarded as unpatched. The newly compiled data pool contains 

patch data on the aforementioned browsers, email clients, web servers, office products, 

operating systems and database management systems. 

 

5. Empirical results 

Table 2 shows aggregated patch data for each software package. Vulnerabilities for which 

I could not find any patch information by February 28, 2009 are classified as “still 

unpatched”. Figure 5 illustrates the proportions of unpatched vulnerabilities. 

It is remarkable to see that 17.6% (30.4%) of the published open (closed) source software 

vulnerabilities (in terms of the median) are still unpatched. However, applying statistical 

analysis (Mann-Whitney U-test) on the proportions of unpatched vulnerabilities, no 

statistically significant differences between open and closed source software can be found: the 

two-tailed test provides a high number for p (p=0.48). Furthermore, all proportions greater 

than 30% are related to Microsoft products. Regarding open source software developed in 

bazaar or in cathedral style (see Appendix A), again, no statistically significant difference 

appears (p=0.79). Apparently, the proportion of still unpatched vulnerabilities largely depends 

on the specific vendor. I discuss this behavior in detail below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Proportions of unpatched vulnerabilities  



Interestingly, the case of Microsoft also shows that even the same vendor can apply 

different patching behavior dependent on the particular application type: while only 4% of 

MS Office 2003 vulnerabilities remain unpatched, one out of three vulnerabilities of both 

operating systems remain unpatched, every second vulnerability of IIS is still open, and even 

two out of three vulnerabilities of the Internet clients remain unpatched. The case of operating 

systems shows that the proportion of unpatched vulnerabilities of software cannot be 

explained by simply considering the number of vulnerabilities, it rather depends on the 

vendors‟ patching priorities.   

It is interesting to compare the severity median of unpatched vulnerabilities with the 

median of patched vulnerabilities, in order to detect vendors‟ patching priorities and 

differences between open source and closed source software. The data in Table 2 reveal that, 

for all six Microsoft products, there is a strong bias towards patching the most severe 

vulnerabilities. This result indicates that Microsoft decides to leave less severe vulnerabilities 

unpatched, probably because the economic efforts would not be compensated by the (minor) 

gain in software security. However, on the other hand the result also shows that Microsoft is 

interested in patching severe vulnerabilities, which reveals that software security is regarded a 

serious market issue. Apple (MAC OSX) shows a similar behavior in their operating system 

in terms of the severities of patched and unpatched vulnerabilities, but, in contrast to 

Microsoft, Apple seems to be interested in patching most of the vulnerabilities. We find this 

strong interest in patching vulnerabilities also in the cases of Oracle and IBM (DB2), but the 

severity medians of unpatched vulnerabilities are higher than those of the patched ones. To 

sum up, three out of four closed source software vendors leave only few vulnerabilities 

unpatched and the other vendor focuses on patching severe vulnerabilities. 

 

Table 2. Patched and unpatched vulnerabilities 

Application 
type 

Product 

Vulnerabilities (un)patched Median of severities 
#vuln. #vuln. 

unpatched 
Prop. of 
unpatched 
vuln. 

unpatched patched overall 

Browser 
Internet 
Explorer 7 

74 49 66.22% 5.0 9.3 6.8 

Firefox 2 167 34 20.36% 5.0 6.8 6.4 

Email client 
MS Outlook 
Express 6 

23 15 65.22% 5.0 7.3 5.1 

Thunderbird 1 110 6   5.45% 3.45 6.95 6.8 

Web server 
IIS 5 83 40 48.19% 5.0 7.2 5.0 
Apache2 80 21 26.25% 4.7 5.0 5.0 

Office 
MS Office 2003 99 4   4.04% 5.05 9.3 9.3 
OpenOffice 2 19 4 21.05% 5.25 9.3 7.6 

Operating 
system 

Windows 2000 385 117 30.39% 
 

5.1 7.2 7.2 

Windows XP 297 91 30.64% 5.0 7.5 7.2 
MAC OSX 300 20    6.67% 5.0 6.8 6.8 
Red Hat 
Enterprise 
Linux 4 

264 39 14.77% 4.9 4.9 4.9 

Debian 3.1 207 30 14.49% 4.9 4.9 4.9 

Database 
management 
system 

mySQL 5 33 8 24.24% 4.6 4.9 4.9 
PostgreSQL 8 25 3 12.00% 9.0 6.3 6.8 
Oracle 10g 63 8 12.70% 7.35 5.5 5.5 
DB2 v8 13 1  7.69% 7.8 7.2 7.2 

 



Regarding the medians of patched and unpatched vulnerabilities of open source vendors 

and their particular development style (bazaar vs. cathedral), I do not find any pattern. In 

addition, the patching behavior of open source vendors shows that the proportion of 

unpatched vulnerabilities varies between 12% and 26.25% and can differ considerably. On 

the other hand, none of the eight open source software packages shows an outlier, in contrast 

to closed source software. Consequently, I hypothesize that open source software 

development at least prevents “extremely bad” patching behavior. 

As a result of the analysis of the patching behavior of software vendors, it turns out that the 

behavior is not determined by the particular software development style, but by the policy of 

the particular vendor. 

 
6. Conclusion 

This work presented the first comprehensive empirical study on the security of open 

source and closed source security. It compared 17 well known and widely deployed 

browsers, email clients, web servers, office systems, operating systems, and database 

systems regarding the patching behavior of the particular vendor. In order to assure 

high data quality, vulnerabilities were taken from the NIST NVD and manually 

doublechecked. Patch data for each vulnerability were collected by using vendor sites 

and vendor neutral platforms. 

The empirical results showed that open source and closed source software do not 

significantly differ in terms of vendors‟ patching behavior. Although open source 

software development seems to prevent “extremely bad” patching behavior, overall 

there is no empirical evidence that the particular type of software development is the 

primary driver of patching activities. Rather, the policy of the particular development 

community or vendor determines the behavior. Consequently, in order to make software 

less vulnerable, it is most important to provide strong economic incentives for software 

producers to provide patches (at least for disclosed vulnerabilities) or, even better, to 

avoid vulnerabilities at the outset. 

 



7. Appendix 

A. Investigated packages  
 

Application  

type 

Product 

 

Vendor/Community Devel. Type
1)

 

Browser 
Internet Explorer 7 Microsoft Closed 

Firefox 2 Mozilla Open (BS) 

Email 

client 

MS Outlook Express 6 Microsoft Closed 

Thunderbird  Mozilla Open (CS) 

Web 

server 

IIS 5 Microsoft Closed 

Apache 2 

 

Apache Software 

Foundation 

Open (CS) 

Office 
MS Office 2003 Microsoft Closed 

OpenOffice 2 Openoffice.org Open (CS) 

Operating 

System 

Windows 2000 (all versions) Microsoft Closed 

Windows XP Microsoft Closed 

MAC OSX 10.4 (Tiger) Apple Closed 
3)

 

Red Hat Enterprise Linux 4
2)

 Red Hat Open (CS) 

Debian 3.1
2)

 Debian Project Open (BS) 

Database 

Management 

System 

mySQL 5 Sun Open (BS) 

postgreSQL 8 

 

PostgreSQL Global 

Development Group 

Open (CS) 

Oracle 10g Oracle Closed 

DB2 v8 IBM Closed 

BS: Bazaar style CS: Cathedral style 

 
1) Regarding the identification of the particular open source development style (cathedral vs. 

bazaar) I checked the particular community websites. In some cases I found elements of both 

styles. The binary classification in the table reflects the author‟s assessment according to 

whether they are more “cathedral style” or “bazaar style”. 
2) The NVD lists linux kernel vulnerabilities separately from vulnerabilities of specific Linux 

distributions.  Red Hat Enterprise Linux 4 uses Linux kernel 2.6.9, Debian 3.1 uses Linux 
kernels 2.4.27 or 2.6.8. I consider only those kernel vulnerabilities that were published 
after the release date of Red Hat Enterprise Linux 4 and Debian 3.1, respectively.  

3) Some open source components are included. 

 
B. Data sources: MITRE CVE and NIST NVD 

MITRE CVE (Common Vulnerabilities and Exposures) [21]:  

 CVE  is a dictionary of publicly known information security vulnerabilities and 

exposures and is managed by the U.S. MITRE Corporation, which is a not-for-profit 

organization. 

 The CVE dictionary contains for each vulnerability the standard identifier number (e.g. 

CVE-1999-0067) with status indicator, a brief description, and references to related 

vulnerability reports and advisories. 

 How the CVE dictionary is built:  

1) Initial submission stage: MITRE has a content team whose primary task is to analyze, 

research, and process incoming vulnerability submissions from CVE's data sources 

(SecurityFocus.com weekly Newsletters, Network Computing and the SANS Institute - 

weekly Security Alert Consensus, ISS - monthly Security Alert Summary, NIPC 



CyberNotes - biweekly issues, National Cyber Alert System), transforming the 

submissions into candidates. 

2) Candidate stage: Candidates are normally created in one of three ways: (i) they are 

refined by the content team using submissions from CVE's data sources; (ii) they are 

reserved by an organization or individual who uses it when first announcing a new issue; 

or (iii) they are created "out-of-band" by the CVE Editor, typically to quickly create a 

candidate for a new, critical issue that is being widely reported. Candidates are proposed 

to the CVE Editorial Board for review and voting. 

3) Entry stage:  If the candidate has been accepted, the candidate is converted into an entry. 

 

NIST NVD (National Vulnerability Database) [37;38]: 

 NIST NVD, formerly known as ICAT, is the U.S. government repository of standards 

based vulnerability management data. 

 It contains information on all CVE identifiers (both candidate status and entry status), 

adds additional information, such as affected product versions, vulnerability types and 

severity scores, and provides full database functionality for the MITRE CVE dictionary. 

 

How the NVD is built:  

1) Acquisition procedure: NVD is updated immediately whenever a new vulnerability is 

added to the CVE dictionary of vulnerabilities. New vulnerabilities are then analyzed by 

NVD analysts on a first-in, first-out basis and augmented with attributes (see below) 

usually within two U.S. government business days. NVD does not typically carry any 

persistent analysis backlog. The overall process has not substantially changed during 

past years. 

2) Vulnerability scores: Vulnerabilities are scored by the NVD analysis team regarding 

their severity. The “Common Vulnerability Scoring System” (CVSS) 2.0 provides for 

different scores, with score values being between 0 and 10 (highest severity):  The base 

score (used in my analysis) can be refined by considering temporal and environmental 

characteristics. 

i. The base score is an aggregation of six base score metrics (three are related to how 

the vulnerability is accessed, three describe the degree of loss of confidentiality, 

integrity, and availability). This score is mandatory and specified by vulnerability 

bulletin analysts and software vendors. The NVD team works closely with the CVSS 

working group and user community to come to a consensus on scoring some of the 

more commonly-occurring vulnerabilities.  

ii. The temporal score represents the characteristics of a vulnerability that change over 

time. It aggregates five modifiers (optionally, specified by vulnerability bulletin 

analysts and software vendors). 

iii. The environmental score represents the characteristics of a vulnerability that are 

relevant and unique to a particular user's environment. It aggregates three metrics 

(optionally, determined by users). 

The NVD scoring system changed over time: CVSS 2.0 scores for the CVE 

vulnerabilities published prior to 11/9/2005 were approximated by the NVD team from 



prior CVSS metric data.  The investigation of the NVD conversion script reveals that for 

all CVSS 2 characteristics corresponding CVSS 1 characteristics are available [35] and a 

“natural” conversion was conducted, which allows comparing scores converted into 

CVSS 2 with “new” CVSS 2 scores. 

3) Affected software and versions: The NVD applies the structured naming scheme CPE 

provided by MITRE (an example is “cpe:/o:redhat:enterprise_linux:3”.) to assign a CPE 

for each affected version. The NVD uses the MITRE descriptions and data obtained 

from product vendors to determine vulnerable product versions.  On the rare occasions 

when information sources are not in agreement, the NVD works with MITRE and/or 

vendors to perform disambiguation.   

4) Vulnerability types: The NVD analysis team assigns a type (e.g. buffer overflow) to a 

vulnerability based on the MITRE CWE (Common Weakness Enumeration). The NVD 

classification uses only a portion of the overall CWE structure; for the NVD-CWE 

mapping see http://nvd.nist.gov/cwe.cfm#cwes.  

5) Original Release Date: This date corresponds to the date the CVE was originally 

published in NVD. In contrast, MITRE issues the “Assigned Date” to indicate when a 

CVE enters the “Assigned” phase of their CVE workflow. The NVD dating 

methodology has not changed over time. 
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