UNIVERSITAT POLITECNICA
DE CATALUNYA
BARCELONATECH

UPCommons

Portal del coneixement obert de la UPC

http://upcommons.upc.edu/e-prints

Xhafa, F. [et al.] (2016) Energy-aware analysis of synchronizing a
groupware calendar. 2016 10th International Conference on
Innovative Mobile and Internet Services in Ubiquitous Computing,
IMIS 2016, Fukuoka Institute of Technology (FIT), Fukuoka, Japan 6-
8 July 2016: proceedings. |EEE. Pp. 215-222. Doi:
http://dx.doi.org/10.1109/1M1S.2016.145.

© 2016 IEEE. Es permet I'Us personal d'aquest material. S’ha de
demanar permis a I'lEEE per a qualsevol altre Us, incloent la
reimpressid/reedicio amb fins publicitaris o promocionals, la creacio
de noves obres col-lectives per a la revenda o redistribucio en
servidors o llistes o la reutilitzacié de parts d’aquest treball amb drets
d'autor en altres treballs.

http://upcommonsdev.upc.edu/
http://upcommonsdev.upc.edu/
http://upcommons.upc.edu/e-prints
http://dx.doi.org/10.1109/IMIS.2016.145

UNIVERSITAT POLITECNICA
DE CATALUNYA
BARCELONATECH

Xhafa, F. [et al.] (2016) Energy-aware analysis of synchronizing a
groupware calendar. 2016 10th International Conference on
Innovative Mobile and Internet Services in Ubiquitous Computing,
IMIS 2016, Fukuoka Institute of Technology (FIT), Fukuoka, Japan 6-
8 July 2016: proceedings. |EEE. Pp. 215-222. Doi:
http://dx.doi.org/10.1109/1M1S.2016.145.

(c) 2016 IEEE. Personal use of this material is permitted. Permission
from IEEE must be obtained for all other users, including reprinting/
republishing this material for advertising or promotional purposes,
creating new collective works for resale or redistribution to servers or
lists, or reuse of any copyrighted components of this work in other
works.

http://dx.doi.org/10.1109/IMIS.2016.145

Energy-aware Analysis of Synchronizing a Groupware Calendar

Fatos Xhafa, Daniel Palou
Universitat Politécnica de Catalunya
Barcelona, Spain
Email: [fatos@cs.upc.edu

Abstract—With the fast development in Internet and Mobile
technologies, we are witnessing a proliferation of applications
that support online collaborative group work. Such applications
offer many advantages as compared to traditional web-based
online collaborative learning, the most salient feature being the
ability to work not only geographically distributed but also on
the move, anytime and anywhere. Such applications in the
very recent past used to offer lightweight client applications,
leaving the burden of the application logics to the server side
applications. However, as mobile devices are each time more
powerful in terms of computing and storage capacity, client
applications at mobile device are each time more complex and
heavy so that members of the group could be able to work
both offline and online, which arises when members of the
group use smartphones and can eventually run out of Internet
connection from time to time, or simply want to develop
some activities locally. This comes to the price of wasting the
battery in shorter time and thus impeding the collaborative
work for longer time intervals. Due to this reason, researchers
and developers are interested to develop sophisticated mobile
applications under energy-aware requirements. In this work we
analyse the energy efficiency of a group calendar that offers
1) information sharing among all of members of the group;
2) synchronisation among local calendars of members and
global group calendar; 3) conflict resolution through a voting
system; 4) awareness of changes in the entries (tasks, members,
events, etc.) of the calendar and 5) sharing of calendars among
different groups. In particular, we analyse the energy efficiency
due to the synchronisations mechanisms employed by a group
calendar as synchronisation is among most compute intensive
and time consuming tasks. Our study sheds light on the need
of implementing various synchronisation mechanisms from
lightweight synchronisation to full synchronisation and their
applications according to energy profile of the mobile device.

Keywords: Energy-ware computing, Battery life, Mobile
devices, Calendar, Sharing, Synchronisation, Coordination,
Groupware, Android, Mobile group work.

I. INTRODUCTION

With the fast development in Internet and mobile tech-
nologies, the collaborative group work is seeing a shift.
Indeed, while in the recent past, collaborative group work
was based on the web and peer-to-peer applications [16],
[21], now most of the group work goes mobile. The use
of mobile devices gives a new dimension to collaborative
group work, which is not possible with Web-based group
work, namely, the members of a group cannot only be

Leonard Barolli
Fukuoka Institute of Technology
Fukuoka, Japan
EMail: barolli@fit.ac.jp

Makoto Takizawa
Hosei University
Tokyo, Japan
EMail: makoto.takizawa @ computer.org

geographically distributed, they can also do collaborative
work on the move, anytime, anywhere [10] in both online
and offline modes of work [22f]. Therefore, collaborative
group work using smartphones has become commonplace
in most collaborative activities, including business collabo-
ration in enterprises, online collaborative learning, collab-
orative group work at remote areas, disaster management
scenarios, crowd-sensing collaboration, etc.

The design of a group calendar requires overcoming
several challenges. Several research works have addressed
the development of Android applications that support group
work and can be integrated with enterprise information
systems [6], [18]]. For disaster management, Android appli-
cations can provide with timely support as shown in [7],
[12]], [15]]. Several proposals for supporting collaborative
work have been proposed for online collaborative learning to
effectively scaffold learners, and particularly online groups
of learners by smartphones and tablets applications [17],
[19], [20]], [23]]. Data visualisation in a group calendar is also
an important feature [5]] for handling multiple schedules and
highlighting common free times, especially relevant when
the number of users is rather large and scalability is to be
achieved.

Additionally, a collaborative group work calendar should
meet several requirements such as:

1) sharing among all of members of the group;

2) synchronisation among local calendars of members
and global group calendar;

3) conflict resolution through a voting system;

4) awareness of changes in the entries (tasks, members,
events, etc.) of the calendar, and

5) sharing of different calendars among different groups

It should be noted however that as mobile devices are
each time more powerful in terms of computing and storage
capacity, client applications at mobile device are each time
more sophisticated and can support complex tasks. This of
course comes with the price of wasting the battery in shorter
time and thus impeding the collaborative work for longer
time intervals. Due to this reason, researchers and developers
are interested to develop sophisticated mobile applications
under energy-aware requirements.

mailto:fatos@cs.upc.edu
mailto:barolli@fit.ac.jp
mailto:makoto.takizawa@computer.org

In this paper, we analyse the energy efficiency of col-
laborative group work calendar that offers 1) information
sharing among all of members of the group; 2) synchronisa-
tion among local calendars of members and global group
calendar; 3) conflict resolution through a voting system;
4) awareness of changes in the entries (tasks, members,
events, etc.) of the calendar and 5) sharing of calendars
among different groups. In particular, we analyse the energy
efficiency due to the synchronisations mechanisms employed
by a group calendar as synchronisation is among most
compute intensive and time consuming tasks. The objective
of this study is to shed light on the efficiency of synchro-
nisation mechanisms and to identify the range of energy
waste corresponding to such synchronisation mechanisms
from lightweight synchronisation to full synchronisation. We
exemplify the approach for mobile devices under Android
system and SugarCRM as a server.

The rest of the paper is organized as follows. In Section [II]
we briefly describe the requirements for a group calendar
supporting collaborative group work. The synchronisation
mechanisms and its various types are presented in Sec-
tion The design of the calendar, its implementation and
deployment are presented in Section and the evaluation
in Section [V We end the paper in Section [VI] with some
conclusions and remarks for future work.

II. REQUIREMENTS FOR ENERGY AWARE MOBILE
APPLICATIONS

Requirements for energy-aware applications are becoming
commonplace in the design and implementations of mo-
bile applications. As a matter of fact, for many authors,
application-level energy efficiency requirements are consid-
ered as the next step in the evolution of power-efficient mo-
bile systems as battery lifetime is a fundamental constraint.
In Chen et al. [4], the authors argue that there is large space
for energy saving on mobile applications based on appli-
cation design, for which the authors propose a framework
aiming to add an energy adaptation layer by providing a set
of APIs and adaptation policies. Some authors [11]], [[14]
exploit the offloading capabilities of executing certain tasks
at server side. While there are several works on performance
evaluation of Android systems (e.g. kernels [3]), particular
applications need to be evaluated specifically in terms of the
energy efficiency. In [[13]], the authors characterize the mobile
applications according to their energy consumptions.

There are several requirements that a group calendar
should satisfy to efficiently support collaborative group
work. In terms of energy consumption, we could distinguish:

1) synchronisation among local calendars of members
and the global group calendar;

2) conflict resolution mechanisms through a voting sys-
tem;

3) awareness services to members about the changes in
the calendar entries (tasks, members, events, etc.).

4) Calendar management (adding tasks, events, members,
etc.)

The first of these requirements, namely the synchronisa-
tion, is among most time consuming, and hence, causing
most energy consuming related to calendar application.

III. SYNCHRONISATION AMONG LOCAL CALENDARS OF
MEMBERS AND GLOBAL GROUP CALENDAR

Synchronisation aims to keep consistent information at
server side (the global group calendar) and at group mem-
bers’ sides (local calendars). When a member of the group
changes some entry in the local calendar, this change should
be reflected on the global calendar and all other local
calendars of members affected by the change. The rest of
members whose local calendar is not affected are notified
about the changes. And, vice-versa, changes in the global
calendar should be updated in local calendars of group
members (see Fig. [T)).

Local Systam

Reamate Systam

raquastChangas(tokan data)

changes
'& ____________________
sandChanges(token tasks ralations)
rasult
e - ———
Figure 1. Calendar synchronisation diagram.

There are many aspects that influence the synchronisation,
such as decentralisation among members of the group (this
issue has been much investigated for other models such as
P2P Networks—see for instance [1]). By choosing to have
the data spread across different devices, when a user makes
a change to the data in its device, the change can be commu-
nicated directly to the other affected devices; or, the data can
be stored centrally on a server and all the synchronisation is
made through it. In the former case, synchronisation is more
challenging due to the fact that the mobile devices can go
on and off and data consistency is a real issue as it takes
more time for the system to reach a consistent state when
changes occur (usually eventual consistency is sought in this
case). In the later case, using a server, it is easier and more
reliable to manage the synchronisation and achieve desired
degree of consistency but to the price of keeping the system
centralised.

Among the various strategies for synchronizing data, the
most used ones are full and incremental synchronisation.

A. Full synchronisation

The full synchronisation requires always all data to be
synchronised. That is, if a device is to be synchronised with

current server information, the server will always send all the
data to the device (either in pull or push mode, according to
parameter settings), and it is the device that should contrast
that data received from the server against its data and update
it accordingly, for example replace all old data by the newly
received ones. This synchronisation can be seen as safe mode
synchronisation in terms of synchronisation errors, because
by receiving all the information of the server side we can be
sure that the device will contain exactly the information of
the server. Obviously, this synchronisation method implies
a high cost of temporary data traffic, and it should be noted
that part of this data traffic is redundant as the device has
already part of it (usually small changes are done on the data
locally). However, this kind of synchronisation is necessary
when a user connects for the very first time to the system or
when it connects after a long period of time. In other cases,
an incremental synchronisation can be used, which is more
efficient than full synchronisation. A diagrammatic view of

the full synchronisation is shown in Fig. [2]

fullSync() ’L

requastChanges (token,data)

changes

Figure 2. Full synchronisation diagram.

B. Incremental synchronisation

The incremental synchronisation requires knowing only
the data that has changed since the last synchronisation and
the corresponding changes. Thus, a device receives only
the changes occurred, not all information of the calendar.
In this case, it is more likely to have a synchronisation
error or a higher degree of inconsistency. For example, if
for some reason the synchronisation fails, but through the
process there was updated just the time/date of the last
synchronisation, the synchronisation would be considered
completed correctly. Clearly, this synchronisation is more
error-prone in case of mobile devices but on the other hand
it is much more efficient both in space and in data traffic
since it only sends the necessary changes of the information,
not redundant data. A diagrammatic view of the incremental
synchronisation is shown in Fig.

There is also possible to use both synchronisation modes,
that is, the member of the group uses incremental synchro-
nisation and from time to time, upon request, runs a full
synchronisation with the server.

C. Conflict resolution

In every system that uses data synchronisation, conflicts
may occur. In the case of the calendar, the most important

local system remote system
I |
e |
requestChanges (token,data)
changes
L R —— |
Figure 3. Incremental synchronisation diagram.

type of the conflict arises when 1) two users may be
modifying the same data and 2) a change done by a member
cannot be done persistent in the group calendar until the
change is approved by the members of the group (in this
later case, this requirement is important for some critical
data such as deadline delivery, adding a new member to the
calendar who is not member of the group, etc.)

There are many strategies to resolve conflicts [2]], [8]],
one simple strategy is voting. In our case, and due to the
importance of correct conflict resolution to the collaborative
group work, the conflict resolution is left to the members
choice, namely, the affected users take a decision by a simple
majority vote. In case of a tie, the voting will be repeated.

D. Notification awareness services

This requirement is necessary to keep the members of
a group informed on the group activity and to timely
collaborate with other members. Awareness can take var-
ious forms such as availability awareness (availability of
resources, availability of members, ...), context aware-
ness (where the actions/changes took place), group pro-
cess awareness (changes with regard to project workflow),
etc. [16], [21]. Implementation of these awareness forms
enables a timely and effective collaboration and coordination
of online groups.

Awareness is implemented via event notification services.
Events are defined and linked to Calendar, tasks, groups
and users. Then, based on events, two types of notification
services are implementing: a) event notification that requires
user action and b) warnings (which are simply informative).
For example, a user is notified that there is a pending task
approval and is informed (warning) when a task is approved,
completed and archived. A state diagram is defined for
entities and events are linked to different states. It should be
noted that awareness services take place whenever changes
have occurred. The notification can be done in pull mode
(configured by the user according to his preferences, for
instance receiving notifications as soon as a change has
occurred or receiving notifications in batches per time/day
interval) or push mode (notifications are pushed by the server

automatically to users). Obviously, the energy consumption
depends on the notification strategy as it is more costly
to receive notifications one by one than in batches or
summaries.

E. Calendar management

The calendar management is done by the members of
the group, besides the management of their own local
calendar, who have access to the global group calendar.
The calendar management includes creating a new calendar,
adding members to the calendar, adding tasks and events
to the calendar, making changes to existing entries in the
calendar. etc. It should be noted that calendar management is
not much a consuming task as compared to synchronisation
because the management tasks are done sporadically and are
bounded to a workflow of the group project. Some examples
of the calendar managements (in diagrammatic language
using the SugarCRM API) are newCalendar (see Fig. [),
addMemberToCalendar (Fig.[3)), addMemberToTask (Fig.[6)
and confirmPendingApproval (Fig. [T).

R
|
|
|

newCalendar |

statAciitinient

«-—U

Figure 4. The sequence diagram of newCalendar.

AdParticipant T ackViewhodel ‘

inuoke(argo, argl) | "
il 5 | validateData

Alarmbianager

ok Fnnlean

he— —1

Sweetsyncaltdodel
|
=l
|

[ak?1

I w 7 .
=l

Finishiy |

P mm—|

SR —

Figure 6. The sequence diagram of addMemberToTask.

InfoMeetingViewModel SweetComervice SuparRestAP AP Sugar server)

invoke(arg0, arg1) |]]
1

acceptPA(id, accept?) |

acceptPA(token, d, accept?)

accept_patoken, id, accept?)

[result_ok]

acceptPA(id, accept?

opt
SweetSyncalModel
|

Figure 7. The sequence diagram of confirmPendingApproval.

1V. IMPLEMENTATION AND TECHNOLOGIES
A. Technologies

The following technologies have been used to implement
the system.

Java: The system is designed to run on Android, whose
programming language is Java.

SQLite: We use SQLite as a local database because the
resources are quite limited. Storing data in files can also be
considered, but it was decided to use the database as a more
effective solution.

Android: Because we want our application to use
the maximum number of available devices, it was decided
that the application will be implemented under Android,
nevertheless, the system can be fully implemented using
other operating systems.

Android-Binding: We use this external open source
library to achieve a greater independence between the view
and our system using the MVVM pattern.

SugarCRM: SugarCRM is commonplace in applica-
tions for SMEs businesses. By choosing this application
server, we simulate the case of a real project development in
enterprises and make our application potentially useful for
real setting.

PHP: The server functionality must be extended in
order to adapt it to our system. Because SugarCRM is
implemented in PHP, it is then the programming language
used to expand it.

Memcached: Memcached is a distributed system that
is used for storing cached data or objects, thus reducing the
need to access an external data source.

JXTA: JXTA is a P2P open source platform by Sun
Microsystems, defined as a set of XML-based protocols.
These protocols allow devices connected to a network to ex-
change messages with each other regardless of the network
topology. The definition of JXTA is abstract and based on a
set of open protocols so that it can be brought to any modern
programming languages. There are several implementations,

AP Supgar (server]

e

[exists return_info-=pa]

Figure 5. The sequence diagram of addMemberToCalendar.

AddPartsCalendarylewiodel SaeetComservice SugarRestar]
invoke(argd, argl] | ' |
| walidateData : I
I
: |
| I
- | I
| | I
1 | |
addParticipantsCalendar(id, grouss) | I
3 |
medityPartsCalendar{token, id, groups)
n':cbdif'll_participams_mlendaﬂtnken, id, groups)
| |
j=on_data
T S (e e S e TR
S R S ¢
alt
[SweetSyncalModel
I
I
I
synePAlreturn info->pal
)
result_ok
% ________
result_ok=return_info-=result
result_ok
e — ————= —— e e =
| opt | [result_ok==0]
Sweprsyncalviodel | | AQdPArTSCalendaracmiiny
addPartsCalendarfid, groups) | |
S
U |
e m————— == |
opt I [result_ok==0]
finishl} |
T
e e, ——— — —
F _______ L

the most advanced of which is JXSE the Java version. The
version is called Java Micro Edition JXME. One important
feature of JXTA is that it allows P2P communication even
when peers are behind NATs or firewalls.

PeerDroid: PeerDroid is an open source library that
implements protocols JXME for the Android platform. It
allows to create applications for the Android platform using
JXTA properties, creating a network of mobile and other
traditional peers (computers, for example).

B. SugarCRM: modules vs. relationships

Besides analysing the algorithms, such as synchronisation
ones, that impact on the calendar efficiency and thereof
on the battery lifetime, in some cases the technologies
used should be analysed as well. This is the case of using
SugarCRM, a server application used in real life server
applications.

SugarCRM uses modules and relationships to store infor-
mation. Modules are similar to classes in a UML model,
while relationships are the equivalent to associations. It
should be noted that the relationships may store extra
information, besides identifiers of the module instances they
are linked to, but this extra information is rather difficult to
be retrieved. The SugarCRM API offers a set of functions to
retrieve and modify the module instances and relations but
none of them is helpful to retrieve the extra information, and
thus, the only way to get this extra information is directly
from the database, which is not convenient.

The main extra information that we would be interested
to retrieve from relationships is the modification times-
tamp in order to retrieve the changes of information from
a certain timestamp for the needs of the synchronisa-
tion algorithms. The SugarCRM API offers the functions
get_modified_relationships but it is useful only for the rela-
tionships User-Meeting, User-Call and User-Contact, where
the timestamp corresponds to the second module Meeting,
Call or Contact. It was observed therefore that SugarCRM
API does not offer any functions to read the timestamp of
modifications or filter information according to the times-
tamp, making thus more difficult the implementation of the
synchronisation algorithms.

Summarizing, the modules and relationships have both
advantages and drawbacks as follows.

Advantages: The relationships are more coherent with
the model, avoid automatically repetition of associations and
occupy less space in the DB. On the other hand, regarding
modules, it is very easy to retrieve extra information, which
is pretty much the same for all types of relations 1 —1, 1—*
or *—*.

Drawbacks: Regarding the relationships, recovering
extra information is complex and its functions are more
suitable for 1—* relations, while for *—* one needs to run
1—* several times. Additionally, in recursive relations it is
not possible to distinguish the extremes of the relation. On

the other hand, as regards the modules, they are less coherent
with the model, one has to manually check the existence of
a module instance representing a relation, usually occupy
more space in the DB, there cannot be defined foreign keys
and require more reads for certain operations.

Given the advantages and limitations of modules and
relationships, some entities such as Voting and Reply were
to be implemented by modules. In fact in some cases, such
as in the case of the entity Precede, the use of modules was
mandatory because the relationship cannot distinguish the
extremes of the relation for implementing the precedence
constraints.

V. DEPLOYMENT AND EVALUATION

The system has been deployed at the RDLab infrastructure
(http://rdlab.cs.upc.edu/, using SugarCRM server and has
been evaluated according to different usability and perfor-
mance criteria.

Several evaluation scenarios were designed and carried
out using real mobile devices. The aim was to evaluate the
efficiency of the proposed group calendar in terms of time,
space and battery lifetime.

The efficiency of modules vs. relationships: With regard
to the use of modules vs. relationships, the study showed that
considering various scenarios of working with the calendar,
using modules was more efficient (see Fig. [8).

Time (ms)

2500

2000

1500
M Modules

1000 M Relationships

500

1 2 3 4 5 6 7 8 9 10 11

Figure 8.
relationships.

The time efficiency of implementation with modules vs.

The battery lifetime: SyncAdapter vs. Google Cloud
Messaging: As discussed in previous sections, synchroni-
sation can be done in various forms. For instance, it can be
done by a pre-configured manner (through a SyncAdapter)
every certain time interval, say every N minutes. This syn-
chronisation mode, however, has the drawback that during
that time interval the information in the calendar becomes
inconsistent, especially for IV large, should changes occur
during that time. For shorter intervals of time, it might be

http://rdlab.cs.upc.edu/

useless to make synchronisation as in most cases there would
be no changes in the calendars (locals or global calendar),
which would imply a waste in the battery of the mobile
device. It would be then desirable to have a more tailorable
synchronisation.

In such situation, using an approach similar to Google
Cloud Messaging (GCM), which allows to send messages to
mobile devices from the server, seems interesting. Indeed,
using this service, the mobile devices can send messages to
the server to request synchronisation or vice-versa, from the
server to the mobile devices to notify there are changes and
thus synchronisation can take place.

We designed twelve use cases and measured the save in
energy when doing the synchronisation via SyncAdapter vs.
Google Cloud Messaging using the GSam Battery Monitor
to measure the energy consumption. As can be seen from
Fig. 0] for all the twelve tests, the GCM based synchroni-
sation was much more efficient than SyncAdapter, namely
it wasted significantly less battery during synchronisation
process.

Batterv consumption
35
3
2,5
2
EGCM
L5 mSA
I
05 -
0 -
1 2 3 4 5 6 7 8 9 10 11 12
Figure 9. Battery consumption of synchronizing via SyncAdapter (SA)
vs. GCM.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have studied the impact on battery
lifetime of mobile applications, specifically for a group
calendar, which requires frequent synchronisations to keep
the collaborative group work uptodate any time, anywhere.
Indeed, many intelligent mobile applications currently sup-
port online collaborative group work but to the price of
wasting the battery in shorter time and thus impeding the
collaborative work for longer time intervals. We analysed
the energy efficiency of collaborative group work calendar
that offers 1) information sharing among all of members
of the group; 2) synchronisation among local calendars
of members and global group calendar; 3) conflict resolu-
tion through a voting system; 4) awareness of changes in
the entries (tasks, members, events, etc.) of the calendar

and 5) sharing of calendars among different groups. In
particular, we analysed the energy efficiency due to the
synchronisations mechanisms employed by a group calendar
as synchronisation is among most compute intensive and
time consuming tasks. We considered synchronisation via
a SyncAdapter module, which can be preconfigured for
synchronisation to take place at certain time intervals and
via Message Services (similar to Google Cloud Messaging).
Our study showed that synchronisation via Message Services
consumes significantly less energy than synchronisation via
SyncAdapter. In view of the results, this study stresses the
need of implementing various synchronisation mechanisms
from lightweight synchronisation to full synchronisation and
their applications according to energy profile of the mobile
device.

In our future work we would like to better use the battery
life profile for synchronisation needs in order to find a
suitable balance among the need for being synchronised
according to remaining battery of the mobile devices.

REFERENCES

[1] Achara, J.P., Imine, A. Rusinowitch, M. DeSCal - Decen-
tralised Shared Calendar for P2P and Ad-Hoc Networks.
10th International Symposium on Parallel and Distributed
Computing. 223 - 231, DOI: 10.1109/ISPDC.2011.40, 2011

[2] Samuel A. Ajila, S.A. and Al-Asaad, A. Mobile databases
— Synchronisation & conflict resolution strategies us-
ing SQL server. IEEE International Conference on In-
formation Reuse and Integration (IRI), 487 - 489, DOI:
10.1109/IR1.2011.6009598, 2011

[3] Luis Corral, L., Georgiev, A.B., Janes, A. and Kofler,
S. Energy-Aware Performance Evaluation of Android Cus-
tom Kernels. IEEE/ACM 4th International Workshop on
Green and Sustainable Software (GREENS), 1 - 7, DOIL
10.1109/GREENS.2015.8, 2015

[4] Chen, H., Luo, B. and Shi, W. Anole: A Case for Energy-
Aware Mobile Application Design 41st International Con-
ference on Parallel Processing Workshops, 232 - 238, DOI:
10.1109/ICPPW.2012.34, 2012.

[5] Engin, B., Cetinkaya, M., Ayiter, E., Germen, M. and Bal-
cisoy, S. Maestro: Design Challenges for a Group Calendar.

12th International Conference Information Visualisation, 491
- 496, DOI: 10.1109/1V.2008.91, 2008

[6] Gryaznov, G. and Kovin, R. Development of the cross-
platform mobile framework for integration with enterprise in-
formation systems. 7th International Forum on Strategic Tech-
nology (IFOST), 1 - 4, DOI: 10.1109/IFOST.2012.6357607,
2012.

[7] Juhana, T., Widyani, R. N, and Mulyana, E. Mobile ap-
plication for rapid disaster victim assessment. 7th In-
ternational Conference on Telecommunication Systems,
Services, and Applications (TSSA), 324 - 329, DOI:
10.1109/TSSA.2012.6366076, 2012.

(8]

(9]

(10]

(11]

[12]

(13]

(14]

(15]

[16]

(17]

(18]

Kedia, A. and Prakash, A. Data synchronisation on An-
droid clients. IEEE International Conference on Communi-
cation Software and Networks (ICCSN), 212 - 216, DOLI:
10.1109/ICCSN.2015.7296156, 2015.

Kirda, E., Fenkam, P., Reif G., and Gall, H. A ser-
vice architecture for mobile teamwork. In Proceedings
of the I4th international conference on Software engi-
neering and knowledge engineering (SEKE ’'02). ACM,
New York, NY, USA, 513-518. DOI=10.1145/568760.568850
http://doi.acm.org/10.1145/568760.568850, 2002.

Leonardi, L., Mamei, M. and Zambonelli, F. A Physically
Grounded Approach to Coordinate Movements in a Team.
In Proceedings of the Ist International Workshop on Mobile
Teamwork, 2002.

Marcu, M. and Tudor, D. Execution framework model for
power-aware applications. 17th International Workshop on
Thermal Investigations of ICs and Systems (THERMINIC),
1-6,2011.

Nakamoto, Y. and Akiyama, Sh. A Proposal for Mobile
Collaborative Work Support Platform Using an Embedded
Data Stream Management System. 35th IEEE International
Conference on Distributed Computing Systems Workshops, 23
- 28, DOI: 10.1109/ICDCSW.2015.16, 2015.

Pinarer, O. and Ozgovde, A. Characterisation of mobile
applications according to their energy consumptions. 22nd
Signal Processing and Communications Applications Confer-
ence (SIU), 1995 - 1998, DOI: 10.1109/S1U.2014.6830649,
2014.

Qian, H. and Andresen, D. An energy-saving task scheduler
for mobile devices. IEEE/ACIS 14th International Conference
on Computer and Information Science (ICIS), 423 - 430, DOI:
10.1109/ICIS.2015.7166631, 2015.

Rahman, K.M., Alam, T. and Chowdhury, M. Location based
early disaster warning and evacuation system on mobile
phones using OpenStreetMap. [EEE Conference on Open
Systems (ICOS), 1 - 6, DOI: 10.1109/1C0OS.2012.6417627,
2012.

Sapateiro, C., N. Baloian, P. Antunes and G. Zurita (2009)
Developing Collaborative Peer-to-Peer Applications on Mo-
bile Devices. Proceedings of the 13th International Confer-
ence on Computer Supported Cooperative Work in Design
(CSCWD 2009), Santiago, Chile, 2009.

Djoni Haryadi Setiabudi, D.H., and Winsen, L.J.T. Mobile
learning application based on hybrid mobile application
technology running on Android smartphone and Blackberry.
International Conference on ICT for Smart Society (ICISS),
1 -5, DOL: 10.1109/ICTSS.2013.6588081, 2013.

Vojvodi¢, S., Zovi¢, M., ReZi¢, V., Maraci¢, H. and
Kusek, M. Competence transfer through enterprise mo-
bile application development. 37th International Conven-
tion on Information and Communication Technology, Elec-
tronics and Microelectronics (MIPRO), 448 - 452, DOI:
10.1109/MIPRO.2014.6859609, 2014.

[19]

(20]

(21]

(22]

(23]

Wei, S. The Design and Implementation of a Mobile Learning
Platform Based on Android. International Conference on In-
formation Science and Cloud Computing Companion (ISCC-
C), 345 - 350, DOI: 10.1109/ISCC-C.2013.136, 2013.

Xhafa, F.,, Barolli, L., Caballé, S., Fernandez, R. Supporting
Scenario-Based Online Learning with P2P Group-Based Sys-
tems. NBiS 2010:173-180, 2010.

Xhafa, F. and Poulovassilis, A. Requirements for Distributed
Event-Based Awareness in P2P Groupware Systems. AINA
Workshops 2010: 220-225, 2010.

Yang, Y., Supporting online Web-based teamwork in offline
mobile mode too. Proceedings of the First International
Conference on Web Information Systems Engineering, Vol.1,
486-490, 2000.

Yang, H. Ch. and Wang, W.Y. Facilitating Academic Service-
Learning with Android-Based Applications and Ubiqui-
tous Computing Environment. 4th International Confer-
ence on Ubi-Media Computing (U-Media),191 - 196, DOI:
10.1109/U-MEDIA.2011.29. 2011

	Introduction
	Requirements for energy aware mobile applications
	Synchronisation among local calendars of members and global group calendar
	Full synchronisation
	Incremental synchronisation
	Conflict resolution
	Notification awareness services
	Calendar management

	Implementation and technologies
	Technologies
	SugarCRM: modules vs. relationships

	Deployment and evaluation
	Conclusions and future work
	References
	caratulaIEEE21.pdf
	UPCommons
	Portal del coneixement obert de la UPC
	http://upcommons.upc.edu/e-prints

