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Abstract

Resource pools are collections of computational re-
sources which can be shared by different applications.
The goal with that is to accommodate the workload
of each application, by splitting the total amount of
resources in the pool among them. In this sense, utility
functions have been pointed as the main tool for
enabling self-optimizing behaviour in such pools. The
goal with that is to allow resources from the pool to
be split among applications, in a way that the best
outcome is obtained. Whereas different solutions in this
context exist, it has been found that none of them tack-
les the problem we deal with in a total decentralized
way. In this paper, we then present a decentralized
utility maximization approach for adaptive and optimal
management of shared resource pools.

1. Introduction

Resource pools are collections of computational
resources (e.g., servers) which can be used by dif-
ferent applications in a shared way [1]. The goal
with that is to accommodate the workload of each
application, by splitting the total amount of resources
in the pool amongst them. This is possible through the
use of Resource Containers [2], an abstraction which
encapsulates a certain amount of resources, making
it available to a specific application. In many cases,
applications have QoS parameters that have to be met.
Therefore, the resources available to them should be
such that their QoS parameters are met, if possible.

The problem in this scenario is that the workload
of the applications is likely to vary over time, and
as a consequence, their resource demands will vary
too [3][4]. Statically-defined resource shares, based for
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example on average or worst-case scenarios, are not
suitable [5]. It is likely that resources will be wasted
this way, for instance by allocating unnecessarily large
shares and thus running the risk of failing to meet
some applications’ QoS. A better approach, instead,
is to allow shares to be defined in an adaptive fashion,
using the workload and QoS requirements of each
application as input [1].

A usual trend, however, is not just to split the
resources in the pool in a way that it meets the
QoS parameters, but to do that in the best possible
way. Precisely, that means finding the distribution of
resources that yields the best outcome. To this end,
utility functions have been pointed as the main tool
for enabling this kind of behaviour [6], since they
do not distinguish between desirable and undesirable
allocations. Instead, allocations are distinguished by
having a lower or higher utility, which then enables to
find the best allocation, i.e., the one with the highest
utility. Finding such an allocation consists, basically,
on modelling the resource management problem as an
optimization one, and eventually solving it. This has
been called Utility Maximization (UM).

A number of solutions employing utility maximiza-
tion for managing shared resource pools have been
proposed. Many are based on centralized architectures,
which are known to be not very scalable and suffer
from fault-tolerance issues, i.e., crash of the centralizer.
Some distributed solutions have also been proposed.
They are all modelled hierarchically, however, and so
coordination is centralized at the root of the hierarchy.
Given the increasing scale of distributed systems and
a stronger demand in terms of their autonomy [7], a
truly decentralized solution is preferable, since they
provide improved scalability and are naturally fault-
tolerant. Whereas decentralized solutions exist in sim-
ilar domains, they are not applicable to the problem
being studied in this paper.



Given that, in this paper we propose a true decentral-
ized utility maximization (DUM) model for managing
shared resource pools. To the best of our knowledge,
this is the first work to present such a solution. For
achieving that, we have employed the method of the
Lagrange multipliers. Such methods have been used in
similar works involving non-linear optimization. How-
ever, the problem being studied here along with the
absolute decentralization characteristic of our DUM
model, give it a crucial differential when compared
to those works.

The rest of this paper is then organized as follows:
in Section 2 some fundamental concepts are presented;
our DUM model is presented in Section 3; an eval-
uation is presented in Section 4, demonstrating the
feasibility of the model in a practical scenario, through
simulations; related works in the area are presented
and discussed in Section 5; finally, in Section 6, we
conclude the paper with some final remarks and future
directions of this work.

2. Fundamentals

In this section we provide basic concepts involved
in our DUM solution. Firstly, because we are aiming
at a decentralized approach, we view the system as a
network of agents, where one agent can be reached by
any other, directly or indirectly. In this case, each agent
represents an application that consumes resources from
the pool. We then denote by S the system itself and
by ai an agent in S, for i ∈ [1, n(t)] where n(t) is the
number of agents in the system at time t.

Secondly, for utility maximization purposes, our
solution is based on the approach proposed in [8]. For
that, each agent ai is assigned a utility function ui(x),
stating how useful a particular resource share x from
the pool is at a particular point in time. From that, a
collective utility function U(X) is defined, as follows:

U(X) =
∑

ai∈S

ui(Xi) (1)

where X = {X1, X2, . . . , Xn(t)} is an allocation
vector and Xi is the resource share assigned to agent
ai. In practical terms, Xi could be, for example, the
number of servers or amount of bandwidth allocated to
a particular agent. Such an approach then maps every
possible distribution of resources to a real-scalar value,
which is used to distinguish between two different
allocations. To find the best allocation at any point
in time, the following optimization model, proposed

in [9][10], is used:
max

X∈ n(t)
U(X)

subject to:
|X|∑

i=1

Xi = K(t),
(2)

where K(t) is the amount of resources available in
the pool at time t, e.g., 100 servers. The constraint
limits the sum of all resource shares to K(t). In a
practical setting, the value of K(t) could be set by
system administrators from a management station, then
being propagated throughout the system [11].

3. Decentralized Utility Maximization

In this section we present our DUM solution for
shared resource pools. More precisely, our solution
consists on how to solve the optimization problem in
Equation 2 in a truly decentralized way. For that, first,
the utility function of the agents is defined as follows:

ui(x) = 1− e−αi(t)x, (3)

where x is the amount of resource from the pool being
allocated to ai and αi(t) is a parameter that indicates
ai’s demand for resources at time t. The smaller αi(t)
is, the greater is the agent’s demand for resources. The
reason for using such a utility function is because it
will enable us to break down the optimization problem
into separate models that each agent can use to find its
optimal share. Like ours, other works have also used
specific utility functions for different purposes [9][12].

Some plots of ui(x) are presented in Figure 1. The
sharpness of the utility is controlled by αi(t). The
less sharp the utility is, the smaller is αi(t), thus
indicating a greater demand for resources. We assume
αi(t) might, and most likely will, change over time.
However, it should remain constant during the actual
process of finding the optimal allocation. Since αi(t)
represents an agent’s resource demand at that particular
time slot, it does not make much sense for it to
change during the actual process of finding the optimal
allocation, i.e., solving the problem in Equation 2.

From ui(x), we then transform the constrained opti-
mization problem in Equation 2 into an unconstrained
one. Using the method of the Lagrange multipliers, our
new problem can be formulated as:

max
X∈ n(t),λ∈

L(X, λ) (4)

where L(X, λ) is the Lagrangian of the problem in
Equation 2, being defined as:

L(X,λ) = U(X)− λ




|X|∑

i=1

Xi −K(t)



 . (5)
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Figure 1: Sample plots of the utility of the agents

We then solve 4, in a way that it decomposes into the
models that will calculate each agent’s optimal share.
For that, we can solve

∇L(X, λ) = 0,

which gives us the set of equations below.

∂L

∂Xi
= 0,∀i ∈ [1, |X|]

∂L

∂λ
= 0.

(6)

In theory, though, two points must be highlighted.
First, for X to be an optimal solution of the optimiza-
tion problem it must satisfy the Karush-Kuhn-Tucker
(KKT) Conditions. Second, by solving ∇L(X, λ) = 0,
we would actually find a set of stationary points, each
of which being a maximum, a minimum, or a saddle
point. It is straightforward to show, however, that in
our case, the solution to ∇L(X, λ) = 0 satisfies the
KKT conditions, is unique, i.e., only one stationary
point exists, and also that such a stationary point is
necessarily a maximum, and consequently the global
maximum. Due to space constraints, we omitted the
proofs from this paper. Back to Equations 6, each
∂L
∂Xi

= 0 will yield in:

αi(t)e(−αi(t)Xi) − λ = 0.

Solving the equation above for Xi, gives us:

Xi =
lnαi(t)− lnλ

αi(t)
, (7)

which then enables each agent to find its own share,
such that U(X) in Equation 2 is maximized. Note,
first, that Xi ∈ , and so, fine-grained shares are
supported. Second, coordination in this case is totally
decentralized. To calculate Xi, however, agents need,
besides their own αi(t), the value of lnλ, which is the
global information that binds them together. Therefore,
to compute their shares, they would need to compute

lnλ first, also in a decentralized way. For that, we start
with ∂L

∂λ = 0, from Equation 6, which yields in:



|X|∑

i=1

−Xi



 + K(t) = 0.

Substituting 7 in the above, we then have that:



|X|∑

i=1

lnλ− lnαi(t)
αi(t)



 + K(t) = 0.

We can isolate lnλ, ending up with:

lnλ =

(∑|X|
i=1

ln αi(t)
αi(t)

)
−K(t)

∑|X|
i=1

1
αi(t)

. (8)

With that, each agent can then calculate lnλ, and, once
that is done, their own share through Equation 7.

Because lnλ depends on the α of all agents, and
because we do not want any kind of centralization in
the system, we assume that either each αi(t) will be
disseminated throughout the system, eventually reach-
ing every other agent [13], or lnλ will be computed us-
ing approaches for calculating aggregates in networked
systems [14][15].

In the first case, each agent will end up with the α
of the others, which is then combined with its own and
used as input to Equation 8. In the second one, each
agent ai would hold two values, ln αi(t)

αi(t) and 1
αi(t) .

From that, one run of an aggregate algorithm would
be executed for each value, to perform a SUM of all
of such values. When the two sums are computed,
each agent uses them appropriately in Equation 8, so
as to find their own share. Both approaches can be
performed in large-scale networks in very reasonable
time, thus not compromising our DUM solution in
terms of performance. Further discussion on the actual
algorithms for computing lnλ, however, is out of the
scope of this paper.

4. Evaluation

In this section we present experiments we have
performed using our DUM model. To this end, we have
modelled a scenario where a number of Application
Environments (AEs) are deployed in a data center,
as proposed in [9], each AE processing one type of
transaction. The scenario we illustrate here will then
deal with the allocation of servers from the data center
to the AEs deployed in it. In this case, each AE
is represented by an agent implementing our DUM
model.



4.1. Data Center Model

Each AE has an Expected Average Workload (EAW)
at different points in time, in terms of number of
requests per second. That can be obtained using online
or offline prediction techniques. For our experiments,
these workloads have been obtained from the analytical
data of different web sites. Also, all AEs have a policy
defining a Target Response Time (TRT) that should be
guaranteed for the transactions they process. The re-
source management process will then find the optimal
distribution of servers amongst the AEs, considering
their EAW and TRT.

We denote by ri(s, w) the Expected Average Re-
sponse Time (EART) of an AE during time t, repre-
senting the response time an AE will obtain given a
workload w and a certain number of servers s allocated
to it. We define ri(s, w) based on the model proposed
in [9], as:

ri(s, w) =
w.ci

s
, (9)

where ci is the CPU time of the transaction processed
by AE i (in seconds), w is the EAW of the AE (in
requests per second), and s is the amount of servers
assigned to it. From that, we derive qi(w), the required
amount of servers that should be assigned to an AE,
in order to meet its TRT, as follows:

qi(w) =
w.ci

T i
(10)

where w and ci are as in ri(s, w) and T i is the
AE’s TRT. The required amount of servers qi(w) is
necessary for defining αi(t), which, as defined in our
DUM model, represents an AE’s resource demand at
a particular time t. Such a parameter is calculated as:

αi(t) = − ln (1−H)
qi(w)

, (11)

where H represents the value of the agents’ utility
when the EART of its AE meets its TRT, i.e., a value
very close to 1.

4.2. Simulation Results

Based on the data center model presented, a series of
experiments have been ran, using different scenarios.
In these experiments, a random epidemic algorithm
for disseminating all αi(t) has been used. Also, we
assumed that the resource management process runs
at distinct points in time, called iterations. In a real-
world setting, these iterations could represent different
hours of the day, on which a re-allocation of the servers
would take place. The results for the experiments are
then presented next.

4.2.1. Scenario 1: Static Number of AEs. In this
scenario, the number of AEs over the entire simulation
is constant. We considered that six AEs, whose EAWs
are as in Figure 2, are deployed in the data center.
Also, we assumed that 145 servers are available on the
data center and that the CPU times of the transactions
processed by each AE are as presented in Table 1. The
latter has been based on values provided in [9].
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Figure 2: EAWs of each AE in Scenario 1

AE CPU Time
1 0.11
2 0.015
3 0.045
4 0.08
5 0.01
6 0.096

Table 1: CPU Times (in seconds) for the transactions
processed by the AEs

After running the simulation during twenty itera-
tions, the shares found by each agent were as presented
in Figure 3. The important aspect to note is the way the
shares vary. Note that, the general shape of the graphs
of the shares vary similarly to the way the workload
does. Therefore, from a high-level perspective, our
DUM solution captures the demands correctly, and
acts properly towards the optimal share. At a lower
level, one can see that, sometimes variations between
the shares and workload do not match. In a general
way, it is clear that those were the variations that
yielded in the highest U(X), even though the specific
reasons for such can vary. As an example, notice that,
at iteration 5, AEs 2, 4, 5, and 6 have an increase on
their workload, but only AE 5 has an increase on its
share. That is because the workload increase in AE



5 was simply too high to allow an increase in the
shares of AEs 2, 4, and 6 such that U(X) would be
maximized.
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Figure 3: Shares of each AE in Scenario 1

The fact that our DUM model captures demand cor-
rectly is reinforced by the results presented in Figure 4,
where the αi(t) of each AE over all iterations are
presented. Note that the values of αi(t) vary exactly
the opposite to the way the workload does. This thus
matches the definition of the agents’ utility function,
on which it is stated that the greater the workload is,
the smaller is the value of αi(t), indicating a greater
demand for resources.
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Figure 4: αi(t) of each AE in Scenario 1

As a consequence of properly capturing αi(t), the
EARTs for all AEs end up as in Figure 5. Note that,
for all AEs, such response times are always smaller
than what is specified in their TRT, represented by

the dashed horizontal line in each graph of the figure.
Because, in this scenario, the data center always hosted
more servers than the demand, the aggregate utility was
always such that U(X) ≈ 6.
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Figure 5: EARTs of each AE in Scenario 1

4.2.2. Scenario 2: Varying Number of AEs. In a
practical setting, we cannot expect the system to be
static. As it evolves, AEs will join and leave the data
center. Consequently, our solution should support such
dynamics, which is what we have simulated in this
scenario. To this end, the data center was initially set
up with four AEs, until iteration ten, when two AEs
join the system. Then, at iteration fifteen, one of them
leaves the system, keeping this setting until the end of
the simulation. The number of servers and CPU times
for this scenario are the same as for the first one.

The EAWs for this scenario are then illustrated in
Figure 6. After running the simulation, the shares
found were such that the EARTs in Figure 7 were
obtained. As with the previous scenario, note that the
EARTs of each AE is always smaller than their TRT
(dashed horizontal line in each graph). The figures for
the αi(t)’s and shares found were similar to the ones
presented in the first scenario, and so we omitted them
from this paper.

4.2.3. Scenario 3: Overload. Finally, in a third sce-
nario, we observed how our solution behaves when
facing overload in the data center. In other words, in
some iterations, we allowed the demand to be greater
than the number of servers available in the Data Center.
For that, the number of servers has been set to 100.
Furthermore, the CPU times used and workloads were
as in the first scenario.
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Figure 6: EAWs of each AE in Scenario 2
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Figure 7: EARTs of each AE in Scenario 2

The overload is illustrated in Figure 8, which plots
the variation of the total server demand over the
iterations (the solid line represents the number of
servers). Because of that, the EARTs were then as
in Figure 9. Since overloading was being considered,
in some iterations, the TRTs of some, or all, AEs
could not be met. Still, our DUM model distributed
the shares in a way that maximized the utility as stated
in the problem formulation. To see that, we present in
Figure 10 the variation of the aggregate utility. Note
that, on the iterations where overload did not happen,
the utility obtained was still the highest possible, i.e.,
U(X) ≈ 6, consequently decreasing during overload
periods. Also, the point where the aggregate utility
reached its lowest value was the exact moment where
the total server demand reached its highest value.
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Figure 8: Total amount of required servers over the
overload scenario
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Figure 9: EART of the AEs over the overload scenario
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Figure 10: Aggregate utility over the overload scenario

5. Related Work

A number of solutions for performing resource
management has been proposed. Many of them, how-
ever, approach the problem using centralized mod-
els [3][9][5]. In this case, a central authority is in
charge of deciding the resource shares across the
system. Even though these solutions can perform well,
they are not very scalable because of the centralizers.
Also, they are not fault-tolerant, since the crash of the
centralizer compromises the entire system.



Solutions with a more distributed characteristic have
also been proposed. In [12], for example, market agents
are used. The solution differs from ours in the sense
that centralizing entities, called brokers, are inserted
in the resource management process. The decomposi-
tion methods presented in [16] are another distributed
solution. These methods are similar to our DUM
model in that they also employ Lagrange multipliers
to decompose an optimization problem into smaller
problems, which can further decomposed, forming a
hierarchy. They then rely on a messaging scheme
which employs a central problem. Similarly, a hierar-
chical optimization model is presented in [17]. In both
cases, coordination is done at the root of the hierarchy,
whereas in our case, this is decentralized.

Solutions featuring decentralized control exist
in similar domains. Examples of such solutions
are [18][19], which employ market agents. Their focus,
however, is not on utility maximization, unlike our
DUM model. In [11], it is presented a decentralized
solution for allocating servers to different classes of
service. This solution is modelled differently though,
in that resource providers, and not consumers, solve
the optimization problem, like in our DUM model.
Besides, it is specifically focused on server allocation,
whereas we have aimed at a more general approach.
In [20], gossiping is used to allow a set of P2P-
connected traffic limiters to control the bandwidth they
use. It is different from our solution in the sense that it
does not focus on utility maximization. The same can
be said from the approach proposed in [21], which
allows servers to be allocated to applications in a
decentralized way. In terms of distributed optimization,
in [22], subgradient methods are used to optimize
the aggregate of a set of agents’ cost function. The
solution, however, does not incorporate resource con-
straints, limiting its applicability in practical resource
management scenarios. Finally, in [23], a DUM model
is proposed, but it is specifically focused on the control
of multiple multicasts in P2P systems, and thus, does
not apply to the problem we are dealing with.

6. Conclusions

In this paper, we presented a decentralized utility
maximization (DUM) model for managing shared re-
source pools in an adaptive and optimal way. More
precisely, we employed the method of the Lagrange
multipliers along with the utility functions theory to
devise a method where each agent in the system knows
how to calculate its share, so that the best outcome
can be obtained. The problem being studied, along
with the total decentralized characteristic of our DUM

model, give it a distinctive feature. To the best of our
knowledge, then, this is the first work to present such a
decentralized solution in the domain of shared resource
pools.

An evaluation has been presented, through simula-
tions, in a server allocation scenario in a data center.
We demonstrated that our DUM model is able to
capture resource demands properly and deliver shares
that meet all applications’ QoS parameters, when pos-
sible. Scenarios where the number of applications in
the system varies, which are to happen in the real-
world, have been simulated. As we showed, our DUM
model also handles these scenarios in an optimal way.
Finally, in overload situations, even though not all QoS
parameters could be met, our solution was still able to
find the allocation leading to the best outcome.

As future work, we are aiming at a specific epidemic
algorithm for disseminating the αi(t) values through-
out the system. The main reason for such is that the
current methods for computing aggregates like our lnλ
would not suit us in terms of scalability, precision,
and fault-tolerance. Furthermore, we will apply our
DUM model to other shared resource pools scenarios,
to have an insight on how general it really is. We do
believe, however, that our DUM model could handle
other scenarios quite well.
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