
HAL Id: cea-01835639
https://cea.hal.science/cea-01835639

Submitted on 11 Jul 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formal Specification and Automated Verification of
Railway Software with Frama-C

Virgile Prévosto, Jochen Burghardt, Jens Gerlach, Kerstin Hartig,
Hans-Werner Pohl, Kim Völlinger

To cite this version:
Virgile Prévosto, Jochen Burghardt, Jens Gerlach, Kerstin Hartig, Hans-Werner Pohl, et al.. Formal
Specification and Automated Verification of Railway Software with Frama-C. IEEE International
Conference on Industrial Informatics - INDIN, Jul 2013, Bochum, France. �cea-01835639�

https://cea.hal.science/cea-01835639
https://hal.archives-ouvertes.fr

Formal Specification and Automated Verification of
Railway Software with Frama-C

Virgile Prevosto
CEA, LIST

Software Safety Laboratory
91 191 Gif sur Yvette Cedex, France

Email: virgile.prevosto@cea.fr

Jochen Burghardt, Jens Gerlach, Kerstin Hartig,
Hans Pohl, Kim Voellinger

Fraunhofer FOKUS
Email: jens.gerlach@fokus.fraunhofer.de

Abstract—This paper presents the use of the Frama-C toolkit
for the formal verification of a model of train-controlling software
against the requirements of the CENELEC norm EN 50128. We
also compare our formal approach with traditional unit testing.

I. INTRODUCTION

Embedded systems increasingly rely on software to ac-
complish a wide variety of tasks. In some cases, e.g. train-
controlling software, where a bug could have very serious
consequences, it is crucial to provide strong guarantees that the
code will always behave as intended. To this end, many indus-
trial domains have established a norm, such as EN 50128 [1]
for railways, that specifies how such an assessment must be
done. Testing has always played an important role in validating
software, and it is still the case nowadays. However, the
number of test cases (hence the cost of running them) needed to
cover all possible behaviors of the program grows very quickly
with the size and the complexity of the code. Formal methods
provide a way to cope with this issue by reasoning abstractly
on the source code itself and establishing formally that it is
conforming to its specification.

Formal techniques such as deductive verification have long
been seen as a mainly academic exercise lacking industrial-
grade tools except for some isolated experiments such as the
B toolkit [2]. They have gained some traction in the past few
years, with e.g. VCC [3], Boogie [4], Caveat [5], and Frama-
C [6]. Recent evolution of the norms (for instance the 2011
version of EN 50128) reflect this fact by recommending, or
even mandating, the use of such formal techniques, at least
for the most critical part of embedded software.

In this paper, we extend our previous work [7] on formally
verifying various safety-relevant functionalities in railway soft-
ware by the results of a case study [8] where we compare our
unit proofs with traditional unit tests. The software modules
themselves have been written in C, while the requirements have
been formalized through ACSL [9], the ANSI/ISO C Specifi-
cation Language. C code and ACSL specifications have then
been analyzed with the Frama-C tool set, more specifically the
Jessie and WP plug-ins.

The remaining of this paper is structured as follows.
Section II presents Frama-C and ACSL. We then describe one
of the requirements investigated in section III and show how
it can be formally specified in section IV. We also propose
an implementation in section V. Set-up of the verification

and testing frameworks are presented in section VI, while the
results of their application are discussed in section VII. Finally,
we draw the conclusions from this experiment in section VIII.

II. FRAMA-C AND ACSL

Frama-C [10] is a toolkit dedicated to the analysis of
C programs. It comes with a formal specification language
ACSL [9], [11], which let the user state the properties that a
given code is supposed to meet.

ACSL is based on the notion of function contract. In its
basic form, such a contract is composed of the following parts.

• Precondition of the function, that is the properties that
it requires from its caller.

• Postcondition, that is the properties that the function
ensures when it returns normally.

• The set of locations that the function might modify
(thereby ensuring that any other location is left un-
touched by the evaluation of the function).

Pre- and post-conditions are expressed as first-order formu-
las, that can refer to some built-in predicates dealing with
pointers and memory accesses. Users can also define their
own predicates and use them in further ACSL annotations (see
section IV-A).

As an example, the following C function is expected to
return the maximum value found in the array given as argument
together with its length.

/*@
requires \valid(a+(0 .. len-1));
assigns \nothing;
ensures

\forall integer i;
0<=i<l ==> a[i] <= \result;

ensures
\exists integer i;

0<=i<l && a[i] == \result;
*/
int max_array(int* a, int len);

max_array requires to be given a valid memory block a of
at least len elements. The assigns clause guarantees that it
won’t modify the global memory state. The first post-condition
states that the value returned by max_array is greater than

any element of the array, while the second one states that
the result must in addition be present in the array (otherwise,
returning INT_MAX would be a valid implementation of the
specification).

Given a function contract and a corresponding implementa-
tion, Frama-C then offers a variety of plug-ins that can be used
to verify that the implementation fulfills its contract. We briefly
describe here Jessie [12] and WP [13], the two plug-ins that
have been used during this case study. Both plug-ins perform
deductive verification, a technique based on Hoare logic [14].
From each contract and implementation, the plug-ins generate
a set of proof obligations, whose verification ensures that
the code is correct with respect to its specification. These
proof obligations are first-order logic formulas, that can be
discharged by automated theorem provers (ATP), or interactive
proof assistants. Both plug-ins can use several ATP as back-
end. Indeed, since each ATP comes with its own strengths and
weaknesses, it is usually useful to use them in combination.
ATP used in this case study are Alt-ergo [15], CVC3 [16],
Simplify [17] and Yices [18]. Previous experiments [11] have
shown that these ATP provide a good rate of success.

One key aspect of deductive verification concerns the han-
dling of loops. Basically, for each loop in the program, the user
must provide a set of loop invariants, that is properties
that are true when the program reaches the beginning of the
loop, and are preserved by each loop step. From that, we
can then inductively prove that these properties are true for
any number of steps. In particular, they hold at the end of
the loop1 regardless of how many times we pass through it.
Loop invariants thus allow one to abstract away the effects
of the whole loop. Moreover, the invariants are the only
properties that are known about the global state after the
loop. It is thus important that they are precise enough to
have the post-condition be deduced from them. For instance, if
the implementation of max_array visits each cell and keeps
track in max of the maximal value seen so far, an appropriate
invariant would be the following.

/*@
loop invariant 0<=i<=l;
loop invariant

\forall integer j;
0<=j<i ==> a[j] <= max;

loop invariant
\exists integer j;

0<=j<i && a[j] == max;
loop assigns i,max;

*/
for(int i=0; i<l; i++) { ... }
return max;

We first state the bounds of the main index of the loop. Then,
we specify the value of max with respect to the values seen
so far in the array. In the end, we’ll have i==l, and our post-
conditions will directly follow from these invariants. Finally
the loop assigns states that the loop only modifies i and
max (and not e.g. the content of a).

1Termination is handled by specific annotations outside of the scope of this
paper.

III. REQUIREMENTS AND MODELLING

A vigilance device is a safety device that operates in case of
incapacitation of the engine driver. Various control elements,
such as push-buttons and pedals, belong to a vigilance device.
On the one hand, any of these control elements is required to
be reapplied at a certain timed interval. On the other hand,
control elements are not permitted to be held for longer than a
specified time. If the control elements are not applied correctly,
the vigilance device must initiate a forced brake.

The requirement reads as follows:

“The vigilance device is only activated while the
locomotive is not at a standstill. If the engine driver
continuously applies at least one of the vigilance
device control elements (in active control stand)
for more than 35 seconds, then the forced brake
applies automatically. If the engine driver does not
apply at least one of the vigilance device control
elements (in active control stand) within a timed
interval of 8 seconds, then the forced brake applies
automatically.”[19]

Some notions mentioned in this requirement need to be
clarified further.

• A locomotive is at a standstill if and only if its velocity
is less than 3 km/h. The negation of standstill is
motion, which is defined by a velocity equal or greater
than 3 km/h.

• Active control stand means the key switch is not set to
“0”-position, which means the driver’s control console
is “on”.

• A forced brake is automatically invoked by monitoring
devices (such as the vigilance device), whereas the
emergency brake is invoked by a human. However,
both have the same effect: all brakes of the train apply
automatically until the train is at a standstill and the
trigger event is cleared.

Figure 1 depicts the UML state diagram for the vigilance
device described above.

Initially, the state vigilance device deactivated is entered
and kept as long as the locomotive is at a standstill. As
soon as the locomotive is not at a standstill anymore, the
transition activate leads to the state vigilance device activated
which means the vigilance device is waiting to be applied.
No measure needs to be taken as long as the events push
and release occur alternately. If the device is staying in state
waiting to be applied for 8s the action apply forced brake will
be triggered. Similarly, if it is staying in state applied for 35s
the action apply forced brake will be triggered as well. These
transitions describe the event of incapacitation of the engine
driver and the locomotive enters the state braking. Of course,
the vigilance device just deactivates as soon as the locomotive
is at a standstill again.

IV. FORMAL SPECIFICATION WITH ACSL

For our case study we consider user-defined data types
containing the core data of the locomotive and the vigilance

vigilance device activated

vigilance device deactivated

when standstill /
deactivate

when not standstill /
activate

after 35 s /
apply forced brake

after 8 s /
apply forced brake

waiting
to be

applied
applied

push

release

braking

when standstill /
deactivate

Fig. 1. Statechart of a vigilance device.

unsigned int actual_time
unsigned int speed
int standstill
int train_brake
int forced_brake

Locomotive
unsigned int button_start_time
unsigned int button_end_time
int button_status

Vigilance_device

Fig. 2. Data Structures.

device. Figure 2 depicts the UML model of the data structures
Locomotive and Vigilance_device.

In Locomotive the variable actual_time represents a
relative-time counter expressed in milliseconds (msecs). The
variable speed measures the velocity of the train in km/h. The
variables standstill, train_brake and forced_brake
are represented by an integer, but contain the Boolean values
true or false, where 1 denotes TRUE and 0 denotes FALSE, as
customary in C [20, §7.16].

The structure Vigilance_device contains the variables
button_start_time and button_end_time describing the
moments a vigilance device pedal or button was invoked
and released the last time. The variable button_status
represents a Boolean variable, which is true if any vigilance
device pedal or button is currently invoked.

A. Domain-specific Predicates

We start our specification by defining some predicates that
will allow us to express succintly the functions contracts. First,
our informal requirements state that some integer variables
may take only Boolean values, i.e., 1, represented as TRUE,
and 0, represented as FALSE. However, since a C integer may
take more than these two values, we have to formalize this
additional constraint. To achieve that, we can define an ACSL
predicate as follows:

/*@ predicate true_or_false(int a) =

(a == FALSE) || (a == TRUE); */

Then, we can state that there are relations between the
fields of Vigilance_device. This is expressed in the pred-
icate vigilance_invariant that is shown below. First, it
is required that the status may only be true or false as it
is a Boolean value. Therefore, we use our formerly defined
predicate true_or_false. Furthermore, there exists an equiv-
alence between the status of the buttons and the start and end
time of their invocation. More precisely, the value of the status
is true if and only if, the moment of releasing a button or pedal
is after it was pushed last time. This predicate is in fact a type
invariant of the Vigilance_device structure, that must be
enforced at every program point.

/*@
predicate vigilance_invariant
(Vigilance_device* vig) =
true_or_false(vig->button_status) &&

(vig->button_status <==>
vig->button_end_time

< vig->button_start_time);
*/

Similarly, we can also formulate a type invariant
locomotive_invariant for the user-defined data type
Locomotive.

Below we can see an example of a predicate that checks
whether the limit for holding a vigilance pedal or button
has expired. According to the informal specification, this
predicate remains true if any vigilance pedal or button is
currently invoked (status must be true) and the difference
between the actual time and the moment the button invo-
cation was started exceeds thirty-five sec., represented by
MAX_VIGILANCE_BUTTON_HOLD.

/*@
predicate vig_button_hold_expired{L}
(Vigilance_device* vig, Locomotive* loc) =
vig->button_status &&
(loc->actual_time - vig->button_start_time

> MAX_VIGILANCE_BUTTON_HOLD);
*/

Note that we don’t have to add here that
vig->button_status is a Boolean, as this point is
already part of vigilance_invariant, that all well-formed
Vigilance_device in the program will be required to meet.

We can similarly formulate a predicate
vig_button_break_expired that checks whether the
pause limit between the invocation of any vigilance pedal or
button has expired.

B. Function Contracts

Once our predicates are defined, we can provide a specifi-
cation for the function process_vigilance_device. This
function checks whether the vigilance device is processed
correctly, and initiates forced brake if this is not the case.
More precisely, it verifies that the vigilance buttons or pedals
are neither held nor paused for too long. The ACSL function
contract is shown below. This contract is structured in general
pre- and post-conditions and two behaviors, which specify

two specific cases. On the contrary to requires clauses,
assumes clauses are not necessarily fulfilled for each call.
Namely, they guard the rest of the corresponding behavior,
in the sense that the related clauses must only be verified in
the case where the assumes clause holds.

/*@
requires \valid(vig) && \valid(loc);
requires locomotive_invariant(loc)

&& vigilance_invariant(vig);
requires

actual_time_is_latest_time(vig, loc);

ensures locomotive_invariant(loc)
&& vigilance_invariant(vig);

ensures
actual_time_is_latest_time(vig, loc);

behavior forced_brake_initiate:
assumes !loc->standstill &&
(vig_button_hold_expired(vig, loc)
|| vig_button_break_expired(vig, loc));

assigns
loc->forced_brake && loc->train_brake;

ensures
loc->forced_brake && loc->train_brake;

behavior no_forced_brake_necessary:
assumes loc->standstill
|| (!loc->standstill &&

!vig_button_hold_expired(vig, loc) &&
!vig_button_break_expired(vig, loc));

assigns \nothing;

complete behaviors;
disjoint behaviors;

*/
void process_vigilance_device

(Vigilance_device* vig, Locomotive* loc);

The function takes as parameters pointers to the state of the
device and of the locomotive. Those pointers must be derefer-
enceable. We thus use the built-in \valid predicate to state
this requirement. We also express that our user-defined predi-
cates vigilance_invariant and locomotive_invariant
must hold as pre- and postconditions. Additionally, we expect a
formerly defined predicate actual_time_is_latest_time
to hold as pre- and as postcondition, which means no time
variable may have values describing the future relative to the
actual time.

At the end of that contract we can specify that the described
behaviors are supposed to be complete – meaning that they
cover all possible cases in which the function can be called –
and disjoint – meaning that we cannot be in both behaviors
at the same time. These properties can be checked by looking
at the assumes clauses of the behavior, as completeness
means that the disjunction of the assumes always hold, while
disjointedness means that their pairwise conjunction is always
false. Inclusion of these last clauses provides an additional
check on the specification itself.

V. IMPLEMENTATION

Below, the implementation of the function formally speci-
fied in the former section is depicted. Given the very precise

formal specification, the implementation of this function is
straightforward.

void process_vigilance_device(
Vigilance_device* vig,
Locomotive* loc)

{
if (!loc->standstill) {
if (check_vig_button_break_expired(

vig, loc)
{

loc->train_brake = TRUE;
loc->forced_brake = TRUE;

}
else if (check_vig_button_hold_expired(

vig, loc))
{

loc->train_brake = TRUE;
loc->forced_brake = TRUE;

}
}

}

This function calls two auxiliary functions:

check_vig_button_hold_expired

check_vig_button_break_expired

Each of those must be formally specified as well. This
example shows, that the programmer needs to have knowledge
about the specification language as well. This process is
comparable to the fact, that the programmer must also be able
to write unit tests.

VI. UNIT TESTING

Now that we have a specification and a corresponding
implementation, we want to check whether the implementation
is correct with respect to its specification. As mentioned above,
the Jessie and WP plug-ins of Frama-C have been used to
generate proof obligations, that were then passed to ATP,
namely Alt-ergo, CVC3, Simplify and Yices.

In parallel to this formal verification activity, unit tests
have been derived from the specifications. The reason for the
additional testing effort is of course, that unit testing is well-
established in the software quality assurance process of safety
critical systems. If one wishes to introduce formal methods
on the level of software units (components), then one must
provide convincing arguments on benefits compared to unit
testing.

However, even if all tests, that have been derived from
the requirements, have successfully passed, testing may not be
finished because full requirement coverage does not guarantee
full code coverage. Therefore, we have checked the code
coverage obtained by functional testing using a code coverage
analyzer and a suitable code coverage criterion. When neces-
sary, we devised additional test cases until a full code coverage
had been reached. Whenever a new test case was added, we
provided arguments that this test case can be justified by the
specification.

In order to measure the code coverage of our unit tests
we have applied the TestCocoon tool. TestCocoon has been

released as open source software, but is no longer maintained.
There is however a commercial successor, namely Squish
Coco [21] which is compatible with TestCocoon.

The CoverageScanner function of TestCocoon can instru-
ment the code for three different code coverage criteria: branch
coverage, decision coverage and condition coverage. Since we
want to validate our implementation according to the standard
EN 50128, we have to answer the following question. How
are these criteria related with those from the standard?

According to the standard, 100% branch coverage is
reached by checking both branches of every decision. This
matches exactly the decision coverage criterion from TestCo-
coon. In addition, TestCocoon always checks that all state-
ments are exercised even though another criterion is specified.
Checking if all statements are exercised is the statement
coverage criterion from the standard, but is called branch
coverage criterion for TestCocoon.

TestCocoon’s strongest criterion is the condition coverage
criterion, described in the manual as follows: "reaching a
coverage of 100% is more difficult with a condition coverage
than with a decision coverage and than branch coverage".
TestCocoon’s condition coverage matches the compound con-
dition criterion from the standard. According to EN50128
standard, complete compound condition coverage is reached
when "every condition in a compound conditional branch (i.e
linked AND/OR) is exercised". Gaining complete condition
coverage with TestCocoon means that every condition in a
compound condition has to be evaluated at least once as false
and once as true, whereas the compound condition must have
been true and false itself. As mentioned above, every statement
has to be exercised in addition.

Since TestCocoon’s condition coverage criterion is its
strongest and exceeds the compound condition coverage cri-
terion from the standard, we have used it to check the code
coverage reached by our test cases.

VII. RESULTS OF VERIFICATION AND TESTING

In addition to the vigilance device presented above, two
other safety-relevant functionalities have been studied using
the same approach. First, Speed Control is meant to check
that the train’s speed is always below the authorized limit and
automatically slow it down if necessary. Second, the Blocking
Device is responsible for powering up the locomotive only if an
appropriate sequence of commands are given. We summarize
in this section the results of the formal specification, formal
verification and test of these three devices.

For each algorithm, the number of generated verification
conditions (VC) are listed, as well as the percentage of
proven verification conditions for each prover. Table I depicts
the results of the individual provers for the three examined
functionalities. For each algorithm there is at least one prover
that is able to prove all verification conditions. CVC3 stood out
in comparison to the other provers, since those had a higher
percentage of unproven verification conditions.

The results of the code coverage analysis of the unit tests
for the three components is shown in Table II.

Percentage of Proved VCs
Functionality # VC Alt-Ergo CVC3 Simplify Yices
Speed Control 23 96 % 100 % 96 % 100 %
Vigilance Device 62 97 % 100 % 97 % 94 %
Blocking Device 95 97 % 100 % 97 % 93 %

TABLE I. VERIFICATION RESULTS FOR EACH FUNCTIONALITY.

Component Code Coverage
Speed Control 100%

Vigilance Device 100%
Blocking Device 100%

TABLE II. RESULTS OF CODE COVERAGE ANALYSIS.

Concerning quantitative aspects, Table III compares the
size of the formal specifications, implementations, and unit
tests.

Component Implementation Specification Testing
Speed Control 12 30 54

Vigilance Device 22 46 94
Blocking Device 36 57 131

TABLE III. NUMBER OF LINES PER COMPONENT AND METHOD.

As can be seen, the number of lines needed for specification
is always larger than for implementation, but smaller than for
testing. The measure of code lines employed here should not
be confused with a measure of labor cost in person months.
The latter is, however, difficult to collect in an objective way,
as it depends in practice e.g. on the degree of familiarity of
the developer with the respective method.

Of course, the suggested linearity and loop-class/slope
dependency would need confirmation based on a broader set of
programs and should include a varied group of stakeholders,
including developers and verification experts from industry.

VIII. CONCLUSION

In this case study, we have applied both deductive veri-
fication and traditional unit testing to three selected safety-
critical subsystems of a diesel locomotive control system. We
have demonstrated the feasibility of formal specification with
ACSL and verification of embedded software from the railway
domain using Frama-C/WP.

Apart from the successful verification, the process of
formal specification helped us to detect inaccuracies in the
informal requirements: In their original version, it was not
clear that the vigilance device shall be active only when
the train moves. We reported this issue to the author of the
requirement who subsequently provided a clarification. This
shows that formal methods are capable of “enabling precise
communication between engineers”[22, p. 1]. In general, we
found graphic formal models (like the state charts shown in
Sect. III) to be a good starting point both for deriving tests
and specifications.

On the other hand, in the original version of the im-
plementation of the blocking device, the time-out counter
was not reset on a transition from state “unblocked while
motion” to “unblocked while standstill”. This bug was not
detected by verification due to lack of a corresponding formal
requirement. The process of formal specification helped us to
detect ambiguities of informal requirements whereas a mature

process of deriving test cases can provide safeguards against
incomplete specifications.

Although EN 50128 “highly-recommends” formal verifica-
tion of SIL 3/4 software, it still mandates functional testing as
the primary source of evidence [1, Table A.5]. This leads to
uncompensated effort increases by formal verification in the
railway domain. We suggest to discuss an approach similar to
that in the aerospace domain, where formal methods nowadays
may replace certain test activities. Like in [22], certain over-
all integration tests would remain indispensable, and caution
should be exercised as to define suitable formal-specification
completeness criteria, similar to test coverage criteria.

ACKNOWLEDGMENT

The work described in this paper has been partially funded
by the ANR/BMBF PICF project Device-Soft and the ITEA2
project Open-ETCS.

We also express our gratitude to Dipl.-Ing. Jürgen Busse,
an assessor for railway software, for sharing his expertise about
the assessment process of railway software and formulating the
informal safety requirements on which this work is based.

Finally, we’d also like to thank the anonymous referees for
their helpful remarks on an draft version of this paper.

REFERENCES

[1] CENELEC, European Committee for Electrotechnical Standardization,
“EN 50128: Railway applications - Communication, signalling and pro-
cessing systems - Software for railway control and protection systems,”
Tech. Rep., Jun. 2011.

[2] J.-R. Abrial, The B Book - Assigning Programs to Meanings. Cam-
bridge University Press, Aug. 1996.

[3] M. Dahlweid, M. Moskal, T. Santen, S. Tobies, and W. Schulte, “VCC:
Contract-based Modular Verification of Concurrent C,” in International
Conference on Software Engineering, ICSE, 2009.

[4] M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and K. R. M. Leino,
“Boogie: A Modular Reusable Verifier for Object-Oriented Programs,”
in FMCO, ser. LNCS, vol. 4111, 2005.

[5] F. Randimbivololona, J. Souyris, P. Baudin, A. Pacalet, J. Raguideau,
and D. Schoen, “Applying Formal Proof Techniques to Avionics
Software: A Pragmatic Approach,” in the Wold Congress on Formal
Methods in the Development of Computing Systems (FM’99), 1999,
pp. 1798–1815. [Online]. Available: http://dl.acm.org/citation.cfm?id=
647545.730777

[6] Frama-C, “Frama-C homepage,” http://frama-c.com/.
[7] K. Hartig, J. Gerlach, J. Soto, and J. Busse, “Formal Specification and

Automated Verification of Safety-Critical Requirements of a Railway
Vehicle with Frama-C/Jessie.” in FORMS/FORMAT, E. Schnieder and
G. Tarnai, Eds. Springer, 2010, pp. 145–153. [Online]. Available:
http://dblp.uni-trier.de/db/conf/forms/forms2010.html#HartigGSB10

[8] J. Burghardt, J. Gerlach, K. Hartig, H. Pohl, and K. Völlinger, “Formal
Specification and Automated Verification of Railway Software with
Frama-C,” Fraunhofer FOKUS, Tech. Rep., Jun. 2012.

[9] P. Baudin, J. C. Filliâtre, T. Hubert, C. Marché, B. Monate, Y. Moy,
and V. Prevosto, ACSL: ANSI/ISO C Specification Language, v1.6, Sep.
2012, http://frama-c.com/acsl.html.

[10] P. Cuoq, F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and
B. Yakobowski, “Frama-C: A software analysis perspective,” in Soft-
ware Engineering and Formal Methods, SEFM, ser. LNCS, vol. 7504,
Oct. 2012.

[11] J. Burghardt, J. Gerlach, K. Hartig, H. Pohl, and J. S. K. Völlinger,
ACSL by Example, version 7.1.0 (for Frama-C Nitrogen).

[12] Y. Moy and C. Marché, Jessie Plugin Tutorial.

[13] L. Correnson and Z. Dargaye, WP Plug-in Manual, version 0.5, Jan.
2012.

[14] C. A. R. Hoare, “An axiomatic basis for computer programming,”
vol. 12, no. 10, pp. 576–580 and 583, Oct. 1969.

[15] Alt-ergo, “Alt-ergo homepage,” http://alt-ergo.lri.fr/.
[16] C. Barrett and C. Tinelli, “CVC3 homepage,” http://www.cs.nyu.edu/

acsys/cvc3/.
[17] Simplify, “Simplify homepage,” http://freshmeat.net/projects/

simplifyprover/.
[18] SRI International, “Yices homepage,” http://yices.csl.sri.com/.
[19] J. Busse, “Sicherheitsanforderungsspezifikation Diesellok,” Institut für

Bahntechnik GmbH (IfB), Technical Note 2009-408300-26, Oct. 2009,
unpublished.

[20] 9899:TC3: Programming Languages—C, ISO/IEC JTC1/SC22/WG14,
2007, www.open-std.org/jtc1/sc22/wg14/www/docs/n1256.pdf.

[21] “Squish Coco, Code Coverage Measurement for C/C++ or C#,” http:
//doc.froglogic.com/squish-coco/2.0/squishcoco.pdf, 2012/04/20.

[22] RTCA SC-205, “Formal Methods Supplement to DO-178C and DO-
278A (DO-333),” Radio Technical Commission for Aeronautics (RTCA
Inc.), Tech. Rep., Dec. 2011.

