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Abstract

Scene flow is the motion of the surface points in the 3D
world. For a camera, it is seen as a 2D optical flow in the
image plane. Knowing the scene flow can be very useful as
it gives an idea of the surface geometry of the objects in the
scene and how those objects are moving. Four methods for
calculating the scene flow given multiple optical flows have
been explored and detailed in this paper along with the ba-
sic mathematics surrounding multi-view geometry. It was
found that given multiple optical flows it is possible to es-
timate the scene flow to different levels of detail depending
on the level of prior information present.

1 Introduction

Optical flow is the 2D projection of the 3D scene flow
onto the image plane. Optical flow has been around for
nearly the last three decades [7], [6] and in that time the
methods and techniques for calculate optical flow has im-
proved greatly [4], [1]. It has been shown that it is possible
to back-project the optical flow to compute the scene flow
[11].

Knowledge of scene flow can help with a number of ap-
plications including human motion capture [8] and can also
help in determining the structure of the scene [12]. Combin-
ing multiple optical flows in a single scene flow could possi-
ble detect and correct error in individual optical flows, this
corrected optical flow could then be used for better video
compression.

Traditionally calculating scene flow is done by matching
pixels across two views of the same scene. This allows the
depth information to be calculated and the two optical flows
to be combined to generate the scene flow.

Vedula et al. presents three different scenarios for calcu-
late scene flow [11]. The first scenario occurs when there

is complete knowledge of the surface of the object in the
scene. In this case, Vedula shows that it is possible to calcu-
late scene flow from a single camera. The second scenario
occurs when there is knowledge of corresponding informa-
tion between two image views and in this case it is possible
to determine the scene flow from these two views. The third
scenario is when there is no knowledge of the scene. In this
situation, Vedula shows that, by using 51 cameras, possible
scene flows can be generated and the results can be thresh-
olded to reveal the moving objects in the scene.

Tian and Shah present a method for modelling the trans-
lational and rotational motion of the objects in the scene
and the scene flow is estimated by using a 5D histogram
[9]. Torr et al. calculate matching feature points in each im-
age to calculate the scene flow for the matched points and
the scene structure [10].

This paper summaries some of the basic projection math-
ematics and multi-view geometry as presented in [5] and
customises it to optical flow and scene flow situations. We
show how it is possible, given a surface point in a scene
and two camera views of that point, to calculate the scene
flow. Four methods for combining multiple optical flow
images to generate a 3D scene flow are presented. The
first method uses background subtraction to determine the
surface points of the objects in space and then uses pro-
jection matrix to calculate the scene flow for each surface
point given the corresponding optical flow from each pixel.
The second method estimates the background subtraction
by thresholding the optical flow, under the assumption that
only the moving objects in the scene are of interest. The
third method performs the thresholding on the scene flow
instead again assuming that the areas of largest scene flow
are the areas of interest. The last method defines a 6D his-
togram space where all possible point scene flows are con-
sidered. This histogram is searched to reveal the point scene
flows where there is the most concurrence between the mul-
tiple views.



2 Notation

All calculations assume knowledge of all extrinsic and
intrinsic camera parameters. This includes the camera pro-
jection matrix Pi and the camera centre ci for each camera
i.
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 (1)
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Homogeneous coordinates are used for all 2D pixels ut
i

in the image plane of camera i at time t and all 3D points
xt in world space at time t.
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Optical flow u̇t
i is the movement of a pixel over a time

interval from some previous time t′ to the current time t
where the interval |t− t′| is assumed to be of short duration.

u̇t
i =
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Similarly the scene flow ẋt is:

ẋt =
xt − xt′

t− t′
=
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ẋ
ẏ
ż
0

 (6)

The time is usually the frame index in the video stream and
the optical flow is computed with successive frames t−t′ =
1.

2.1 Determining a 2D Pixel given a 3D
Point

A 3D point xt in world space can be projected onto a
2D pixel ut

i in the image plane by multiplication with the
projection matrix Pi.

ut
i = Pi xt (7)

Figure 1. In camera 1, a pixel ut
1 and a cam-

era centre c1 are used to calculate a 3D ray
of all possible points xt

1,u in the 3D world that
project onto pixel ut

1.

2.2 Determining a 3D Ray given a 2D
Pixel

Given a single 2D pixel ut
i, it is not possible to calculate

a single 3D point xt
i,u without depth information λt

i. It is
possible to calculate a 3D ray of points where any point
on the ray will be projected onto the given 2D pixel ut

i.
Multiplying the pseudo-inverse of the projection matrix P+

i

(defined by P+ = P>
(
PP>

)−1
) by the homogenous pixel

coordinate will results in some point xt
i,u on the ray in the

scene in front of the camera.

xi,u = P+
i ui (8)

Therefore a ray starting at the camera centre ci and con-
tinuing on through this new point xi,u describes all possi-
ble points that could be projected onto the pixel ut

i. A more
convenient way to describe this ray is Equation 10, where
~nt

i,u is the unit vector from ci to xi,u and λ is some positive
number which represents the distance between the camera
centre and the point that is being searched for. As seen in
Figure 1.

~nt
i,u =

xi,u − ci

‖xi,u − ci‖
(9)

xt
i,u = ci + λt

i ~n
t
i,u (10)

2.3 Determining a 3D Point given two cor-
responding Pixels

When two cameras are used and a pixel in each image
ut

i and ut
j are the projection of the same point xt, it is pos-

sible to calculate the 3D position of that point. The points
position will be the intersection of the two rays Rt

i,u and
Rt

j,u formed by the pixels as described in section 2.2. Un-
fortunately due to the quantisation of the size of the pixels



Figure 2. Two pixels ut
i and ut

j used to cal-
culate point xt by intersection the 2 rays Rt

i,u

and Rt
j,u. Where camera i = 1 and camera

j = 2.

and floating-point arithmetic it is quite unlikely that the rays
will actually intersect, but they will pass close to each other.
Therefore the midpoint of the two closest points x̂t

i,u and
x̂t

j,u on the two rays can be used to give an approximate
solution xt. If the distance between the two closest points
x̂t

i,u and x̂t
j,u is very large for example larger then the size

of a pixel then this may indicate that the two pixels do not
refer to the same point and there may be error in the pixel
matching.

2.4 Determining a 3D Scene Flow given
two corresponding Optical Flows

Similar to the situation in section 2.3 two 2D pixels ut
i

and ut
j with optical flows u̇t

i and u̇t
j both visualising the

same 3D point and scene flow can be used to calculate the
position of that point xt and the direction and magnitude of
that scene flow ẋt. As shown in Figure 3 the pixels can be
converted into rays Rt

i,u and Rt
j,u and the midpoint of the

two closest points reveal the position of the 3D point xt.
The optical flow can be used to calculate the last position
of each of the pixels in the previous frame ut′

i and ut′

j , by
subtracting the optical flow from the current position. These
new pixels can be converted into raysRt′

i,u andRt′

j,u and the
previous 3D point xt′ can be calculated in the same way as
in section 2.3. The vector from this previous point xt′ to the
current point xt is the scene flow ẋt.

2.5 Determining a range of possible points
and scene flows from a single pixel

Given a single pixel ut
i with optical flow u̇t

i it is possible
to calculate a range of possible points xt and scene flows ẋt

which would project onto that pixel and optical flow. Using

Figure 3. Two optical flows used to calculate
the scene flow of a point using two sets of
intersection rays. Where camera i = 1 and
camera j = 2.

Figure 4. A range of possible scene flows ẋt

given one optical flow u̇t
i after picking one

possible point xt. Where camera i = 1.

the optical flow it is possible to calculate the position of the
pixel in the previous frame ut′

i = ut
i−u̇t

i. The 3D raysRt
i,u

andRt′

i,u can be calculated for both the current and previous
pixel using the technique described in section 2.2.

The two rays can be seen in Figure 4, basically any vec-
tor that connects Rt′

i,u to Rt
i,u is a possible scene flow. The

Equation 10 gives you a range of possible points xt =
ci + λt

i ~n
t
i,u by exploring all valid λt

i. For each point xt on
Rt

i,u a range of possible previous points xt′ can be found
the same way on Rt′

i,u. The time between frames will be
very small therefore it is possible to use this prior knowl-
edge to place a maximum magnitude on the scene flow. It is
possible to calculate the closest point x̂t′

i,u on the previous
ray Rt′

i,u to the currently selected point xt on Rt
i,u. Then

possible previous points xt′ = x̂t′

i,u + λt′

i ~nt′

i,u by varying
λt′

i between plus and minus the maximum magnitude of the
scene flow.



3 Calculating 3D Scene Flow

Previously to calculate scene flow required knowledge of
corresponding pixels, this in general requires pixels match-
ing. The following four algorithms try to avoid this costly
approach and use alternative methods by either finding sur-
face points which can be projected into the cameras to find
corresponding pixels or by overlapping all possible scene
flows to find areas of concurrence.

3.1 Background Subtraction

Background subtraction is performed on each of the im-
ages to determine which pixels belong to foreground ob-
jects and which pixels belong to the background. A dense
selection of equally distributed points is generated in the 3D
world to be explored. Each point is projected into each of
the cameras using Equation 7. If all the pixels relating to a
point belong to a foreground object then the point is kept,
otherwise the point is discarded. The remaining points form
the solid shape of the object in the scene. The more cam-
eras and the more points used the better the shape will be
in approximating the object, but the more computationally
expensive it will be.

To extract the surface points or visual hull, the remain-
ing points are examined and inside points are discarded and
surface points are kept. This is done by stepping through
all the points and each time a border is crossed the point is
kept otherwise it is discarded. At this point it is also noted
which relative side of the object the point is on, this allows
the relative cameras to be selected in determining the scene
flow. The remaining points can be projected into the appro-
priate cameras using the method described in section 2.1
and then the method described in section 2.3 can be used to
determine the scene flow at that point.

3.2 Thresholding Optical Flow

Assuming that the only thing moving in the scene is
the object then the background subtraction can be approx-
imated by thresholding the optical flow results. The same
method described in section 3.1 can be used but thresholded
optical flow is used instead of the background subtraction
results. This solution suffers from problems when the scene
flow is in-line with one of the cameras. When this is the
case then very little optical flow is seen in that camera and
so it falls below the threshold, and therefore disappear in
the final estimation of the scene flow.

3.3 Thresholding Scene Flow

This time the scene flow is calculated for all the points
in the scene. The magnitude of each scene flow is measure
and the ones below a threshold are discarded.

3.4 Histogram Data

A 6D histogram is created with the first three dimension
as world position x y z, and the last three dimensions as
scene flow components ẋ ẏ, ż. For every pixel in every
camera the method described in section 2.4 is used to gen-
erate possible scene flows, for every scene flow explored
and relevant entry in the histogram is incremented.

The histogram is reduced to a 3D histogram by taking the
maximum scene flow for each point, this is because no sin-
gle point can have more than one scene flow. This new his-
togram is then thresholded reducing the points to the ones
with the highest values, these should be the surface points of
the object as that is where the maximum concurrence should
be.

4 Results

All four methods where implemented on the Human Eva
II dataset [3]. Black et al. [2] optical flow algorithm was
used to generate the optical flow for each of the four cam-
eras. The two frames for the four cameras can be seen in
Figure 5, this includes the result of a background subtrac-
tion and the thresholded optical flow. The results of the four
methods can be seen in Figure 6.

4.1 Background Subtraction

The scene flow derived using background subtraction is
shown in Figure 6 (a). This can be visually inspected and it
appears to be very accurate to when compared with the two
frames of the scene. This method does require a framework
which calculates the background subtraction. While a lot of
human motion tracking algorithms use some form of back-
ground subtraction it is not always possible to have a robust
background subtraction. So while the result is very good it
has its limitations in terms of the required prior knowledge
of the background of the scene. Figure 7 shows the differ-
ence between the original optical flow and the projection of
the new scene flow in camera four. Most of the difference
is very small, but there are bands and patches of large dif-
ference. It is unknown if this difference is due to error in
the scene flow or in the original optical flow which has been
corrected or a combination of the two.

4.2 Thresholding Optical Flow

The results of the thresholding of the optical flow can
be seen in Figure 5. When compared with the background
subtraction a good detection of objects is observed but the
edges are not as clean and some parts of the body disap-
pear. The scene flow derived from this method can be seen



in Figure 6 (b). Due to the error in segmentation the re-
sulting scene flow is not as good as when using background
subtraction but the general outline of the body is visible.
The motion of the head in camera 3 is in-line with the cam-
era therefore the head disappears in the thresholded optical
flow this therefore causes the head to disappear in the scene
flow. The advantage to this method is that no prior informa-
tion about the scene is required. In theory using some better
adaptive thresholding techniques and building information
up over time could produce better results.

4.3 Thresholding Scene Flow

The scene flow results obtained by thresholding the
scene flow can be seen in Figure 6 (c). Again this is not
as good as the scene flow derived from the background sub-
traction, but the outline of the person is visible. This method
solves the problem of the previous method of when the mo-
tion is in-line with a camera, but it still suffers where the
body is not moving, again over time this could be filled in
as knowledge of the scene builds up.

4.4 Histogram Data

The scene flow results obtained by using a histogram of
all possible scene flows can be seen in Figure 6 (d). This
results is also not as good as the scene flow derived from the
background subtraction, but again the outline of the person
can be seen. This method assumes no prior knowledge of
the scene. This method can be computationally intensive
due to the 6D histogram, and the large number of scene
flows required. To get good results requires fine tuning to
pick the correct number and sizes of each of the dimensions
of the histogram. Also the resulting scene flow is quantised
and limited to the size of the dimensions of the histogram.

One overall disadvantage of using the Human Eva II
dataset was the position of the cameras which is four cam-
eras each at a corner of a room. This arrangement means
that a surface point is only every visible from two cameras,
this only allows one estimation of the scene flow. With more
cameras it might be possible to average the scene flow over
multiple estimations and achieve a better result.

5 Conclusions and Future Work

In this paper, we have presented four methods for deter-
mining the scene flow given multiple optical flows. From
visual inspection of the results it can be seen that the back-
ground subtraction method performed the best, but the gen-
eral motion can be seen using the other methods.

Further work is required to quantify the accuracy of the
scene flow, this can be done using the motion capture data
supplied with the Human Eva II dataset. Further work is

required in experimenting with more cameras to have a sur-
face point visible to more then just two cameras. Further
work is also required to see how both colour information
and temporal information can improve the result.
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Figure 5. Two consecutive frames of the Human Eva II dataset consisting of 4 cameras also the result
of the background subtraction and the thresholding of the optical flow.

Figure 6. Results of the 4 scene flow algo-
rithms. (a) using the background subtraction,
(b) thresholding the optical flow, (c) thresh-
olding the scene flow and (d) exploring the
histogram data. The computation time for
each scenario is (a) 1.8 seconds (b) 1.4 sec-
onds (c) 7.9 seconds and (d) 117 seconds.
This does not included the time taken to cal-
culate the optical flow or background sub-
traction.

Figure 7. The scene flow result obtained us-
ing the background subtraction is projected
back into camera 4, and the magnitude of the
difference between the original optical flow
and the new optical flow is plotted.


