
Simulation Repository Visualisation and Exploration

Andrew Fish
School of Computing,

Engineering and Mathematics
University of Brighton, UK

Andrew.Fish@brighton.ac.uk

Claudio Gargiulo
R&D - Aerothermal CFD

Fiat Chrysler Automobiles, Italy
claudio.gargiulo@fcagroup.com

Donato Pirozzi
Dipartimento di Informatica
Università di Salerno, Italy

dpirozzi@unisa.it

Vittorio Scarano
Dipartimento di Informatica
Università di Salerno, Italy

vitsca@dia.unisa.it

Abstract—This paper describes a tool called ExploraTool to
visualise, explore and graphically query large repositories of
simulations. Instead of starting with the empty list, ExploraTool
provides an initial overview of the repository content, progres-
sively grouping the simulations by their main attributes, such
as brand, vehicle model, power source, engine type and so on.
Users can interactively navigate the repository view through drill-
down, roll-up and rearrangement operations. In this way, using
the ExploraTool, simulation analysts can visualise, explore and
filter large repository of simulations as well as select groups of
simulations to compare their performances.

Keywords—Data Visualisation, Data Exploration, Simulation

I. INTRODUCTION

Nowadays, industries and researchers extensively run sim-
ulations and experiments to design their products. In the auto-
motive, industrial equipment, high-tech, aerospace and defence
sectors [1], industries perform computer numerical simulations
to design their product facing time-to-market, high quality
and cost down pressures [1]. For example, automotive indus-
tries use Computational Fluid Dynamic (CFD) simulations to
design the external vehicle aerodynamics or the internal air-
conditioning. Another example comes from the engine design:
researchers and industries have real engine test-beds that run
for hours collecting sensor data like pressures, temperatures,
and torque forces.

Simulation repositories usually store huge amounts of data
for years. For instance, in large manufactures like Fiat Chrysler
Automobiles, each analyst performs at least one hundred
simulations per year [2], and there are many analysts working
over years. This has generated a large, valuable repository of
assets. In addition, analysts typically deal with simulations
that are at least ten gigabytes each [2]. This gives an idea of
the large quantity of data to manage within these repositories
and the difficulty in having a clear idea of what they contain.
Simulation Analysts, as well as Experiment Analysts, need to
clean, analyse and compare the collected results as well as
get insight into the data repository. Sometimes, specific phe-
nomenons need to be understood. For instance, if a particular
event in an engine experiment run occurs sporadically, then
the analysts need to extract the input conditions for which
such an event occurs (e.g., for which pressure values). For
this reason there is a demand for software platforms able to
collect, centralise, and get insight into information in a data
repository, as well as to analyse and share results [3].

Based on our experience working closely a team of
aerothermal CFD within Fiat Chrysler Automobiles, we identi-
fied the following three main requirements: (1) data collection,

centralisation [1], and sharing [2] (2) data heterogeneity man-
agement, and (3) repository visualisation and exploration.

This paper focuses on the visualisation, exploration, and
query of a large repository of simulations. The idea is to
provide a graphical tool called ExploraTool to (1) get an
overview of the repository content, (2) navigate the reposi-
tory of simulations based on their properties, and (3) select
and extract a set of simulations in order to compare their
performance. The tool is actually usable for generic data
exploration, thereby being usable to also explore repositories
of experimental data, or any other big data sets.

This paper is organised as follows. Section II presents the
state of the art on 2D space-filling visualisation techniques
and existing tools that rely on them. Section III describes the
ExploraTool features. Section IV describes the ExploraTool’s
architecture and the process used to transform the data read
from the simulation repository to an interactive visualisation.
The last Section V summarises the paper results, reporting the
known tool limitations and the planned future works.

II. RELATED WORKS

The visualisation of large datasets has become really im-
portant because the classical list based widgets are not able
to manage the large number of items, and also because it is
practically impossible to show all the data available within a
dataset. In this context, the 2D space-filling visualisation tech-
niques aim to exploit all the available screen-space supporting
the overview of the datasets, the opportunity to navigate the
dataset and get more details on request. Generically speaking,
the 2D space-filling approaches divide the available screen
space recursively using a basic shape (e.g., rectangle, circle).
In this way parent-child relationships are represented as nested
shapes, and sibling nodes are represented as closest shapes at
same depth.

Treemap was introduced by Shneiderman during 1990 to
have a compact file system visualisation and be able to identify
at a glance the directories that take up the most of the space
on the hard drive. Then, treemap [4] has been extensively
used to present intrinsically hierarchical data, providing an
overview of an entire dataset at a glance. In treemap, every
node in the hierarchy is represented as a rectangle with an
area proportional to the node size. Parent-child nodes are
represented as nested rectangles. Usually the navigation within
the hierarchy is based on a drill-down with a left mouse click to
go down in the hierarchy and a roll-up with a right mouse click
to go up in the hierarchy. Over years, the treemap visualisation



Fig. 1. The ExploraTool’s Graphical User Interface. It shows an overview of the simulation repository through an initial hierarchy made by the following
simulations’ attributes: brand, project model, power source and engine type. The attributes’ order is shown in the navigation bar on the left. Instead of starting
from scratch the tool shows an initial overview, progressively grouping simulations by their main properties. For instance the picture groups simulations first by
the brand (Lancia, Maserati, Fiat, and Alfa), then it further groups simulations by the vehicle model. The user can drill-down by directly clicking on any ellipse.

Fig. 2. The picture shows the result of the drill-down operation performed on the Delta category. Starting from Fig. 1, the analyst clicks on the ellipse “Delta”.
The ExploraTool smoothly enlarges the selected group, rendering a fast transition to the new view. If the user desires to go return back to the less detailed view,
he/she can click directly on the external “universe” white space in order to perform a roll-up operation, thereby returning to the initial view as shown in Fig. 1.



approach has been used to visualise different hierarchical data,
such as inherently hierarchical organisation structures [5], file
systems [6], Usenet newsgroup [7] and so on. Well-known
treemap drawbacks are the hierarchy discernment [8] and the
fact that the position of the mouse pointer designates an entire
branch of the tree [9] because each point belongs to a single
leaf node but also to all its ancestors [9]. Of course, one of
their advantages is the use of the all available 2D space.

Ellimap [8] is another type of 2D space-filling visualisation
approach. It uses ellipses instead of rectangles to represent the
nodes. In this way, there is always space between ellipses,
both nested ellipses and adjacent ellipses (i.e., sibling nodes
in the hierarchy). According to Otjacques at al. [10], the
use of ellipses with their extra space improves the hierarchy
discernment compared to the visualisation based on rectangles.

This paper exploits the ellipmap visualisation technique to
explore large repository of simulations within Fiat Chrysler
Automobiles (FCA). Until now, the ellimap has always been
used coupled with other classical visualisation widgets like
tree widget [8]. Here, we explore the repository of simulations
directly through the ellimap, integrating a vertical navigation
bar to track the user position in the hierarchy during the
navigation. In addition, in this work we exploit the natural
extra space between the ellipses in order to provide a hierarchy
navigation facility in which the user points directly to the target
shape and interacts with the left mouse click.

III. EXPLORATOOL FEATURES

This section describes ExploraTool and its features. Instead
of starting from scratch with an empty screen without results,
the tool shows an initial overview of the dataset filling all
the 2D screen available space. Starting from this initial view,
the user can navigate the simulation repository through an
hierarchical structure made by nested groups of simulations.
The hierarchical structure is created by grouping simulations
by their attributes. The tool’s graphical user interface (Fig.
1 and 2) has a central view to show graphically the simu-
lations available within the repository. The tool shows data
using the ellimap [8] visualisation technique, a 2D space-
filling approach that uses ellipses as basic shapes to represent
sets of simulations. As shown in Fig. 1, the external white
space is the universe that represents the set of all simulations
within the repository. The universe of simulations is further
divided into subsets represented as ellipses. Each ellipse area
is proportional to the number of items that it represents. The
ExploraTool shows an initial overview of the dataset displaying
the simulations by brand, project model, power source and
engine type. This default initial sequence of attributes is
based on the feedback provided by analysts in Fiat Chrysler
Automobiles [2].

The user can obtain additional details on each group of
simulations (ellipse) by hovering the mouse cursor over it. The
tool shows the additional information, such as the number of
items in a yellow box on the top-right (see Fig. 1). This space
can be used in the future to provide aggregated statistics about
the shown group of simulations.

The user can navigate the hierarchy through an in-depth
navigation based on the drill-down and roll-up operations. On
the left, the tool has a vertical navigation hierarchy bar that has

multiple aims: (1) it gives an overview of the hierarchy, (2)
it shows the current depth during the simulation repository
navigation supporting the user orientation [11], and (3) it
allows hierarchy rearrangement by swapping the levels.

The tool shows exactly r levels of the hierarchy. Actually,
the default value for this parameter r is decided at config-
uration time and it can be changed changed via the user
preference functions. Of course, the trade-off is between the
amount of data categories displayed on the screen-space and
the computational efficiency to extract the relevant hierarchy
from the repository of simulations.

The ExploraTool renders the hierarchical data in a range
traversal [12] manner: each time only r levels of the hierarchy
are rendered on the screen. This allows one to have a clean
visualisation without displaying too many shapes on the screen.
The number of levels displayed can be changed at configura-
tion time. When the number of levels to show is exactly equal
to one (r = 1) the render is called level traversal [12] giving
an overview of the nodes at a specific level. When the number
of levels is greater then one (r > 1) the tool gives an overview
of the data at a specific level plus additional details about the
lower levels in the hierarchy.

A. Data Exploration: in-depth navigation

The user can further explore the simulation repository
through the in-depth navigation [9] based on two basic opera-
tions: drill-down and roll-up. Drill-down occurs when a user
has identified a potentially interesting group of simulations and
he/she wishes to explore further details of this group, and so
he/she clicks on an ellipse to obtain more details. Every time
the user drills down in the hierarchy by one level, ExploraTool
loads further data showing more nested ellipses. ExploraTool
shows multiple nested ellipses, so the user can drill-down one
level at time or multiple-levels in one step by clicking on the
internal nested ellipses. Roll-up is the opposite operation to
drill-down. When the user wants to have a global dataset view
he/she goes up in the hierarchy by clicking on the container
ellipse. Every time the user drills down in the hierarchy, he/she
is effectively performing a refinement of the query, filtering all
of the simulations in the repository.

All the operations provided by the ExploraTool rely on the
direct manipulation [13] principle introduced by Shniderman.
It concerns the direct interaction and manipulation of the
rendered objects. The use of ellipses as basic shapes guarantee
that there will be always space between sibling ellipses at same
level and among nested ellipses. In this way every operation
is performed by the user involves exactly the target shape. For
instance, in order to drill down in the hierarchy, the user points
and clicks exactly on the nested ellipse. In order to roll-up the
user points and clicks exactly on the parent shape utilising the
space between the parent and child ellipses (Fig. 2), which
is always present. It is not the same for other 2D space-
filling techniques. For instance, in the treemap visualisation
technique both nested rectangles and adjacent rectangles have
no space between them, so the position of the mouse pointer
designates a branch of the tree [9] because each point belongs
to a single leaf node but also to all its ancestors [9]. Finally,
in the ExploraTool, to obtain the list of simulations within a
specific ellipse the user can click directly on the target ellipse.



B. Hierarchy Attributes Rearrangement

ExploraTool starts with an initial hierarchy built on a
default ordering of the attributes. The initial ordering is
shown in the navigation bar (left-side of Fig. 1). This initial
attribute ordering has been defined by end-users and this
is useful in order to have an initial hierarchy displayed on
the screen. In our use case, the attribute ordering is A =
{brand, project model, power source, engine type} where
generically speaking A is the notation for a set of attributes.

Fig. 3. Hierarchy rearrangement operation performed through the drag-and-
drop of an attribute (facet) from its original position to a new slot. In this way,
the user changes the order of the attributes, thereby updating the hierarchy.

The user can define an ordering of the attributes by
interacting with the navigation bar. The user can drag and
drop an attribute label (facet label) to move it from one slot to
another one. By swapping two attributes that are on different
levels in the navigation bar, the hierarchy updates showing the
simulations in a different way. In this way, the ordering of the
attributes is selected by the user according to his/her query.

C. ExploraTool Tasks

ExploraTool supports the exploration of simulations data
sets, enabling the analyst to easily answer questions such
as: how many simulations were performed for the vehicle
Delta with engine Diesel 1.4 Multiair? or which simulations
have been performed for the vehicle Alfa Giulietta?. By using
ExploraTool the analyst can query the data set through drill-
down and roll-up operations; often they will select common
simulation attributes, such as the vehicle brand, model, and
engine in order to provide information about the simulations
with those target features. Since the ellipse layout is area
proportional, the user is provided with an immediate perception
of the size of groups during their exploration. By hovering the
mouse pointer over an ellipse, the user is also provided with
the exact number of simulations for that group. Finally, the
user can easily obtain the list of all simulations for that group.

IV. EXPLORATOOL SOFTWARE ARCHITECTURE

This section describes the ExploraTool architecture and the
technologies used for its implementation. The tool is based on
a Client/Server architecture (Fig. 4). In order to explore the
repository, analysts just open any of the web-browsers (e.g.,
Mozilla R© Firefox R©) installed on their workstations, targeting
a specific Intranet URL. This allows zero-configuration on the
client-side. Enterprises, for confidentiality reasons, prefer to
run the system within the industry’s boundaries. Therefore,
the prototype has been deployed within the company Intranet.

Client 1

Client N

…

Simulation Repositories

Intranet
HTTP

ExploraTool
Server Component

Server

Fig. 4. ExploraTool prototype client/server architecture. ExploraTool is web-
based, so analysts use the web-browser (clients on the left) to access to the
server. On the Server-side (right part of the picture), ExploraTool accesses to
the existing simulation repositories to retrieve the data and build the hierarchy
chosen by the user.

However the overall architecture is designed using standard
protocols (e.g., HTTP) to work properly both on Intranet and
Internet settings.

On the server-side there are one or more simulation
repositories. ExploraTool reads the data from the simulation
repository, transforms them in open format and indexes them
to improve their retrieval. In order to create the hierarchy,
ExploraTool needs to access the items and the values of the
simulation attributes, which are also called facets [14], [15].
A repository R of simulations is a collection of n items
R = {s1, ..., sn}. ExploraTool reads the simulations’ data and
groups the attribute values together.

From a technological point of view, ExploraTool leverages
from mainstream technologies. Clients exchange data with the
server in JSON text format [16], [17] using standard Web
protocols (e.g., HTTP). Clients are implemented using the
open source JavaScript library D3 Data-Driven Documents1

[18] and SVG. The server has been implemented using Java
and uses the Floasys Framework API [3], [19] to retrieve the
simulations stored within the repository.

A. Hierarchy building process

Figure 5 depicts the process used to extract data from a
repository of simulations, build, and render the hierarchical vi-
sualisation using the elliptical-based 2D space filling approach.
The ExploraTool back-end builds a partial tree data structure
sent to the client that will transform it in an ellipse visualisation
layout. The detailed steps are the following:

1) Tree data structure build: The ExploraTool back-end
reads the data from the simulation repository to build a
tree data structure with a level for each attribute. The tree
building is an intermediate step and the ellimap layout
is based directly on it. Each tree level will be a layer
in the visualisation tool. Each node will be an ellipse in
the visualisation. Fig. 6 shows an example of tree data
structure and the resulting ellimap. In the example (Fig.
6) we assume that the ordering of the attributes is <
brand, project model, power source, engine type >. The
layer Brand in the tree has exactly two nodes (in orange colour)
that have been represented by two orange ellipses labelled 1

1D3JS documention as well as the library download is available on the
official web page http://d3js.org/



Ellipse

Packing
Conversion 

in JSON

Hierarchy

Generation

Simulation
Repository Tree Hierarchy

Intranet

Hierarchy Visualisation

Server-side Client-side

Step 1 Step 2 Step 3

Fig. 5. Pipeline of transformation from the simulation repository to the visualisation on the client Web-browser. In order, the steps are: (1) reading of simulation
data and creation of a tree data structure, (2) conversion of the tree data structure in JSON format, and transferring of the JSON data from the server-side to
the client-side, (3) reading of the JSON data and packing of the ellipses within the available 2D space.

and 2 in the visualisation layout. A parent-child relationship
between two nodes of the tree data structure will be two nested
ellipses in the visualisation layout. Two sibling nodes will be
two separated ellipses on the same level of the visualisation
layout. The resulting tree will have at most r levels, mainly to
limit the overall required computation time to load the dataset
and build the tree data structure. ExploraTool progressively
groups together the simulations with the same attribute value.
This grouping is equivalent to a database SQL query that uses
the group by statement [20]. In the example shown in Fig.
6, ExploraTool firstly groups the simulations by brand, then
by project model, and then by power source.

The resulting tree data structure has a root that represents
the universe of all items, in our case the simulations. Each
level in the tree is an attribute like brand (Fig. 6). Each node
is a value for the given attribute. For instance, at Brand level
(Fig. 6) there will be the nodes with the values Lancia, Alfa,
Maserati and so on. Each tree node has additional metadata,
such as the number of simulations in the repository that have
that value for the specific attribute.

Universe of all simulations

A

1 2

B A B

a b a b

Brand

Project model

Power source a b

a bb a a b

1 2
A A BB

Tree data structure

Ellipse-based visualisation layout

Fig. 6. The tree data structure built by the ExploraTool and the subsequent
ellimap rendering. The ellipse layout is based directly on the tree data
structure, in a manner so that each level in the tree is a layer of the ellimap,
and each node of the tree is an ellipse.

2) Transferring of JSON data from the server to the client:
The tree data structure is transformed in JSON format and sent

{
"categories": [

{
"name": "Brand", "id": 0

},
{

"name": "Model", "id": 1
},
{

"name": "Power Source", "id": 2
},
{

"name": "Engine", "id": 3
}

],
"root": {

"name": "simulations", "size": 1100,
"children": [

{
"name": "Lancia", "size": 600,
"children": []

},
{

"name": "Fiat", "size": 250,
"children": []

},
{

"name": "Alfa", "size": 150,
"children": []

},
{

"name": "Maserati", "size": 100,
"children": []

}
]

}
}

Fig. 7. A partial example of JSON data format transferred from the server
to the client. In the first part, it contains the categories. The second part is the
hierarchy. The size is the number of simulations below the specific branch in
the hierarchy and is used to generate the area proportional ellipses.

to the client. Fig. 7 shows a partial example of JSON source
code. The first part contains the available categories shown to
the end-user in the navigation bar. The second part contains
the simulation data grouped together. In order to be concise,
Fig. 7 shows only the first layer.

3) Ellipse Packing for Data Visualisation: The client re-
ceives the tree data structure in JSON format and transforms it
into the visualisation layout based on ellipses. Over the years



many algorithms have been proposed to pack rectangles for
treemap. Some of them are: the slice-and-dice, cluster treemap,
squarified [21], ordered [22], and strip [23] algorithms. In
ExploraTool the layout algorithm is a modified version of
the strip treemap. We consider firstly rectangles and then we
replace rectangles with ellipses. In order to pack nested ellipses
(children) within an existing ellipse (parent), our algorithm
circumscribes a rectangle in the parent ellipse and recursively
applies the strip packing algorithm for the children rectangles,
that will be replaced by ellipses.

V. CONCLUSIONS AND FUTURE WORKS

In this paper we described a tool called ExploraTool to
visualise, explore and query large repositories of simulations.
Large companies like FCA have large repositories of simula-
tion data and they must be sure that analysts have access to
previously generated data. ExploraTool provides an overview
of the repository content, fostering its exploration. The analysts
can visually and interactively query the data set view through
drill-down, roll-up and rearrangement operations. The idea
behind our tool is generic and can be easily used with a
repository of experiments as well as other types of data sets.
In order to do this, it is necessary to identify the common and
interesting data categories, and build the relative hierarchy that
ExploraTool will render.

As future work on the ExploraTool we wish to improve
the layout algorithm to avoid thin ellipses, thereby improving
the visualisation overall aesthetic. Of course, the residual space
among nested ellipses can be reduced, but this could impact
upon user hierarchy perception and discernment. In addition,
we are planning an evaluation study [24] to analyse the tool
usability and user satisfaction when interacting with it, by
utilizing a well-known questionnaire [25], [26]. Furthermore,
it will be interesting to generalise the tool and use it on a
generic repository like a catalogue of products and compare
how users will perform with it as compared to using different
types of visualisation techniques, like a classical list of results,
Treemap, FacetMap [15], etc. Within the industrial context an
interesting issue to explore is the data authorisation problem,
where a user may only have access to a specific subset of
simulations within the repository.

Acknowledgements. The authors gratefully acknowledge the help and the
support of Comprensorio CRF Elasis Pomigliano (Fiat Chrysler Automobiles)
and the interactions with Aerothermal CFD team. The authors also gratefully
acknowledge the support of the CEREEV (Combustion Engine for Range-
Extended Electric Vehicle), a European territorial cooperation project (grant
number 4224), part-funded by the European Regional Development Fund
(ERDF) through the INTERREG IVA France (Channel) England Programme.

REFERENCES

[1] M. Boucher and C. Kelly-Rand, “Getting Product Design Right the First
Time with CFD,” Aberdeen Group: May, 2011.

[2] C. Gargiulo, D. Malandrino, D. Pirozzi, and V. Scarano, “Simulation
data sharing to foster teamwork collaboration,” Scalable Computing:
Practice and Experience, vol. 15, no. 4, pp. 309–329, 2014.

[3] C. Gargiulo, D. Pirozzi, V. Scarano, and G. Valentino, “A platform to
collaborate around CFD simulations,” in Proceedings of the 23rd IEEE
International Conference on Enabling Technologies: Infrastructure for
Collaborative Enterprises (WETICE), Parma, Italy, 23-25 June, 2014,
pp. 205–210.

[4] B. Johnson and B. Shneiderman, “Tree-maps: A space-filling approach
to the visualization of hierarchical information structures,” in Proceed-
ings of the IEEE Conference on Visualization, 1991, pp. 284–291.

[5] P. Demian and R. Fruchter, “Finding and understanding reusable designs
from large hierarchical repositories,” Information Visualization, vol. 5,
no. 1, pp. 28–46, 2006.

[6] B. Shneiderman, “Tree visualization with tree-maps: 2-d space-filling
approach,” ACM Transactions on graphics (TOG), vol. 11, no. 1, pp.
92–99, 1992.

[7] A. Fiore and M. A. Smith, “Treemap visualizations of Newsgroups,”
Technical Report, Microsoft Research, Microsoft Corporation: Red-
mond, WA, 2001.

[8] B. Otjacques, M. Cornil, and F. Feltz, “Visualizing cooperative activities
with ellimaps: the case of Wikipedia,” in Cooperative Design, Visual-
ization, and Engineering. Springer, 2009, pp. 44–51.

[9] R. Blanch and E. Lecolinet, “Browsing zoomable treemaps: structure-
aware multi-scale navigation techniques,” Visualization and Computer
Graphics, IEEE Transactions on, vol. 13, no. 6, pp. 1248–1253, 2007.

[10] B. Otjacques, M. Cornil, M. Noirhomme, and F. Feltz, “CGDA new al-
gorithm to optimize space occupation in ellimaps,” in Human-Computer
InteractionINTERACT 2009. Springer, 2009, pp. 805–818.

[11] C. M. Dal, S. Freitas, P. R. G. Luzzardi, R. A. Cava, M. A. A. Winckler,
M. S. Pimenta, and L. P. Nedel, “Evaluating Usability of Information
Visualization Techniques,” in Brazilian Symposium on Human Factors
in Computing Systems, 2002.

[12] N. Elmqvist and J.-D. Fekete, “Hierarchical aggregation for information
visualization: Overview, techniques, and design guidelines,” Visualiza-
tion and Computer Graphics, IEEE Transactions on, vol. 16, no. 3, pp.
439–454, 2010.

[13] B. Shneiderman, “Direct manipulation: A step beyond programming
languages,” in ACM SIGSOC Bulletin, vol. 13. ACM, 1981, p. 143.

[14] K.-P. Yee, K. Swearingen, K. Li, and M. Hearst, “Faceted metadata for
image search and browsing,” in Proceedings of the SIGCHI conference
on Human factors in computing systems. ACM, 2003, pp. 401–408.

[15] G. Smith, M. Czerwinski, B. R. Meyers, G. Robertson, and D. Tan,
“FacetMap: A scalable search and browse visualization,” Visualization
and Computer Graphics, IEEE Transactions on, vol. 12, no. 5, pp.
797–804, 2006.

[16] G. Wang, “Improving data transmission in web applications via the
translation between XML and JSON,” in Communications and Mobile
Computing (CMC), 2011 Third International Conference on. IEEE,
2011, pp. 182–185.

[17] X. Chen and K. Kasemir, “Bringing Control System User Interfaces to
the Web,” TUPPC078, ICALEPCS, vol. 13.

[18] M. Bostock, V. Ogievetsky, and J. Heer, “D3 data-driven documents,”
Visualization and Computer Graphics, IEEE Transactions on, vol. 17,
no. 12, pp. 2301–2309, 2011.

[19] C. Gargiulo, D. Pirozzi, and V. Scarano, “An architecture for CFD
workflow management,” in Proceedings of the 11th IEEE International
Conference on Industrial Informatics (INDIN), Bochum, Germany, July
29-31, 2013, pp. 352–357.

[20] R. Elmasri, Fundamentals of database systems. Pearson Education
India, 2007, vol. 2.

[21] M. Bruls, K. Huizing, and J. van Wijk, “Squarified Treemaps,” in
Data Visualization 2000, ser. Eurographics, W. de Leeuw and R. van
Liere, Eds. Springer Vienna, 2000, pp. 33–42. [Online]. Available:
http://dx.doi.org/10.1007/978-3-7091-6783-0 4

[22] B. Shneiderman and M. Wattenberg, “Ordered treemap layouts,” in
Information Visualization, IEEE Symposium on. IEEE Computer
Society, 2001, pp. 73–73.

[23] B. B. Bederson, B. Shneiderman, and M. Wattenberg, “Ordered and
quantum treemaps: Making effective use of 2d space to display hier-
archies,” AcM Transactions on Graphics (TOG), vol. 21, no. 4, pp.
833–854, 2002.

[24] J. Lazar, J. H. Feng, and H. Hochheiser, Research methods in human-
computer interaction. John Wiley & Sons, 2010.

[25] “Computer System Usability Questionnaire,” Dec. 2014. [Online].
Available: http://oldwww.acm.org/perlman/question.cgi?form=CSUQ

[26] “Questionnaire for User Interface Satisfaction.” [Online]. Available:
http://oldwww.acm.org/perlman/question.cgi?form=QUIS


