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Abstract—Structural information available from the granu-  ployed in [19] to classify grey scale Brodatz texture images
lometry of an image h_as been_used widely in image texture [20].
analysis and classification. In this paper we present a methb GLCM is a statistical approach to texture classification

for classifying texture images which follow an intrinsic ordering - . ) . .
of textures, using polynomial regression to express granaimetric which characterises the spatial relationships betweeriag

moments as a function of class label. Separate models are hui levels of pixels, and has proved useful in various texture
for each individual moment and combined for back-prediction of ~ classification applications because of its ability to eottra

the class label of a new image. The methodology was developedspatial information. GLCM features were used in a self-
on synthetic images of evolving textures and tested using ak organising map in [21] to classify Brodatz texture images

images of 8 different grades of cut-tear-curl black tea lea@s. . e )
For comparison, grey level co-occurrence (GLCM) based feates with 97% classification accuracy. GLCM features and linear

were also computed, and both feature types were used in a rapg discriminant analysis (LDA) were successfully used tosifgs
of classifiers including the regression approach. Experimgal colour images of colon cancer in [22]. These features were

results demonstrate the superiority of the granulometric moments  also found to be useful for classifying colour texture inmge
over GLCM-based features for classifying these tea images. in [23]

Index Terms—Granulometry, pattern spectrum, structuring

element, ordered texture, tea granule images In this work, we considerordered textures We define

ordered textures as those which can be ranked according to
some scale of fineness or coarseness, or by size of texture
primitives (shapes) in the images. Building on [18], we de-
Many methodologies have been proposed to determine theop a regression-based classifier by modelling granuigene
physical/chemical properties of foods, using chemom&trianoments or GLCM features as a function of texture class label
pattern recognition and/or image analysis techniques[H-g A cubic polynomial regression is fitted for each chosen featu
[8]. Applications of digital image processing techniques aseparately, and then a combined cubic polynomial regnessio
expanding rapidly in the food processing industries. obtained for back-prediction of the class label of a new ienag
Here we investigate the advantages of granulometric mgsing its observed features. Several classifiers, i.e. postip
ments over GLCM-based features for classifying 8 differenector machine (SVM), LDA, a feed-forward neural network
grades of tea images. Granulometries extract shape-bade@-NNET) and the regression classifier were employed using
textural information, hence are useful for analysing ardgit the same sets of features to compare their relative clastsific
fying shape-based images. Originally developed by Matheraccuracy.
[9] in the binary case to characterise the size and shapd-or testing, we use a sequence of cut-tear-curl (CTC) black
information of a random set, the granulometric approach wesa images (Figure 1) representing 8 different grades obftea
extended to the grey scale case by many others, e.g. [1@]fferent granule sizes as used in [5]. The images were dorte
[14]. It has been used extensively in texture analysis awtsually according to their granule size and were labelled a
classification. For example, granulometric moments weeelusclass 1 to 8, from the smallest to the largest granule size, so
to characterise evolution of a dynamic process concernitigat the tea granules increase in size between the cladses. T
paint drying in [15]. Binary images of the corneal endotineli next section briefly describes the methods used in [5], with
were classified as normal or pathological cases in [16] usisgme other work relating to tea images.
the granulometric size distribution of the images. The first
two granulometric moments were used to classify white blodt Related work
cells in bone marrow images in [17]. Evolving texture images Sorting of tea into different grades according to granute si
of corrosion were classified using granulometric moments ligya very important task in the tea processing industry. hs
means of a parallel evolution function in [18]. A combinatio traditionally been carried out by sieving with a series ef/ss
of opening granulometnand closing granulometrywas em- of differently sized mesh, however recently some reseasche

I. INTRODUCTION



have investigated texture analysis and classificatiomigales with size smaller than the sieve mesh drop out and only
to develop a more automated approach. Some recent worlgiains with larger sizes remain. The shape of the holes is
summarised here. determined by the shape of thsructuring element(SE),

Indian CTC black tea granules comprising eight grades which is a geometrical pattern used to extract texturalrinfo
tea from different tea gardens in Assam, India were classiation from a given digital image [25]. That is, if image
fied according to granule size in [5]. Four-level pyramiddé opened sequentially by a series of SEs of increasing size,
decomposition using Daubechies wavelets was applied to edgs, ¢2,...,9n}, at each stage of opening the finer details
grey scale image. Initially, energy and entropy from eaahill successively be eliminated and the volume (sum of pixel
of four approximation sub-bands were used as featuresiiensities) of the input image will reduce eventually toae
principal component analysis (PCA) and the self-orgagisine. Q(1) > Q(2) > ... > Q(N), whereQ(j) is the image
map (SOM) clustering technique, however these were unabtdume left after thej** opening. This decreasing sequence is
to clearly separate the grades. A pair of most similar imagealled thesize distribution[13].
from each grade were identified using Mahalanobis distafice o Normalising the size distribution as(n) = 1—Q(n)/Q(0),
their feature vectors, and one of these images was selestedvhere Q(0) is the original image volume, gives a cumu-
a typical image from that grade. New features were calcdlatitive distribution function (cdf) which rises monotonliga
as the Mahalanobis distance of a given image to the chosesm 0 to 1 as the size of the SE increases. Its derivative
typical image in each grade. With the new distance featurds(n) = d®(n)/dn is a probability density function (pdf),
PCA and SOM were able to distinguish the grades bettegferred to as the pattern spectrum (PS) [26]. As a pdf, s ¢
Two different neural networks, a multi-layer perceptionL®) be summarised by its statistical moments. In the discrete,ca
and learning vector quantisation (LVQ), were trained usintye scaling factom is an integer, so then!” granulometric
700 images and tested on anothii0 images, and achieved moment may be calculated as
74.67% and 80% classification accuracy respectively. In this N
paper, we apply our methodology to some of these same i = an@/(n).
images below, with much improved results. " ot

Hyperspectral images of five grades of roasted green tea
leaves were classified in [4]. Four texture descriptors,elgm Ve use these moments to compute the mean- u,
mean, sd, energy and entropy, were computed from 3 optimgfgndard deviation (sdy = /v5, skewness and (excess)
waveband images (chosen by PCA), and used as featuregqﬁos'S ofd’(n), calculated from the central moments —
a SVM, with 95% correct classification. In [7], six different anl(” — p1)™®'(n). The skewness iss3/0”, and kurtosis
classes of tea were used. The discrete cosine transform Wit/ — 3. We refer to these four moments below as the PS
used on multi-spectral images (red, near-infrared (NIRJ afhoments. These moments contain useful textural informatio
green bands). Using the standard deviation (sd) of eacht@fcharacterise the texture images.
the original or filtered NIR images with a SVM producedB
73.33% or 100% correct classification respectively. Fivie di~
ferent grades of Chinese green tea brands were classifiegl usi The GLCM is aG x G matrix whereG' is the number of
multi-spectral colour images in [8]. GLCM features complitegrey levels in the original image. The entty(i, j) of a GLCM
from wavelet decomposition of each of the three image the frequency of grey levelsand;j of pixels separated by
colour planes were used with LDA, giving 100% accuratiéter-pixel distanced and lying on a line at angle to the
classification. Four different categories of Chinese green reference direction of the image. To reduce the sparsithef t
were distinguished using entropy values calculated frortimu GLCM, the original image is often quantised first to some
spectral images in [6]. A least squares support vector machlower level, e.g. 8, 32, or 64 [27]. The normalised GLCM
produced 97.5% to 100% classification accuracy. p(i,j) can be obtained by dividing'(i, j) by the sum of its

entries as

Grey level co-occurrence matrix (GLCM)

Il. METHODOLOGY

Texture classification involves a step to extract features f o o ¢
the image under study, and a classification step, in which a p(i.g) = Ci.5)/ Y Y C(k.D),
texture class membership is assigned to the image, based on h=1i=1
information provided by the extracted texture featuresulgh whereG is the number of grey levels after any quantisation.
appropriate machine learning algorithms [24]. This sectio Haralick et al. [28] proposed extracting some features from
describes the feature extraction techniques and classifead the GLCM for more compact texture representation, inclgdin

in this work. 1) Maximum probability :max;  p(i, ;)
G =G a2
A. Opening granulometry 2) Energy 1>, >, p(i.j)

. G a iy .
As a texture image can be considered as a collection of3) Entropy : 22,21 252 p(4:5) logp(i, j)

~G . . .o
grains [13], the concept dfpening granulometrys to sieve ~ 4) Contrast .’ %:1(26;—])2?(?7])
the grains through filters of increasing size, so that grains5) Homogeneity ;" > ., ﬁ(ﬁﬁ)ﬂ




6) Correlation : -
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We also use these below as texture features for classificatio re-multiplying by( Bo)' gives
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Let Yi(c), i = 1,2,...,p, ande¢ = 1,2,...,K be the (Y =Bo) (Y =Bo) = (Y =Bo) [ B B2 Bs ] z

w

average value of thé'” feature for the images in the'®
class. A regression classifier is built by modelling eachaye a cubic equation ir of the form A, 3+ Ayc® 4+ Azc+ A4 = 0.
feature separately as a function of class label using a cubigositive real root of this equation is used as the predicted
polynomial regression model, written as: classc. Where there is more than one positive real root we
choose the smallest one (as was appropriate in all our tigaini
, . . . examples). If none of the roots are positive and real the atkth
Yile) = B + B v e+ g s 24 80« P+ &, (D) tails to predict the class, and we choose the first class as the
gredmtlon
We employed SVM, LDA and FF-NNET as benchmark
methods to compare the performance of this regression ap-

where the parametefsterms are estimated using least squares
and the¢; are error terms.
For a single featureé the model is of the form:

proach.
Developed by Vapnik and Cortes [29], SVM is a very
Yi(1) B + 5‘ )c + ﬂ( )2 4 g3 - powerful classification technique, which is robust in proidg
Yi(2) B 4 e, + B c§+ﬂ‘) 3 €2 high classification accuracy even in high-dimensional data
: = . + - |- spaces with non-linearly separable classes [30]. Its #ieor

Yi('K) @ A L@ o ex icgl f_oundation is based on the structural r_i§k minimisatio
0+ 8 e + 0y i + 08 ke principle [31]. We used the one-to-one classification appho
For p such features, a combined fitted model relating eaér this multiple class problem, and tuned the choice of &grn
feature to class is formed as: any associated kernel parameter values and the cost paramet
used, in the SVM training for optimum classification results
. (1) 1) ()2 4 4D We also used LDA, which assigns a new feature vector to the
Yi(c) + 61 e+ By e + B class with maximum posterior probability, assuming noityal
Ya(c) (2) ﬁ(2)c—|— 622)c2 + 632) 3 of the class conditional distributions and a common within-
: = . (@) class feature covariance matrix [32]. A FF-NNET with single
S0 A A 2 . A®) 3 hidden layer is also used [30], with the number of neurons in
Yy(¢) Bo  + B e+ Py e+ P3¢ the hidden layer optimised in training. The R software pgeka
A was used for SVM, LDA and FF-NNET with libraries1071
or ¥ =BG, where MASSand nnetrespectively.
The prediction abilities of the classifiers are assessatjusi
3(()9 3§1) gél) 3§1> misclassification rate and mean absolute error (MAE), ddfine
B(()?) 3(2) B§2) B§2) as:

w>
I

MAE = Z |tpred tfzct|7 (4)

B('p) B(.p) B(.p) B('p)
0 ! 2 3 wheren is the number of images for which the class is to
is ap x 4 matrix andC = [1, ¢, ¢?, ¢*]" is a4 x 1 vector. This be predicted, anc{;red andt! ., are respectively the predicted

combined model is used for prediction. class label (rounded if necessary) and the actual claskdébe
The above can be re-written as image:.
I1l. APPLICATION TO TEA IMAGES
Yi(c) 5D gy g ey A. Data description
Ya(c) 3(2) 5(2) /3(2) 3(2) c ) X ) ] _
2 _ 0 _ 1 3 2 Each image is a colour image of si2@00 x 3008. The eight

: : : 3 " different classes are BOPL (Broken Orange Pekoe Large),

ffp(c) B(p) B(p) ﬁ(p) ﬁ(p) BOP (Broken Orange Pekoe), BOPSM (Broken Orange Pekoe
0 1

Small), BP (Broken Pekoe), PF (Pekoe Fannings), PD (Pekoe
or, using matrix notation, as: Dust), OF (Orange Fannings), and Dust, and the approximate



diameters in mm of the granules a2é), 1.7, 1.3, 1.0, 0.5, g
0.355, 0.25 and Not specificrespectively [5].

We obtained training and test sets by extract¥g? size
images from each of the original images and converted them
to grey scale. Fifty non-overlapping sub-images were esdih
from one image from each class, giving a totak6f sample
images. One sub-image from each class is shown in Figure 1 R S VLI S R
t(l) show the progression in size of the tea granules over the (@) PS mean (b) PS sd
classes.
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Fig. 2: Average PS moments, of &l top-hat sub-images from
each class, plotted against class, for square and disk SEs.
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Fig. 1: Sample grey scale tea images of st#62, one from
each of the eight tea classes.
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There exists substantial variation of intensity within gaa.
To improve this, top-hat transformation was applied as a pre

o3 ~+-0 degree
o 45 degree

age Contrast

processing step in order to suppress dark parts and highligh a“: T Saege

bright parts of the images. Since granule size increases ovein: T L dearee
classes, a disk SE of increasing size is used in the top-ha - - . | | y L fos e
transformation. Then we applied granulometry using a sguar T Diferemtciasses T Diferentclasses ¢
and a disk SE and computed the first four PS moments of (c) Average Contrast (d) Average Correlation
the pattern spectrum from each SE. Average PS moments ar e T e
obtained using all sub-images from each class and are glotte | . 750 degree RN
against class in Figure 2. The PS mean and sd using all SE:z+ ., e 2 LT T e

o 45 degree
-+ 90 degree
—=—135 degree

increase with class, while skewness decreases, thoughdor t
disk SE the decrease is very slow. Kurtosis for both squares..~
and disk SEs is negative and increases slightly with class.

These PS moments are then used as texture features fc :
predicting the class of a tea image. We implemented the
regression approach (REG), SVM, neural network and LDA
as classifiers and compared their efficiency. Fig. 3: Average GLCM features against class for the grey

We then computed the six different GLCM features iﬁ?ale t.ea images, using _quant_isation level 8, a single-inter
Section Il from each of thé0 sub-images from each clasgiX€! distance and four orientation8®( 90°, 45° and135°).

at quantisation level 8 for four different orientations and
separation 1, and averaged these over all sub-images. The
average features are plotted against class in Figure 3ojBntr
and correlation increase with class. Maximum probabilitg a A- Results for PS moments

energy decrease with class, but no trend is clear for cdntrasWe used the first four PS moments for the square and disk
or homogeneity as a function of class. SE separately and then jointly as features, and employed all

14
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IV. EXPERIMENTAL RESULTS



classifiers to classify the tea images according to granmde s cost of 1 or higher giving best results). Results are listed i

For all classifiers, 70% of the sub-images from each class wémable 1.

randomly chosen as a training set and the remaining 30% subThe MAE and proportion of test images misclassified are

images were used as a test set. The process was repeatediffeyent in this case, as some of the predicted classes are m

times and the results were averaged over the 10 runs. than one unit away from the actual classes. REG produced the
Table | shows that the SVM attained 100% correct clasdiighest MAE, and SVM the lowest. Again SVM is best, with

fication using the 4 PS moments computed from a disk SE classification error, compared to 86.1%, 55.9% and 57.3%

or a square SE, or both (using a linear kernel and cost @fror rates respectively for REG, LDA and FF-NET. All except

1 or more for optimal results). The other classifiers produ@&/M are much poorer using the GLCM features than using

lower error rates using the PS moments from the disk SE théme PS moments.

the square SE. We also investigated using the moments from

both the square and disk SEs, which gives similar results tABLE I1I: MAE and proportion of test images misclassified

the disk SE. (FF-NNET used 4, 10 and 10 hidden Neurofsy all classifiers using 4 GLCM features.

respectively in the cases of the square SE, disk SE and both).

Selection of an optimal SE depends on the geometric shapes Class R MAL'T‘DA -
we attempt to extract from the image. Tea granules are more 1 1.867 0 0.000 0.000
likely to be a disk shape than square, so we would expect 2 2.360 0 0.967 1173
better classification using a disk SE 3 2813 0 1.293 1.247
' 4 3.213 0 0747 0.933
5 3.067 0 1.813 1.487
TABLE I: Overall proportion of test images misclassified by ? g:gg; 8 iggg iggg
all classifiers, using different sets of PS moments. 8 2.826 0 1.233 1.640
Overall | 2.791 0 1.175 1.199

SE REG SVM LDA FF-NNET Class Proportion misclassified

Disk 0123 0 0.009 0.012

SquareDisk | 0129 0 0.003 _ 0.008 > | oo o Q008 000
3 0.853 0  0.680 0.647
) ) i 4 0.980 0 0413 0.540
Therefore we computed class-wise proportions of images 5 1.000 0 0.887 0.800
misclassified, and MAE as in (4), for all classifiers using the g g-g% 8 8-%3 g-ggg
4 .PS mqments from the disk SE (Tablg I1). The proport!ons 8 0.880 0 0433 0.613
misclassified and the MAEs are identical, as the predicted Overall | 0.861 0 0.559 0573

classes are at most one unit away from the actual classsesult
The SVM classifies perfectly, LDA is next best (a 0.9% error
rate), then FF-NNET (1.3% error rate), and then REG with a V. SUMMARY AND CONCLUSIONS

9.9% te. . . . o
o error rate This work provides greatly improved results of classifying

these tea images compared to the results of [5], for all of
the classifiers used. Our highest misclassification ratefaras
the regression approach (9.9%), and the lowest was 0% for the

TABLE II: Class-wise and overall proportion of test image
misclassified for all classifiers using 4 PS moments from

disk SE. SVM, using PS moments from the top-hat transformed images,

Class Proportion misclassified whereas the error rates in [5] for the MLP and LVQ classifiers
. c?g(?o S\(/)'\" '6%/30 FF'(')\'S'OEOT are25.33% and20% respectively. Their results are not exactly
> 0000 O 0000 0000 comparable to ours, as we have extracted our own sub-
3 0.020 0 0.000 0.000 images for algorithm development and testing. Nonetheless
4 0.000 0  0.000  0.000 conclude that extracting shape-based information frontehe
5 0100 0  0.000 0.000 e i directly b f holoical techni
6 0160 0 0000 0.020 granule images directly by use of morphological techniques
7 0.220 0 0.030 0.046 provides very useful features for texture classificatioramy
8 0290 0 0040  0.033 of a range of classifiers.

Overall | 0.099 0 _ 0.009 0.013

The key step in getting successful results from the PS
moments for the tea images was to use the top-hat transform
with a disk that increases in size for classes with larger
B. Results for GLCM-based features tea granules. It was found that PS moments computed from

We also used 4 GLCM features, i.e. entropy, maximuthe top-hat images obtained using the same size disk SE
probability, correlation and energy, computed at quatitivsa over all 8 classes produced very high classification error for
8 and 135° orientation for classification. The same trainingnost classifiers. For example, using a disk of radius 17,
strategy as above was applied for all classifiers (resuitiffy REG, SVM, LDA and FF-NNET using the same settings as
hidden neurons in FF-NNET, and a linear SVM kernel with before produced error rates of 90.5%, 0%, 63.4% and 70.3%



respectively, whereas using increasing disk size in thehtiip [13] E.R. Dougherty and R.A. LotufoHands-on Morphological Image
transformation most of these classifiers achieved perfect o Processing SPIE Press, Washington, USA, 2003. .
f | ificati [14] J. Goutsias, H.J.A.M. Heijmans and K. Sivakumaiorphological
near pertect classi '9at'on accuracy. o operators for image sequencge¥ournal of Computer Vision and Image
PS moments provide much better classification than GLCM Understanding, 62(3) (1995) 326-346.

features for these images. It was also found that a highet lel#5] A Mavilio, M. Fernandez, M. Trivi, H. Rabal and R. Adga, Char-
acterization of a paint drying process through granulorieetinalysis of

of quantisation does not guarantee better classificatisuites speckle dynamic pattem8ignal Processing, 90(5) (2010) 1623-1630.
[27], as GLCM features computed at quantisation level 646] M.E.Diaz, G. Ayala, R. Sebastian and L. Martinez4@p&ranulometric

produced higher error rates for all classifiers except SVM. ~ analysis of corneal endothelium specular images by usingrangand
grain mode] Computers in Biology and Medicine, 37(3) (2007) 364-375.
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