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Abstract—This work addresses the localization ofl 1 prominent  identification of key-points in real faces indicate that ragge
facial landmarks in :'3D.by fitting state of thg art shape models |gcalization errors are typically betweénmm and2 mm [1],
to 2_D data. Q_uantltatlve results are prowaed fo_r 34 scans 131, [6], [8], [18], [21], [26], [27]. Unfortunately, thesstudies
at high resolution (texture maps of 10 M-pixels) in terms of - L .
accuracy (with respect to manual measurements) and precision tend to involve a limited number of p.at|ents _(USU‘%JK 20?*
(repeatability on different images from the same individual). and some attempts to use automatic algorithms for this task
We obtain an average accuracy of approximately3 mm, and have reported insufficient accuracy [21]. The evaluation on

median repeatability of inter-landmark distances typically below |arger high quality datasets and a direct comparison betwee

2 mm, which are values comparable to current algorithms on a4 and automatic localization is thus required.
automatic localization of facial landmarks. We also show that,

in our experiments, the replacement of texture information by A. Related work
curvature features produced little change in performance, which =~ . ] ]
is an important finding as it suggests the applicability of the There is a considerable body of work on the detection of

method to any type of 3D data. 3D facial landmarks. We concentrate on state of the art works
providing quantitative evaluation on accuracy and/or isien,
as this allows for quantitative comparison.

We address the problem of accurate localization of distinc-Most methods for detecting landmarks in 3D are based on
tive facial points fandmark$ in three dimensions (3D). This the computation of curvature features (e.g. mean, Gaussian
is an important aspect for a majority of 3D facial analysishape-index, principal curvatures) on the range dataefeith
algorithms, as it often constitutes their initial step orra-p in 2.5D or 3D) [5], [7], [22], [25]. As the most widespread
requisite (that is sometimes addressed by manual intergcti feature, curvature has been shown to provide state of the art

Most automatic algorithms for the extraction of facial gein accuracy.
are framed within identity recognition. Due to the evolatio Approaches not based on curvature but still using exclu-
and higher availability of 3D imaging devices, this field hasively 3D geometry as input data, include the response of
experienced a considerable growth in the last decade [], [fange data when convolved with a set of primitive filters [29]
[12], [14], [30]. In this context, although some methodsuieg or Gabor wavelets [4] and combinations of features like spin
just a rough spatial normalization of the face to identifymages, distance to local plane or RBF Shape Histograms [16]
an accurate and precise (repeatable) localization of Ifacja0]. Nonetheless, they do not seem to outperform curvature
landmarks is accepted to benefit performance. Best resudesed approaches. Other approaches also employ the profile
currently obtained indicate average errors betwgenm and contours of 2D projections to detect a very limited set of key
6 mm for the most distinctive landmarks, with the exceptiopoints like the nose tip and eye corners [14], [22].
of the nose tip for which average errors slightly ab@eam Recently, some authors have suggested the use of texture
have been reported [12], [19], [22], [29], [31]. information, which is often provided aligned with the 3D

On the other hand, facial landmarks are also of interedata. For example, Zhao et al. [31] fit an Active Shape Model
for a number of clinical applications, like facial surgerfASM) to combined data from 2.5D scans and texture. Both
[23] or craniofacial dysmorphology [9]. While for identity depth (z-coordinate) and texture information are samptet a
recognition landmark detection can be considered optional three independent PCA models are built for shape, textack, a
the applications just listed their accurate localizat®worucial, depth information. The model is fit to a new instance based
as they constitute the basis for the analysis, often aimedaat a simplex minimization using normalized correlation and
detecting small shape differences. Depending on the guthgiatistical constraints on the PCA-coefficients. Comparit
localization and repeatability errors are considerediadify Szeptycki et al. [25], based on curvature, is favorable fbr a
relevant when they exceeddmm [18] or 2 mm [1]. Recent landmarks except the nose tip and inner-eye corners.
studies on facial alginate impressions (rigid reconstouct Zhang and Wang [30] also propose to extract key-points
of human heads) suggest that modern 3D scanners allodependently from texture (using SIFT) and range data (de-
for sub-millimeter accuracy [11], although results on nmalnutecting scale space extrema on shape index), although in

I. INTRODUCTION



this case the algorithm is focused @ealient points chosen initial position on the image. Subsequently, at each itenat
automatically and, in general, not necessarily coincidett and for each landmark, the corresponding appearance model
landmark definitions (the method is aimed at recognition). determines the locally best position to place the landmark.
An important advantage of the strategies proposed in [3Ihen, the landmarks are constrained by the PDM so that they
and [30] is that they allow for using well established algogenerate a plausible shape, which is used as the starting poi
rithms from the 2D domain. On the other hand, the neddr the following iteration. A predefined number of iterat®
for texture information constitutes a limitation, espdgifor are executed after which the model is assumed to be fitted.
certain clinical applications based on laser scannersravhe
only geometry is available.
In this work, we analyze the performance of a 2D ASM if\. Curvature Mapping
the localization of 3D landmarks and provide a quantitative ) o
comparison of both the accuracy and precision that can be’S Stated previously, in this paper we apply a 2D IOF-ASM
obtained when using texture or just curvature informatidi? Obtain the 3D position of facial landmarks. This is polesib
mapped in 2D. The latter is computed on the 3D mesh apaged on the mformauon provided by the 3D scanner for each
aligned back into the texture images, allowing for a dired@cial scan, which includes:

comparison of both input features. As we aim at highly e The 3D reconstruction, as a triangulated surface, with

accurate localization, the Invariant Optimal FeaturesFjlO coordinates expressed in millimeters.
variant of ASM [24] is used and our data is acquired from o Two 2D color images at0 M-pixels spatial resolution,
a high resolution scanner, which provides texture mapkat one from each side (usually indicatedresarly fronta).

Mega-pixels, considerably higher than those generallgli'se ¢ The range map relating every pixel from the 2D images
the evaluation of automatic methods, and comparable to data to the triangulated surface.

reported in clinical studies. .
Our results, based on a dataset3dffacial scans, suggest S the results from IOF-ASM on the 2D color images
can be directly mapped into 3D through the range map.

that an IOF-ASM working on 2D data can be used to |fzan t ) )

calize most salient facial landmarks at an average accuraac?/d't'on?‘”y’ we also generated 2D images with curvature
of approximately3 mm, and its precision, measured as thi ormat!on aligned to the 2D color images. The curvature
repeatability of inter-landmark distances, is typicalisidw 2 information was computed on the 3D surface mesh for every
mm (median values). We also show that, in our experiment€tex based on the method developed by Meyer et al. [13].

the replacement of texture information by curvature fazatur | Nis method offers a theoretical justification and is parieme

produced little change in performance, which is an impartaff€®: @s opposed to other works requiring the definition of
ighborhoods or smoothing coefficients. Additionallye th

finding as it suggests the applicability of the method to arf}® ; ; ye H
type of 3D data. Curvature sign was computed based on the relative direction

between the curvature vectors obtained as indicated by Meye
IIl. METHODOLOGY et al. and the normals enforced pwmint outwardsfrom the

This section provides a brief overview of the Active ShapgPiect.

Model with Invariant Optimal Features (IOF-ASM). The Once curvature was computed, we mapped it into the 2D
reader is referred to [24] for further details. images by using their corresponding range maps. The value
An IOF-ASM is composed of one shape model or PDNssigned to pixep, whose 3D position indicated by the range

(Point Distribution Model) and as many appearance moddRap isR(p) is:
as the number of landmarks composing the shape. Both the
shape and the appearance models must be trained from a set _Iv=R@)?
of annotated images where a set of landmarks (or key points) K(p) = Esp K(v)e K
define the contours of interest. b)= _Iv=R@I?
The shape model is trained by Principal Component Anal- ZBP € K
ysis (PCA) on the landmark coordinates from the training set
which results in a set of global constraints about the @tati where B, is the set of all mesh vertices within 3o
cal) plausibility for any given shape. On the other handhearom R(p) and x(v) is some curvature measure at vertex
appearance model works as a local classifier based on imageThe numerator simulates aaperture with a Gaussian
data. The inputs to the classifier are features based ore{scaleighting and the denominator provides the normalization
space) image derivatives computed in the neighborhoodeof flactor independently of the number of neighbors that fall
landmark. Those image derivatives are appropriately coetbi within 3,,. We choserx = 0.33 mm, a value that is similar to
to generate differential invariants to rigid transforroas. the resolution of our scanner and which resulte8jrtypically
When the IOF-ASM is used for segmentation, only twincluding only one or two vertices. The choice was aimed at
inputs are required: an image containing a face and a giartavoiding the loss of detail due to smoothing, at the expense
guess of the face position (e.g. provided by a face detaxf-accepting considerable noise on the input data. An exampl
tor). The process begins by placing an average shape at dfiehe resultingcurvature-imagess shown in Fig. 1.




A. Model-to-image adaptation

Fig. 2 shows the average accuracy of the model to image
adaptation, measured as the point-to-curve distance batwe
the landmarks automatically found by the model and the man-
ual annotations. Error values are color coded per landmark,
which were arranged in a 205-point template based on the
one from PUT database [10] plu® additional landmarks to
cover the upper part of the nose.

The results correspond to the average fronthshapes ob-
tained for the right-profile images. The overall mean (ageda
over all landmarks) and standard error wer23% =+ 0.16%
for the texture-based model arl64% + 0.27% for the
curvature-based model (measured as percentage of the inter
ocular distance, which would correspond 160%). In both
cases, the overall initialization error wa$.7% +7.2%, which
seems a reasonably rough starting point for the models.

It can be seen that the accuracy from texture and curvature
1. RESULTS models is similar. However, the latter shows higher errors
toward the face side that is furthest from the camera (left in

hTests were performed '?3'4 facial scans acquwe_?f With ahis case). This occurs because, even though the curvatare ¢
photometric stereo scannercorresponding ta25 different o o4y obtained for all parts of the mesh (it is computed

persons. The dataset includes spontaneous expressith (i, 3p). there is an increased difficulty to estimate the 2D-3D

neutral,24% happiness]5% other) and some important poS€y555ing to that area, including possible occlusions. Hewev

variation in nodding IQ%_ strongly facing _UD' On t_he other this is not a concern as the other camera of the stereo system
hand, there are only residual head rotations to either S'de'_provides a complementary (mirrored) behavior.

Three different methods were used to localize the facial

Fig. 1. Example of mean curvature mapped into the 2D view of aestibj
using Gaussian windows with standard deviatio83 mm.

landmarks:

« Manual annotation in the 3D surface, with the textur o )
mapped into the mesh triangfeso be used as ground & 005 ﬁ 05
truth. 0.04 0.04

e |IOF-ASM segmentation of the 2D input images used fo e 003 aaiiie 003

the stereo reconstruction. This method is referred in tt
plots asTexture-based
e |IOF-ASM segmentation of the curvature mapped intc

the images used for the stereo reconstruction. Thi
9 F%. 2. Point-to-curve error of the model-to-image adaptatin 2D,

method is referred in the plots &urvature-based normalized with respect to the inter-ocular distance (whictuld correspond
The results that are presented in this work were obtainidt-0). for the texture-based (left) and curvature-basigtht) models.
using only the mean curvature. Together with Gaussian eurva
ture, mean curvature would provide a complete representaty 3 Accuracy
from which we could derive any other related property (e.g.

principal curvatures, shape index). However, in our experi F19- 3 shows the accuracy of both texture-based and
ments, adding Gaussian curvature did not significantly ghancurvature-based results. Distances were measured witkaes
the manual annotations for a total ®f scans, in &-fold

performance, but it rather showed a tendency to increase e )
outliers. We believe this might be due to the higher serissitiv cross validation. Since there are repeated scans for the sam

of Gaussian curvature to noise, when compared to melgrson, it was made sure that no subject was included in both
curvature ’ test and training sets at any time.

Experiments based on IOF-ASM segmentation need a suitlt can be seen that the median localization accuracy for
able initialization consisting on a rough localization dfet eyes and mouth landmarks is betweéemm and3 mm, while

face. We have not addressed the automatization of this porthse. points e?<h|b|t errors that can excekedim. It is worth .
and initialization was provided manually. Nonethelesssid- pointing that, in 2D images (wh|gh are the dqta used to train
ering that the segmentation is performed on 2D images offif models)pronasaleand bothnoistril-base pointsare more

single person, state of the art methods for face detectien Q]mblguous fpr manu_al annotation than !tssbnasalewhlch
known to provide excellent performance for this task [15]. correlates with the higher accuracy achieved for the latter
Regarding the comparison between texture and curvature,

1Di3D FTPO01 Scanner (Dimensional Imaging Ltd., Scotland). d_ifferences are neg"g_ible for most of the_ points. Excep-
2We used Di3DView software (Dimensional Imaging Ltd., Scadlan tions arelabiale superius more accurate with texture, and



TABLE |

Inter-landmark distances

LANDMARK DEFINITIONS AND ABBREVIATIONS — ; : ; ;
— Manual +
Name Abbr | Description 9[| — Texture b3 1
Cheilion ch | Mouth corner(s) (labial commissure) _ g Curvawre] 3 |
Exocanthion ex Outer eye-corner(s) E . . +
Endocanthion en Inner eye-corner(s) 8 T . . . . ]
Labiale superius| Is Upper-lip midpoint on the vermilion line Se o7 i [ ]
Subnasale sn | Midpoint at which the nasal septum merges S, 1, b A |
with the upper lip (midsagittal plane) 8 ST : I [ HEEF

Nostril base nb | Inferior terminal point of each nostril axis 8§ ar o A I A S A SR SRR G
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Fig. 4. Repeatability of the measurements finter-landmark distances
from the eyes and nose regions. Landmark names are indicdledifg the
abbreviations from Table I.

o H THE HR g‘ ' QB BH ] A. Accuracy
il ﬁg gg i g QH 8 'L i Table Il provides a list of reported results on landmark
ob ot “: S T T A L localization measured as the average distances to mama an

exR enR enl ext chL Is chR pm mbR sn bl tations, which are used as ground truth. Errors are spedfied

a per-landmark basis, according to the abbreviations geali

_ ' _ in Table |, with the exception ofilare points (al), which
rotations for11. landmarks, folowing abbreviations from Table 1. For2r defined as the most lateral points at each alar contour of
symmetric landmarks, éft or Right are additionally indicated. the nose. Althouglalare and nostril baseare distinct points,
some works provide results on more vaguely defined points,
indicated asose cornersso we have decided to group them

pronasale more accurate with curvature, the latter fact coirinder the same column. We have also merged (in this case

ciding with results previously reported by Zhao et al. [31]. by averaging) the results for symmetric (i.e. left and rjght
landmarks, as there should not be a fundamental difference i

their localization accuracy.

Most papers in the list have been tested on subsets of FRGC

Fig. 4 provides a measure of precision for all three method#atabase [17]. The 3D scans in this database are of consid-
Taking advantage of the fact that our dataset contains tegheaerably lower resolution than our scans: the average distanc
scans for some of the participants, we measured the differefetween eye centers in FRGCI1i80 pixels, while in our case
between inter-landmark distances computed on pairs ofsscéris above500 pixels. This is an important consideration when
belonging to the same individual. We identifi8@ scan pairs analyzing the results from Table Il. However, as showed @ th
that can be compared. As the scans presented consideralebe section, we did not observe a significant improvement in
variations in facial expressions we restricted oursel@s the precision of manual localization as a consequence hehig
8 measurements involving eyes and nose points (as thedsolution. To some extent, this is also observed in thetsesu
distances are acknowledged to be less sensitive to fagabvided by Segundo et al. [22], who obtained comparable
expression). accuracy on FRGC (texture maps @0 x 480 pixels) and

It can be noticed that, in most cases, the repeatabillBU-3DFE [28] (texture maps of approx300 x 900 pixels).
of the two automatic methods is comparable to the manualAs the title of Table Il suggests, when a paper reported

©
T
+

3D Point-to—point distance [mm]

C. Precision

annotations and the medians rarely exceéedm. results on more than one dataset or method (which is the case
of [12], [16], [22]), we chose to include the most accuratesn
IV. DISCUSSION An additional list of works analogous (but complementary) t

Table I, can be found in [16], although their performanceswa
In this section we discuss the results presented abovealways below the one reported by Perakis et al. themselves.
the context of other works that have reported quantitative With the above observations in mind, it is clear that the
evaluations. We focus on state of the art papers providiegmparison provided by Table Il must be taken carefully.
average localization errors, and do not include resultedadNonetheless, it suggests that our results are comparable to
on percentages of accurate detection (i.e. error belowtaiser the best methods currently reported for all of the analyzed
threshold) as they are more difficult to compare. points butpronasale Unfortunately, the size of our dataset is



TABLE I
BEST REPORTED AVERAGES ON LANDMARK LOCALIZATION ERROR$MM]

Method ch en ex Is sn | nb/al| pm
IOF-ASM (texture) 3.2 2.3 3.3 24 | 2.9 5.1 4.9
IOF-ASM (curvature) | 3.0 2.3 3.5 2.5 | 3.5 5.3 4.7
D’Hose et al. [4] - - - - - - 3.17
Lu and Jain [12] 6.1 8.05 | 9.9 - - - 6.1
Perakis et al. [16] 6.03 | 5.31 | 5.76 - - - 4.88
Segundo et al. [22] - 3.52 - - - 5.34 1.87
Szeptycki et al. [25] | 8.56 | 3.85 | 2.82 - - 6.18 2.27
Yu et al. [29] - 5.17 - - - - 2.14
Zhao et al. [31] 3.93 | 3.21 | 4.27 | 2.72 - 4.47 2.68

considerably smaller than the other works listed in theetabHeike et al. [8] ¢ = 40) and ourselves. Indeed, the results by
ranging from one to several hundreds of facial scans. Heike et al. are the closest ones to ours.

The reason for the lack of accuracy in the localization of It should also be noticed that the numbers reported on Table
pronasalecould be found in the training data for IOF-ASM,III are not directly comparable in all cases. The majority
which was obtained by manual annotation of the ®Rture of them report the difference between direct anthropometri
images, whichi) are nearly frontal, making it difficult to measurements and image-based measurements performed in
accurately determine the nose tip, aigl provide very weak 3D, usually with the help of visible marks on the facial
texture patterns for most of the nose points. In this aspestirface to facilitate the localization of some of (or alleth
the correction of 2D landmarks based on 3D and/or curvatuesdmarks. In the case of Heike et al. the authors reported
information could be beneficial. Nonetheless, it is a paéntinter- and intra-observer variabilities, as well as integthod
limitation of the method and it might be preferable to use a@lirect vs image) differences. We believe the inter-observ
alternative strategy for this particular point, as it isegpd variability provides the most fair comparison to our resuit
to be the most accurately detected by several other metho@isbased on the independent identification of landmarksén th

Among works not included in the table, we shall highlightame image by two different observers, while in our case the
those from Romero and Pears [19], who report median RM@me observer identified the landmarks in two different iasag
errors around3 mm and5 mm for pronasaleand endocan- (from the same individual). Additionally, inter-methodlwas
thion(s) and Gupta et al. [7] who report only the standareeported by Heike et al. were provided as averaged (signed)
deviation of the localization error (far0 facial landmarks). It differences, not fairly comparable with the absolute agesa
is unfortunate that the averages were not included in therlatreported on the table (the same applies for the results tespor
work, as the reported standard deviation values are sittilarby Schimmel et al. [21]). Nonetheless, we shall point out tha

those obtained by the most accurate algorithms. some of these inter-method differences showed considerabl
o larger errors than the inter-observer ones (for examptethto
B. Precision biocular distance the average errors were closg tam).

An important question when evaluating the localization Apart from inter-landmark distances, the repeatabilityhef
accuracy is the repeatability of the measurements, inclddndmark coordinates has also been widely reported. Again,
ing those obtained manually as this indicates the quality pbpulation sizes tend to be small and results from different
the ground truth. Several works address this problem, baththors do not completely agree. While Plooij et al. [18]
from the perspective of image-based measurementslisact report inter-observer averages bel6vs mm for 80% of the
anthropometry (i.e. measurements derived from a calip@andmarks (from a total ofl9 points in 20 patients), Toma
measuring tape and so on). et al. [26] report averages betwe&®b mm and 1.5 mm

Table Il provides a list of recent papers reporting théor all landmarks (a total of21 in 30 patients), with the
average absolute differences for inter-landmark diswncenly exception oflabiale superiuswhich was located with
together with the results of our own manual annotationgn average error af.39 mm.

Analogously to our accuracy comparison, we merged bilatera On the non-clinical side, Zhao et al. [31] provide the
measurements (by averaging). As explained earlier, dueeto tocalization error for15 landmarks onl0 facial scans from
variations in facial expression we constrain our compariso FRGC, averaging the manual annotations frbimobservers.
landmarks on the eyes and nose. Their results show manual errors betweemm and3 mm

The first thing to notice is the large dispersion of the valuder landmarks in the eyes and nose, except for vaguely defined
reported by different researchers. It is surprising, faregle, points such asose cornerswhich were found less accurate.
that errors for the intercanthal widtlerf-er) are larger than Although a comparison between these results and errors of
the biocular width éx-ej in half of the works collected in the inter-landmark distances is not necessarily direct, it ban
table, while the opposite holds for the other half. A possibkeen that the magnitude of the errors are similar to the ones
explanation can be found in the relatively small populatze@ from our manual annotations, in spite of the big differences
of most works, not exceeding) cases, with the exception ofin spatial resolution.
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TABLE Il
REPORTED PRECISION ON MANUAL MEASUREMENTS OF INTERANDMARK DISTANCES [MM]

Method en-en| en-ex | ex-ex | en-pm | nb-nb | al-al | pm-sn
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