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Abstract- The PID algorithm has proven to be a popular and 
widely used control method, due to its relative simplicity and 
robustness. Despite this the linear nature of the algorithm means 
it doesn’t provide optimal control to non-linear systems. This 
paper presents a method of improving the performance of the 
PID controller using an ANFIS based controller to provide gain 
scheduling. This control scheme is applied to a Boost Converter 
circuit and simulated within the PSIM modelling environment. 
The simulation results indicate that using the ANFIS controller 
provides a fast system response with minimal errors even under 
dynamic operating conditions. The ANFIS controller is also 
shown to simplify the design flow in comparison to the popular 
Fuzzy-PID gain scheduling method.  

I. INTRODUCTION 

The first use of the classical PID controller is widely 
attributed to Elmer Sperry in 1911 in his work on automating 
ships steering. The first known publication on the topic was 
published eleven years later by Minorksy [1]. Despite being a 
century old, the classical PID controller remains a popular 
control solution due to the algorithms flexibility and 
robustness. In the modern era a number of modelling 
packages are available which offer quick and easy design and 
tuning of the PID controller helping to sustain its use. 

Despite its popularity and advantages, the PID algorithm is 
not an ideal solution for all control solutions. As the 
algorithm provides a control signal which is essentially 
proportional to the error input, the PID is fundamentally 
linear. This means that sub optimal control is provided for 
non-linear systems. This has led to the need for 
improvements in control systems to be able to handle non-
linearity. This is particularly prevalent in the more complex 
plants which are often present in modern systems. 

A number of different approaches have been taken in 
attempting to develop control systems which are more 
suitable for non-linear plants. There are now two distinct sets 
of controller designs for non-linear systems – adaptive 
control and gain scheduling. In an adaptive controller the 
control law is adaptive to the altering dynamics of the plant. 
As the plant transitions into different operating conditions, 
the controller responds by updating its control parameters for 
that state. One of the most commonly used types of adaptive 
control is sliding mode control. In this scheme the controller 
provides a discontinuous control signal which forces the 
system or “slide” along a section of its normal operating 
parameters. As a popular method of non-linear control, 
sliding mode control has been shown to be a good solution 
for the control of power converters [2][3]. Sliding mode 
control has been shown to be a robust method of control for 

non-linear systems. However its implementation is a complex 
task which often requires quite detailed knowledge of the 
underlying plant. 

Gain scheduling is another popular method employed for 
non-linear control. In a gain scheduling controller a number 
of linear controllers are employed depending on the state of 
the system. Each of the separate linear controllers is able to 
give optimal control for a different operating state of the 
system. In a real system which employs a gain scheduling 
controller there will be just one linear controller, commonly a 
PID controller, which is adapted to the systems operating 
characteristics by altering the gain of the controller. This 
approach is an attractive option for power converters where 
the PID parameters can be altered according to the load, as 
well as for disturbances. An approach which has proven to be 
popular is the use of a Fuzzy logic controller to provide the 
gain-scheduling for the PID, such as in [4] and [5]. This 
approach has also been successfully adopted in power 
converter systems, such as in [6] and [7]. These papers 
demonstrate the improved performance which can be 
achieved in non-linear systems when this type of non-linear 
controller is introduced. 

The main attraction of the fuzzy logic controller in the gain 
scheduling scheme is its ability to make decisions. However 
this is offset by the need for expert level of knowledge in the 
system to be able to design a controller with suitable 
performance. This is in contrast to the other popular family of 
artificial intelligence (AI) based controllers - Neural 
Networks. In systems which employ the neural network there 
is an inherent ability for the system to learn and be trained, 
simplifying the design process. However there is an inability 
of such systems to make decisions which limits how useful 
they can be in control solutions. In order to best exploit the 
capabilities of both types of controller, it is possible to utilize 
a neural network which is trained to perform as a fuzzy logic 
controller. One system which has been shown to achieve the 
best of best types of AI controller is the Adaptive Neuro-
Fuzzy Inference System (ANFIS) [8].The ANFIS algorithm 
is an adaptive network which has a similar training scheme to 
the neural network whilst offers equivalent performance to a 
fuzzy logic inference system. This makes it an ideal tool for 
use in a gain scheduling PID based control system for power 
converter systems.  

The need for a reduction in carbon emissions has led to an 
increasing interest in renewable energy sources as a means 
for energy production. Renewable energy is particularly 



suited to distributed generation (DG), whereby locally 
produced energy is used to power a small local area. This is 
in contrast to the traditional method of having a small number 
of power plants providing power to a wide area. In this paper 
a solar photovoltaic (PV) system is introduced which is 
suitable for DG systems, consisting of a PV cell, a MPPT 
tracking algorithm and a boost converter to regulate the 
output power. A popular and emerging research theme for 
DG systems is the so called demand side management [9], 
which is concerned with intelligently monitoring the load. An 
example of this is incorporated in the boost controller through 
the use of the ANFIS-PID gain scheduling controller.  The 
boost converter is a highly non-linear plant which is 
controlled using the ANFIS-PID methodology to produce a 
stable 48VDC output. The ANFIS-PID monitors the load 
demand of the converter and adapts the PID controller 
parameters accordingly. 

The rest of this paper is organized as follows: firstly the 
control problem is presented, then the ANFIS network is 
introduced, next the system model is dealt with in greater 
detail before simulations are presented and discussed and 
finally conclusions end the paper. 

II. CONTROL PROBLEM 

The main goal of the system presented in this paper is to 
take the power produced by a PV cell and convert this into a 
stable 48VDC output. The PV cell selected for this system is 
the BP3230 which is capable of producing 230W, with 
current of 8A at maximum power. The output of the solar cell 
is applied firstly to a pre-regulator, which is used to apply a 
MPPT algorithm, and finally to a boost converter to provide 
the stable output. The main interest of this paper is in the 
novel control of the boost converter which features an 
ANFIS-PID control solution. A diagram of the full circuit is 
given in Fig 1 showing the PV cell, MPPT circuit, the boost 
converter and the ANFIS-PID controller. 

A. Mathematical Model of the Boost Converter 
The performance of the boost converter circuit, shown in 

Fig 1 is influenced heavily by the current through the 
inductor. When this inductor doesn’t fully discharge its stored 
energy during a switching period, the converters behaviour is 
considerably simpler to model. This mode of operation is 
known as continuous conduction. The other mode of 
operation occurs when the inductor is allowed to fully 
discharge for some period, also known as discontinuous 
conduction. In this mode of operation, the equations 
governing the behavior of the circuit become much more 
complex. Given this it is therefore preferential for the 
converter to remain in continuous conduction mode. The 
average output of the converter is controlled through the duty 
cycle of the switch, which can be defined by either the ratio 
of the input voltage to the output voltage or of the period that 
the switch is closed to the total switching period as shown in 
Eq (1). In this equation Ts denotes the total switching period 
of the inductor whilst D represents the duty cycle of the 

switch. This equation shows how the output can be easily 
controlled by adjusting the duty ratio of the switch when in 
continuous conduction mode.  

In order to model the inductor in the boost converter there 
are two equations which must be understood – one for the 
ripple current and one for the voltage across the inductor. The 
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equation used to model the voltage across the inductor is a 
simple function of inductance and change in current, as 
shown in Eq.(2). The ripple current of the boost converter is 
important in the modeling of the circuit as controlling this 
helps to keep the converter in the continuous conduction 
mode of operation. The equation for modeling the ripple 
current is shown in Eq. (3) and minimizing this value helps to 
increase the operating range of the circuit. 

  
(2)              

 
 

(3)   
 
 

Another important defining feature of the boost converter is 
the output capacitor as this has a large effect on the quality of 
the DC output. The capacitor is important as it smoothes out 
the fluctuations which are introduced into the circuit through 
the switching action, meaning it has a large influence on the 
output voltage ripple of the circuit. The overall ripple of the 
circuit can be modeled by the equation shown in Eq. (4), with 
fs being the switching frequency.  

 
(4)                   

 

B. PID Controller 
The PID controller is a widely used controller, firstly 

introduced in the early parts of the 20th century. This 
controller consists of three separate branches, a proportional 
branch, an integral branch and a derivative branch. The three 
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Fig 1 Diagram of the System 



terms of the controller serve to respond to different elements 
of the error signal, with the proportional part acting 
immediately on the current error, the integral adding a 
contribution equivalent to the history of all errors and the 
derivative action predicting the future contribution of the 
errors. The addition of the integral and derivative action to 
the basic proportional element enhances the performance of 
the controller by reducing steady state errors and the rise/fall 
times respectively. Eq. (5) shows the basic PID algorithm, 
which is used in the controller, with e being the error of the 
output.  

                                          
(5)  

 
The simple PID algorithm offers robust control from a 

relatively simple algorithm, which has contributed its 
continued popularity. The control output of the PID is 
proportional to the error input, meaning that the PID is not 
ideally suited to the control of complex non-linear systems. 
However the algorithm dynamics can be altered through 
adaption of the gains of the three elements – Kp, Tr and Td. In 
the gain scheduling scheme which is to be applied in this 
paper these three gain are adapted according to the operating 
parameters of the converter. This popular approach allows for 
the PID to achieve a more optimal level of control of the non-
linear system.  

The boost converter circuit is a non-linear second order 
system. Whilst the ANFIS –PID is designed to counteract the 
non-linearity of the system, it is possible to further simplify 
the system response. If the current through the inductor is 
more closely controlled then this has the effect of reducing 
the system response to a first order type. In doing this the 
system becomes easier to control and a better response can be 
achieved. In the system shown in Fig 1, the inner PI 
controller is used to more closely control the current though 
the inductor, thus reducing the control complexity of the 
output and helping to further improve the system output. 

C. Maximum Power Point Tracking 
The characteristics of PV cells are influenced by both the 

solar radiation and the temperature. In order to utilize the 
maximum available power from the PV cell a MPPT 
algorithm is included in the system. There are a number of 
different algorithms available for MPPT with two of the most 
widely used being the Perturb and Observe (P&O) and 
Incremental Conductance (INC). Both of these techniques are 
examples of “hill-climbing” algorithms. In both cases the 
algorithm works by slightly increasing or decreasing the 
operating voltage of the PV cell. By observing whether this 
causes an increase or decrease in the power it is possible to 
track the MPPT. These techniques are popular as they are 
relatively simple to implement, exhibit good efficiency and 
are technology independent. A review of these algorithms 
applied to grid-tied PV systems is conducted in [10], showing 
that the INC algorithm yields the best results. A variation of 
the INC algorithm introduced in [11], which features adaptive 
step sizes has been used in this application. Using this 

variation of the INC algorithm is shown to give reductions in 
oscillations in steady state operation whilst also benefitting 
from improved dynamic response. The flow for the variable 
step size INC algorithm used is shown in Fig 2, where S(k) is 
the variable step size which is calculated as in Eq. (6) with N 
being a scaling coefficient which is tuned for the device. 
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III. ANFIS ALGORITHM 

Whilst Fuzzy logic and Neural Networks are both well 
established AI techniques which have been widely applied to 
the field of control, both have drawbacks. In the case of fuzzy 
logic, whilst it is excellent at making decisions, this is the 
inability to learn. Conversely, neural networks don’t share 
this ability to make decisions but do possess the ability to 
learn. Combining the benefits of both types of system, new 
hybrid Neuro-Fuzzy systems have emerged. One popular 
example of such a system is the ANFIS architecture. The 
ANFIS architecture was originally introduced in 1993 by J-S 
Jang [8] and has since been used in a variety of control 
systems such as [12] and [13].  

The ANFIS architecture is comprised of a five layer feed 
forward neural network, as shown in shown in Fig 3. This 
approach means that the learning capabilities of the Neural 
Network are preserved but the desirable decision making 
abilities of the fuzzy inference system are added.   When fully 
trained, this network exhibits behaviour which is analogous to 
a Sugeno type fuzzy inference system. The Sugeno inference 
engine is a universal approximator which is capable of 
approximating non-linear functions. The ability of the Sugeno 
model to approximate is only limited by the number of rules. 
With a limitless number of rules, the system will be capable 
of approximating even the most complex non-linear function 
with great accuracy.  As the ANFIS network is analogous to 
the Sugeno system, this non-linear function approximation 
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capability is inherited. When coupled with the relative ease of 
training, thanks to its learning ability, this makes the ANFIS 
an attractive option for the control of non-linear plant such as 
switch mode DC-DC converters. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In the rest of this section the five layers which comprise the 

ANFIS network are discussed in more detail. 

A. Layer 1 - Fuzzification 
The first stage of the ANFIS model is to convert the crisp 

input values into fuzzy number sets in much the same way 
that a fuzzy logic system would. The output of the 
membership functions is given in Eq (7) where μA and μB 

represents the membership groups (e.g. small , large, big etc). 
  
 

(7)  
 

B. Layer 2 and 3 – Firing Strength 
Once the fuzzification of the inputs has been performed, 

the next stage in the system is to calculate the firing strength 
of the rule. This is done in two stages - firstly the values of 
μA and μB are multiplied together as shown in Eq (8). This is 
performed in stage two; stage three then performs 
normalization of the multiplied values, putting the values in a 
predefined range as shown in Eq. (9). 

 
(8)  

 
(9)   

 

C. Layer 4 – Consequence Parameters 
The next stage in the ANFIS is to calculate the 

consequence parameters. In a traditional fuzzy system, 
consisting of IF THEN rules, this part of the algorithm is 
equivalent to the THEN part of rule. The output of this layer 
is shown in Eq. (10). The output of this stage is effectively 
the same as the output rule for Takagi-Sugeno type fuzzy 
inference engine. 

 
(10)  

 

D. Layer 5 – De-fuzzification 
The final stage of the ANIFS algorithm is to convert the 

fuzzy logic sets into a crisp output which can be used by the 
external PID controller. This stage takes the simple form of a 
summation of all the rule outputs, meaning the output of this 
stage, and the whole ANFIS algorithm, is as given in Eq. 
(11). 

(11)   
 

E. Training the ANFIS 
In order for the ANFIS to work in any given application it 

is necessary to firstly perform training on the network. This 
training stage is much the same as the training stage of a 
Neural Network. The ANFIS is presented with a set of 
training data, which consists of a number of inputs and the 
expected outputs. Training is then completed to minimize the 
error between the actual output and the expected output. 
There are two adaptive nodes which are trained in the ANFIS 
– the fuzzy logic sets in layer one and the consequent 
parameters in the fourth layer. This training is typically 
supervised by a hybrid training algorithm which features a 
forward pass and a backward pass phase. The forward pass 
phase of this training the node outputs are fed forward until 
layer four. In this stage the consequent parameters in layer 
four are then tuned using the least squares estimation method. 
The least squares method is designed to minimize the sum of 
the squared error of the system output. In the back pass phase 
of the hybrid algorithm the membership sets in layer one are 
tuned. In this part of the training the error signals are 
propagated backwards from the output and the membership 
parameters are optimized using the gradient descent 
algorithm. The gradient descent algorithm, which is also 
typically employed in neural network training, finds the 
minimum error by moving the membership parameters a 
distance which is proportional to the functions gradient at the 
given point. This movement is performed in every training 
iteration until the output error is sufficiently minimized. 

The training of ANFIS based systems can be easily 
achieved using the Matlab modeling tool. The Neruo-Fuzzy 
plug-in allows for automation of the training using the hybrid 
learning algorithm. This plug-in also allows for careful 
selection of the membership functions, with options available 
for the number and type of membership functions. Once the 
training stage has been completed it is also easily possible to 
validate the data using this tool. 

IV. SYSTEM MODELING  

A. Boost Converter Circuit Model 
In order to optimize the performance of the boost circuit 

the values of the output capacitor and the inductor must be 
carefully selected. The inductor used in this circuit is chosen 
as 22uH which gives a ripple current of 550mA according to 
Eq. (3). The output capacitor is selected as 100uF which 
gives a maximum ripple voltage of 25 mV according to Eq. 
(4). The boost converter circuit will be modeled using the 
PSim simulation environment. PSim is spice based simulation 
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tool which is targeted at the design of power electronics and 
control systems.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 

B. Solar PV Cell and MPPT Tracking 
The modelling of solar photovoltaic cells can prove to be a 

complex issue. However the use of the PSim software suite 
allows for this task to be simplified greatly. PSim supplies a 
generic solar cell modelling tool which can be used to create 
a custom model of any given cell using a few parameters 
from the data sheet, such as rated power, series resistance, 
shunt resistance and short circuit current. This tool also 
allows for the generation of power curves at any operating 
point to allow for the model to be validated before it is 
imported into the PSim schematic for use in simulations. The 
solar PV cell model developed for this simulation and the 
obtained IV curves at MPP are shown in Fig 4. 

The implementation of the variable step size INC algorithm 
is also achieved using the PSim software suite. Whilst this 
task could have been achieved using Matlab, the use of PSim 
at this stage allows for closer consideration of a potential 
final hardware target. The PSim tool offers compilation and 
simulation of functions written using C code. This means that 
the code can be developed and simulated at the system 
modelling stage and easily imported to a microcontroller 
hardware target, reducing development time. 

C. Tuning the PID Controller 
Prior to the ANFIS being trained it is first necessary to 

create the training data. In order to gather this data the PID 
controllers need to be tuned under a number of operating 

scenarios. There are a number of different methods available 
for the tuning of PID controllers, from traditional methods  

                             
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
like Ziegler-Nichols to modern approaches using artificial 
intelligence (AI) algorithms and online training solutions. 

The training algorithm selected here is known as Particle 
Swarm Optimization (PSO) and is an AI based approach 
which mimics the behaviour of flocking birds. This algorithm 
has proven to be a popular solution to the tuning of PID 
controllers [14][15] and benefits from being both effective 
and relatively simple to implement.  

The main flow of the PSO algorithm is shown in Fig 5, 
illustrating how the algorithm is used to move potential 
solutions in the problem search space. A crucial component 
of the PSO algorithm is the particle, which consists of three 
separate parts – the current solution, the velocity and the 
personal best fit. The current solution stores the data which is 
to be applied to the problem, whilst the personal best fit 
stores the value of the particle which has yielded the best 
result so far. The velocity is a key parameter in controlling 
how the problem space is searched as it controls how fast and 
in which direction the particle is accelerated. This value is 
initially set to a random value but is iteratively updated. Each 
update has the effect of pulling the particle towards either a 
global or personal best fit. The equation for updating the 
velocity of the particle is shown in Eq. (12), with Vn being 
current velocity, Xn being the current solution, GXn the global 
best fit, PXn the personal best fit and w a constant known as 
inertia weight. 
 

(12)  
 

The social and cognitive coefficients, shown by C1 and C2 
respectively, have the effect of pulling the particle towards 
either its personal best fit (cognitive) or the global best fit 
(social). The values of these two therefore have the effect of 
promoting convergence to either the personal or global best 
fit. To achieve optimal performance of the algorithm the 
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cognitive value is linearly decreased whilst the social value is 
linearly increased. 

Using this algorithm the PI(D) controllers are tuned, firstly 
the inner current PI controller and then the voltage PID. The 
two PI(D) controllers are both trained under a number of 
different steady state loads and with a number of load 
transients to give a more complete set of training data. The 
optimized gain values which are found during the tuning are 
then used to form the training data of the gain scheduling 
ANFIS controller. The PSO algorithm is modeled in the 
popular Matlab simulation tool using co-simulation with the 
boost converter developed in PSim through the Sim-Coupler 
plug-in. 

The ANFIS training is also completed using Matlab once 
the PI(D) tuning has been completed. The ANFIS is designed 
to have two inputs – with one being the load current and one 
being changes in load current. There will be seven trapezoidal 
membership functions for each of these two inputs as this has 
shown to give a good approximation of the training data. The 
training is automated in Matlab using the Neuro-Fuzzy plug-
in, which uses the hybrid learning algorithm previously 
discussed to tune the performance of the ANFIS controller. 
The fully trained ANFIS model is also simple to create in 
Matlab, whilst the Sim-Coupler module again allows for 
interaction with the PI(D) controllers and boost circuitry 
which is modeled in PSim.  

V. SIMULATION RESULTS  

In order to demonstrate the performance of the ANIFS-PID 
controlled boost converter PV system a number of 
simulations are carried out to ascertain the system 
performance, under both steady state and dynamic conditions. 
There are a total of four simulations which are carried out to 
illustrate the performance of the system. The first set of 
simulations carried out is intended to measure the steady state 
performance of the system under both heavy (4A) and light 
loads(1A). The results of these tests are shown in Fig 6 and 
Fig 7, showing that in both instances there is no steady state 
error. The ripple voltage for the light load is measured at just  

  
 
 
 

Fig 1.  
 
 
 
 
 
 
 
 
 

 
 

 
 
4mV whilst the ripple voltage for the heavy load is 16mV. 

The next simulation is carried out to show the dynamic 
performance of the system when there is a reduction in output 
load demand. The system performance with a one amp 
decrease in current is shown in Fig 5. This simulation 
demonstrates that under these dynamic operating conditions 
the maximum absolute error is measured at just 257 mV, 
which equates to an output error of just 0.48%.  

The final simulation shows the dynamic performance of the 
system when there is a step increase in output load demand. 
Fig 5 shows the output of the system with a with a one amp 
step increase in current. This shows that under these dynamic 
conditions there is a maximum absolute error of just 230 mV, 
which equates to an output error of just 0.53% compared to 
the reference voltage of 48VDC.  

The results of the simulations carried out and shown in 
figures Fig 6 to Fig 5 are also summarized and presented in 
TABLE I below. 

TABLE I  

SUMMAR OF SIMULATION RESULTS 
Steady State Tests 

4A Load 
Steady State Error (%) 0 
Peak to Peak Ripple (mV) 16 

1A Load 
Steady State Error (%) 0 
Peak to Peak Ripple (mV) 4 

Dynamic Test 
1A Step Decrease in Load 

Max. Error (mV) 230 
Max. Error (%) 0.48 

1 A Step Increase in Load 
Max. Error (mV)  257 
Max. Error (%)  0.53 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 

Fig 6 Boost Converter Output with 1A Load 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig 7 Boost Converter output with a 4A load 

Fig 8 Boost converter output with a 1A step decrease in current 

Fig 9 Boost converter output with a 1A step increase in current 



VI. CONCLUSIONS 

The simulation results of the new gain scheduling 
technique in the developed solar PV application indicate that 
this methodology can achieve a good level of control for a 
non-linear system. The boost converter to which the ANFIS-
PID controller is applied exhibits excellent behaviour under 
both steady sate and dynamic operating conditions. In the 
steady state operation the power converter exhibits no steady 
state error whilst under heavy loads the peak to peak ripple 
voltage is just 16mV. Under dynamic operating conditions 
the maximum absolute error observed is less than 0.6 %. This 
performance characteristic can be especially important in the 
PV cell fed boost converter application to which this is 
applied. This level of voltage deviation allows for the system 
to be fed into an inverter without any instability issues being 
introduced, meaning it can be tied to the grid. 

As well as being capable of delivering a good level of 
control on a non-linear plant, the design flow for the 
controller is simplified by implementing the PSO algorithm 
in the training phase. The PSO algorithm is well known, 
efficient and simple to implement, meaning that the training 
data can be gathered easily. Leveraging this algorithm in this 
stage also means that the tuning of the PID is a automated 
process. The availability of the Matlab Neuro-Fuzzy tool 
makes the design flow more desirable still, as this means that 
ANFIS training can be achieved simply. This shows that this 
methodology can offer a fast modelling and prototyping 
solution.  
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