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Abstract—Medical literature have recognized physical activ-
ity as a key factor for a healthy life due to its remarkable
benefits. However, there is a great variety of physical activities
and not all of them have the same effects on health nor
require the same effort. As a result, and due to the ubiquity
of commodity devices able to track users’ motion, there is
an increasing interest on performing activity recognition in
order to detect the type of activity carried out by the subjects
and being able to credit them for their effort, which has been
detected as a key requirement to promote physical activity.

This paper proposes a novel approach for performing activ-
ity recognition using Monte Carlo Schemata Search (MCSS)
for feature selection and random forests for classification. To
validate this approach we have carried out an evaluation over
PAMAP2, a public dataset on physical activity available in
UCI Machine Learning repository, enabling replication and
assessment. The experiments are conducted using leave-one-
subject-out cross validation and attain classification accuracies
of over 93% by using roughly one third of the total set
of features. Results are promising, as they outperform those
obtained in other works on the same dataset and significantly
reduce the set of features used, which could translate in a
decrease of the number of sensors required to perform activity
recognition and, as a result, a reduction of costs.

Keywords-activity recognition; Monte Carlo Schemata
Search; feature selection; classification

I. INTRODUCTION

Medical literature have extensively explored the positive

effects of physical activity. These effects involve benefits for

the society, from school-aged children and youth [1] and

teenagers and adolescents [2], [3] to adults and the elderly

[4]. On the other hand, lack of physical exercise may lead

to the appearance of several disorders [5], [6].

Nowadays, there is an increasing interest of recognizing

the physical activity performed by a subject, not only due to

medical reasons, but as a way to provide self-awareness and

credit subjects for their effort, this being a key requirement

for developing systems that promote physical activity [7].

This interest lead to the rise of the field of activity recogni-
tion, which is also gaining relevance due to the availability of

commodity hardware (i.e. smartphones, wearables...) which

are each day owned by more people and have sensors able

to track the user’s motions, providing enough information to

detect the type of physical activity performed by the subject.

An extensive survey of techniques used for sensor-based

activity recognition can be found in a recent work from Chen

et al. [8].

Evidence of this increasing interest can be found in the

number of patent registrations in the recent past which aim

at monitoring and quantifying physical activity of final users

[9], [10], as well as at recognizing the activity [11] providing

in some cases customized personal training [12], [13].

This paper proposes an approach for performing super-

vised learning of a classification model which will be able

to predict the activity of a new user in real-time. To improve

the results feature selection will be carried out by means of a

new method based on Monte Carlo Tree Search called Monte

Carlo Schemata Search (MCSS). The feature selection step

could be viewed as a binary combinatorial problem where

each feature is either selected or not from the whole set

in order to achieve better results. A trade-off between

classification accuracy and the number of required sensors

is encountered when trying to increase the classification

accuracy while reducing as much as possible the number

of sensors.

Binary combinatorial problems involves finding a binary

string that represents the optimal combination of yes/no

alternatives. The difficulty of this problems resides in the

weakness of the nature of the binary representation. The

Genetic Algorithm perspective, one of the most popular

techniques for binary combinatorial problems, tries to over-

come this problem with the implicit parallel evaluation of

the schemata performed by the method.

However this implicit evaluation is not followed of a

direct use of the schemata for generating new solutions, and

consequently new and better schemata.

In this work we follow the idea of evaluating how

promising a schema could be, in terms of its ability to

generate good solutions. However, generating good schemata

has many intrinsic problems. First, the space of schemata is

much bigger that those of the solutions. In a binary combina-

torial problem of size L, the searching space has a size of 2L

while the size of the schemata space is 3L. So finding good

schemata must be much harder than finding good solutions.

Second, schemata evaluation is a difficult task because each

schemata contains many examples, whose number grows up
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exponentially with the size of the schemata, and they have as

well a hierarchical structure that makes them to share many

examples, or even being one’s subset of other.

To overcome the above feebleness we propose the use

of the potential of Monte Carlo Tree Search (MCTS) to

generate good candidates because:

• They could deal with incomplete information. They

need not to have complete information about the ef-

ficiency of the candidates, they can estimate that effi-

ciency from very few examples, and can improve those

estimations as more information is available.

• They use a tree structure that fits very well the intrinsic

nature of the schemata

Therefore, we propose a new method for generating po-

tential good schemata in terms of their capacity to represent

good solutions. The method constructs a network whose

nodes are binary schema from which solutions for any

optimization problems could be generated. The Monte Carlo

Upper Confidence Policy (UCP) will produce gradually

more promising schemata, allowing for the abrupt reduction

of the search space and the maintenance of a good compro-

mise in the generation of good solutions.

II. MONTE CARLO TREES FOR SCHEMATA GENERATION

Monte Carlo Tree search methods have been taken an

increasing attention in the last 15 years. Originally his best

success was in the context of the game of Go [14], where

its performance was bigger that any other automatic player

method so far. Since then, MCTS have been extremely

successful in designing expert computer players for many

other two players games, like Hex [15], [16], Kriegspiel

[17], and Poker [18]. Moreover, MCTS has been shown to

outperform classic alpha-beta search even in games where

good heuristic evaluations are difficult to obtain.

In recent years, some other domains different from games

have been addressed, mainly combining traditional ideas

from minimax search with the construction of the trees

to adapt the procedure to planning domains or resource

allocation [19]. A more extensive survey of MCTS methods

and applications was published by Browne et al. [20].

In general, the application domains must conform to the

constraints imposed by the representation systems that, in

this case, are trees whose nodes are states, and branches

meaning transitions between states. This restriction has a

direct impact on the scope of the method which is reduced

considerably. In this work we go further by adapting the

Monte Carlo Tree Search method to make it able to optimize

any combinatorial optimization problem. We produce a new

binary combinatorial method that we called Monte Carlo

Schemata Search (MCSS) [21], because it stands in the

idea of using binary schemata as states in the Monte Carlo

searching tree.

In this approach we use the MCTS technique in its basic

formulation letting the branches of the tree be the schemata

of a binary string where “don’t care” symbols (*) are used

to indicate the possibility of either a one or a zero, therefore

representing a subset of all possible solutions. The root of

the tree is the most general schema composed in all their

positions by the “don’t care” symbol.

In the first level we generate all possible schemata that

have just one fixed position, either a zero or a one. If we

assume a binary codification then the number of successors

of each node is 2×L, being L the length of the individual.

From the root, we build a MCT in which each successor

of a node is one level more specific than the parent. To

generate a descendant node, we assign either a zero or a

one in the place of a random “don’t care” position. This

increase in specificity continues until we reach the greatest

level consisting in having no “don’t care” symbols at all,

i.e., we obtain a solution.

The generation of the tree is performed by selecting and

expanding a node per iteration, making the tree grow in an

unstructured and unbalanced way, taking into account the

estimation of the nodes as good candidates to generate good

solutions. In each iteration all the nodes present in the tree

could be considered for selection, except those which have

been expanded in all their descendants.

The procedure is performed in four phases:
Selection: The more promising unexpanded node of the

tree must be selected (Figure 1a). A tree policy is designed

to define the meaning of being a promising node. There

are many tree policies, in this work we propose the use of

the Upper Confidence Policy (UCP), but any other could

be used without further modifications in the method. The

UCP entails assigning a nomination value to each node. This

nomination value is composed of two terms:

• An estimation value of the quality of the schema,

computed as:

f(Sk) =

∑
Ii∈Sk

f(Ii)

n

where Sk is the schema to be estimated, Ii some

individuals represented by that schema that constitutes

the sampling set and that are generated randomly, and

n the size of that sampling set, n = |Ii|.
• A term to encourage the exploration of less visited

schemata, computed as:

C

√
logNk

nk

where Nk is the number of individuals used for comput-

ing the estimation of the parent, and nk is the number

of individuals used for computing the estimation of the

current node. Note that this term increases when nk

is small. A small value of nk means that the schema

Sk has not been visited very often, and represents

unexplored searching space areas, that could have good

potential.
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Figure 1: Procedure to generate the schemata searching net

The final value for the importance (M(Sk)) of a node k
is then:

M(Sk) = f(Sk) + C

√
logNk

nk

First term representing exploitation, and second term

exploration. C is a parameter to balance between exploitation

and exploration, as desired.

The selection procedure is performed in three steps:

• We start from the root node, labelling it as the current

node. At each step, the best offspring node of the

current node, in terms of above importance value, is

assigned as the new current node

• If this new current node has already expanded all of

their possible offspring, we repeat the process, choosing

as the current node one of its offspring’s

• If, by the opposite, it has some unexpanded offspring’s,

then one of them is selected randomly and returned as

the definitive selected one

Expansion: The selected node is expanded, generating

one or many descendants, following some expansion policy,

usually at random. When generating the descendant of a

node, we must take into account that each node has more

than one ascendant because it could match with more than

one schemata. Therefore the generated nodes are linked with

all the schemata of the previous level that are more general

and contains it. Those links are important for the next

backpropagation phase and allows a more precise estimation

of the schemata.

Simulation: The new generated node must be evaluated

in order to have an estimation of the accuracy of the schema

that it represents. For doing that, a set of solutions are

generated randomly (Figure 1b), matching the schema, and

the average of the accuracy of that set is used as the
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Figure 2: Steps involved in the activity recognition chain (ARC)

estimation value of the schema.

Backpropagation: All the evaluation values of all the

nodes that are ancestors to the new created node are updated.

The update of evaluation values of the nodes are performed

following the equation:

f(Sk) =
(t · f(Sk)) + v(Sk)

t+ 1

where f(Sk) is the evaluation value of schema Sk, t is

the number of times that schema Sk has been updated until

now, and v(Sk) is the average value of the evaluations of

the individuals in the sampling set.

v(Sk) =

∑
Ii∈Sk

f(II)

n

III. ACTIVITY RECOGNITION SYSTEMS

Activity recognition involves the performance of a se-

quence of steps which constitute the so-called activity recog-

nition chain (ARC) [22], a general-purpose framework for

acquiring data and building and evaluating activity recog-

nition systems. Figure 2 shows the steps involved in the

ARC, which include data acquisition from sensors, signal

preprocessing and segmentation, feature extraction and the

training of a classification model. This section elaborates on

the work carried out for each of these steps.

A. Data Acquisition

The first step of the ARC involves obtaining physical ac-

tivity data, a task which often involves setting up a protocol

for a set of subjects to perform a sequence of activities while

their motions are being tracked (either by ad-hoc sensors or

by general-purpose devices such as smartphones). As this

acquisition is expensive, for this work the PAMAP2 Physical

Activity Monitoring dataset is used [23], [24], [25], [26],

[27], [28], [29], which is publicly available at UCI Machine

Learning Repository.

This dataset contains labeled information about physical

activity performed by nine different subjects wearing a heart

rate monitor and three wireless Intertial Measurement Units

(IMUs) located over the wrist of the dominant arm, on the

Table I: PAMAP2 attributes extracted from IMUs

1 temperature (◦C)
2-4 3D-acceleration data (ms−2), scale: ±16g, resolution: 13-bit
5-7 3D-acceleration data (ms−2), scale: ±6g, resolution: 13-bit
8-10 3D-gyroscope data (rad/s)
11-13 3D-magnetometer data (μT)
14-17 orientation (invalid data)

chest and on the dominant side’s ankle respectively. The

data acquisition protocol [23] establishes that all subjects

must perform the next activities in a certain order and must

spend the same fixed time in the same exercise: lying,

sitting, standing, ironing, vacuum cleaning, ascending stairs,

descending stairs, walking, nordic walking, cycling, running

and rope jumping.

The nine subjects (eight males and one female) taking

part in the data acquisition step are aged 27.22 ± 3.31

years and have a BMI of 25.11 ± 2.62 kgm−2, one

being left-handed and the others being right-handed [24].

While some subjects may show slight deviations with the

protocol (mostly due to problems with the hardware setup

and connectivity leading to minor losses of information or

acceptable timing inconsistencies), subject 9 is an extreme

case as his data completely differs from the protocol. For

this reason, subject 9 is ignored for the experiments carried

out in this paper.

The dataset provides 53 attributes, with IMUs generating

17 attributes each as shown in table I, being the other two

a timestamp and the heart rate provided by the HR monitor.

As data is labeled, each record in the dataset contains these

53 attributes plus the class (the physical activity).

The IMUs and the heart rate monitor have a sampling

frequency of 100Hz and 9Hz respectively. As a result,

records are generated every centisecond (leading to 100

samples generated by each second of subject activity), and

heart rate information is unavailable in about 91% of the

dataset instances.
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B. Signal Preprocessing

This stage will receive the dataset samples as an input

and will output a new set of instances, after performing the

following actions:

• Removing the timestamp. This is an important step

as the timestamp could constitute an identifier which

would add bias to the classifier: as there is a fixed

protocol, knowing the time at which an activity was

performed should be enough to accurately determine

the activity itself.

• Removing orientation data (12 attributes, 4 per IMU)

as authors state that these attributes are invalid or

irrelevant for this data collection [30].

• Completing the missing values (NaN values in the

original dataset) by estimating their real values. For

this step, we have considered that these values are

unchanged from the previous available value. This is

a good approximation as values are not expected to

change significantly within one centisecond (or decisec-

ond in the case of the heart rate).

• Removing instances labeled as transition which do not

correspond to any activity, but rather the time after one

activity ends and before the next starts.

When the preprocessing stage is completed, the trans-

formed dataset reduces its dimensionality to 40 features plus

the activity.

C. Signal Segmentation

So far, data is in the time domain (each record contains

the signals provided by sensors in a given point in time).

This format is suitable for training a classifier, but it is

expected that higher accuracies can be attained if instances

themselves capture temporal information. With this idea in

mind, in the segmentation stage we will convert signals

into the frequency domain by applying a Discrete Fourier

Transform (DFT) over the dataset.

To do so, a sliding window of size 512 (corresponding to

5.12 seconds of physical activity data) is determined, and

then the Fast Fourier Transform (FFT) is computed over

the window, returning for each signal its transform in the

frequency domain composed of 512 values. This sliding

window is moved one instance a time and the process is re-

peated for each window. Additionally, we prevent instances

belonging to different activities from being included in the

same window.

D. Feature Extraction

Once signals are transformed into the frequency domain,

they must be processed in order to extract the complete set

features composing the new dataset.

For generating this set of features, a statistical summary

of the 512 values obtained after computing the DFT is com-

puted, generating 7 attributes for each original signal: the

mean and the median, the standard deviation, the maximum

Table II: Number of features for each value of τ

τ # of features τ # of features
1 280 5 102
2 271 6 46
3 243 7 17
4 188 8 4

and minimum values, and the 25% and 75% percentiles.

Each window in the segmentation stage generates an in-

stance in the dataset, which contains 280 features plus the

class. The fact that the dataset dimensionality has increased

by a factor of 7 will lead to higher training times and could

potentially reduce the model accuracy due to the effects of

overfitting. In order to reduce the number of features to be

used for training a classifier, we use Monte Carlo Schemata

search (MCSS). This process will first optimize a distinct

feature set for each subject, where this set is represented by

a binary chromosome of size 280, each position representing

a feature and whether it is considered (1) or discarded (0)

when training the model.

In particular, a local optimization of the feature set for

each user will be pursued which will later be used to obtain

an approximation of the best feature set for all the users.

For this local optimization, the evaluation is defined as the

classification accuracy over a test set.

Later, the best feature sets for each subject are aggregated

in order to move from a local to a global optimization, so

that the same set of features is applied to all subjects. To

do so, a threshold τ is defined, so that an attribute ai is

chosen only if at least τ bits for the corresponding genes in

all chromosomes are 1, i.e.:

ai =

{
1, if

∑
n={1..8} g

n
i ≥ τ

0, otherwise

where ai is the i-th attribute and gni is the i-th gene of the

best individual for the n-th fold.

Table II shows the number of final features after this

process is applied for all possible different values of τ . It

should be noted than as the value of τ grows, the resulting

feature set becomes a subset of the previous feature sets.

Also, it can be seen that the feature set for τ = 1 contains

all the features, which means that there is no attribute for

which the value for its corresponding gene is 0 for all

chromosomes.

E. Classification

The problem of physical activity recognition is closely

related to the field of supervised learning, where a classifier

is trained using a set of instances for which the class is

known in advance, being the class the physical activity to

be recognized.

As a preliminary experimentation, standard machine

learning algorithms widely addressed in the literature have
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been compared before any kind of feature optimization takes

place. Naive Bayes, C4.5 and Random Forest are used for

establishing baseline results. As it will be shown in the next

section, Random Forest significantly outperforms the other

methods for all users, and as a result this technique will

be used for the rest of the work, including the evalution

computation.

IV. RESULTS

To evaluate the proposed approach to activity recognition,

leave-one-subject-out (LOSO) cross validation is used for

the experiments. This setup involves the execution of 8

different experiments, each one choosing a different subject

for the test set and the remaining 7 subjects for composing

the training set.

Before feature optimization is carried out, classification

models are trained and tested with each user using the whole

set of 280 features in order to establish baseline results.

Naive Bayes, C4.5 and Random Forest are used, and the

results are shown in table III, which shows that Random

Forest outperforms its competitors.

Once these baseline results are stated, feature selection

can be performed using Monte Carlo Schemata search as

described in section III-D. Table IV shows the accuracy

achieved for each subject (which corresponds with the

highest evaluation for each fold). The results of the local

optimization are quite close to 100%, but they fail to provide

a final set of features valid for all users, and thus a user-

independent classifier cannot be built until we generalize all

the per-subject feature sets into a subject-independent one,

for which the procedure described in the previous section

will be performed.

The results for each different value of τ are shown in table

V, where each accuracy for each combination of subject and

value of τ is the average of 30 different executions, each

one training the model with a random sample of 10% of the

training set.

Table V clearly shows how the accuracy evolves as the

value of τ increases. This behavior is certainly revealing, as

it shows that accuracy may increase when the set of features

is reduced (see the case of τ = 1 vs. τ = 2), but more

interestingly the average accuracy for all subjects barely

changes for values of τ between 1 and 5, as the maximum

difference is smaller than 0.6 percentage points. It is only

when τ is greater than 6 than the accuracy starts to worsen

in a significant manner. Bringing back the results from table

II, this fact means that feature selection using MCSS allows

reducing the total set of features from 280 to 102 with a

very small impact in the accuracy, which would result in a

decrease of the total number of sensors worn by the subjects.

We can compare these results with those attained by Reiss

and Stricker [25] when they introduce the dataset. While they

use different experimentation setups, the one comparable

with our results is the so-called “all activity” recognition.

Additionally, they also use LOSO cross validation, thus

making this comparison feasible. In their work, they reach

the maximum accuracy using k-nearest neighbors, achieving

89.24%. Our results outperform that accuracy in about four

percentage points, and due to feature selection we are able

to improve the accuracy while reducing the set of features

to slightly more than one third of the original set.

V. CONCLUSION

This paper has proposed a novel approach for performing

human activity recognition. While experts agree on the fact

that physical activity is a key aspect of human health, not all

physical activities have the same effect on health nor require

the same effort to be performed by the subjects. For this

reason, a system able to accurately recognize the physical

activity performed by a user sounds quite promising, as it

is able to increase awareness about his health and habits.

The development of an activity recognition system is

described in this paper by thoroughly detailing each stage

in the activity recognition chain (ARC). First we explain

how the data is acquired, preprocessed and segmented. In

particular this paper uses the PAMAP2 Physical Activity

Monitoring dataset, which is public available for download

at UCI Machine Learning repository. Over this dataset we

perform some basic preprocessing and the apply a DFT over

a sliding window in order to transform the signals from the

time domain to the frequency domain.

Later, features are extracted from the transformed signals

by performing a statistical summary. An early training

of classification models is performed at this stage using

standard machine learning techniques, before any kind of

feature set optimization takes place, in order to establish

baseline results that are obtained using leave-one-subject-out

(LOSO) cross validation in order to avoid bias. An average

classification accuracy of 93.5% is attained.

Later, Monte Carlo Schemata search (MCSS) is used in

order to optimize the feature set. MCSS has been designed

for binary combinatorial optimization requiring low domain

knowledge and allowing a fast and big reduction of the

searching space, where not too small differences in accuracy

are needed, as in the case of this problem where solutions

around 94% of accuracy are attained. A local optimization

of the feature set of each subject lead to accuracies about

99%, providing an uniform level of forecasting more suitable

for every individual. The locally optimized feature sets are

then used to generate a new subject-independent optimized

feature set by defining a threshold τ , which still shows very

high levels of accuracy. More specifically, the MCSS opti-

mization lead to average accuracies up to 93.72% but more

interestingly, it provides an average accuracy of 93.17%

when τ = 5, revealing a classification ability almost as good

as before feature optimization was performed, but using only

102 features, roughly a third part of the original set. These
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Table III: Classification accuracy for each fold using the whole feature set

Subj. 1 Subj. 2 Subj. 3 Subj. 4 Subj. 5 Subj. 6 Subj. 7 Subj. 8 Avg.
Naive Bayes 73.29% 65.79% 94.19% 96.66% 90.91% 88.33% 91.73% 89.50% 86.30%
C4.5 78.31% 80.48% 74.70% 84.39% 71.27% 89.59% 72.19% 82.85% 79,23%
Random Forest 85.82% 89.73% 92.83% 96.02% 92.83% 96.50% 97.35% 97.03% 93.51%

Table IV: Classification accuracy after optimizing the feature set for each fold using random forest

Subj. 1 Subj. 2 Subj. 3 Subj. 4 Subj. 5 Subj. 6 Subj. 7 Subj. 8 Avg.
96.60% 97.00% 98.99% 99.94% 98.74% 98.98% 99.63% 99.61% 98.69%

Table V: Classification accuracy for each fold using the reduced feature set and random forest

Subj. 1 Subj. 2 Subj. 3 Subj. 4 Subj. 5 Subj. 6 Subj. 7 Subj. 8 Avg.
τ = 1 88.60% 87.49% 93.88% 95.96% 93.82% 96.08% 96.52% 96.79% 93.64%
τ = 2 89.09% 87.94% 93.79% 96.95% 93.88% 95.82% 96.76% 95.67% 93.74%
τ = 3 88.89% 87.33% 93.98% 96.90% 92.60% 95.97% 96.16% 96.20% 93.50%
τ = 4 88.00% 86.93% 93.21% 97.04% 94.07% 96.07% 96.37% 96.35% 93.50%
τ = 5 89.59% 86.72% 94.41% 96.04% 93.73% 94.06% 95.21% 95.62% 93.17%
τ = 6 88.86% 78.28% 86.81% 86.14% 83.34% 86.44% 82.78% 89.73% 85.30%
τ = 7 79.66% 46.16% 85.86% 62.03% 83.99% 76.34% 71.97% 82.34% 73.54%
τ = 8 47.16% 35.69% 48.24% 34.20% 50.27% 43.21% 40.35% 50.62% 43.72%

results also outperformed those established by Reiss and

Stricker when they introduced the PAMAP2 dataset.
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