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Abstract—The recent development of calibration algorithms
has been driven into two major directions: (1) an increasing
accuracy of mathematical approaches and (2) an increasing
flexibility in usage by reducing the dependency on calibration
objects. These two trends, however, seem to be contradictory
since the overall accuracy is directly related to the accuracy
of the pose estimation of the calibration object and therefore
demanding large objects, while an increased flexibility leads to
smaller objects or noisier estimation methods.

The method presented in this paper aims to resolves this
problem in two steps: First, we derive a simple closed-form
solution with a shifted focus towards the equation of translation
that only solves for the necessary hand-eye transformation. We
show that it is superior in accuracy and robustness compared
to traditional approaches. Second, we decrease the dependency
on the calibration object to a single 3D-point by using a similar
formulation based on the equation of translation which is much
less affected by the estimation error of the calibration object’s
orientation. Moreover, it makes the estimation of the orientation
obsolete while taking advantage of the higher accuracy and
robustness from the first solution, resulting in a versatile method
for continuous hand-eye calibration.

I. INTRODUCTION

The coordination between robot eyes (visual sensor) and a
hand (endeffector) is crucial for executing vision-based tasks.
This coordination can be expressed as a spatial relationship
between the sensor and the endeffector. Determining this
rigid transformation is referred to as robot-sensor or hand-eye
calibration and can be computed by moving the robot while
observing the motion with the sensor.

(a) Eye-on-hand (b) Eye-in-hand

Fig. 1. shows the two different setups defined by the calibration problem.
Depicted are two measurements of the Robot - Endeffector transformation A
and the Camera - Marker transformation B respectively. X and Y are unknown
and have to be estimated.

Mathematically, the relationship can in general be written
as an equation of homogeneous transformation matrices of the
form AX = YB (cf. Fig. 1) which can be solved for X and
Y simultaneously. However, X and Y can also be computed
sequentially using two measurements and rearranging it to an
equation of form A′X = XB′ (cf. sec. II-A).

Several closed-form / linear least-square solutions have been
derived in the past decades to solve these equations. They have
two characteristics in common: First, they solve the whole
equation system including the transformation of the calibration
object with respect to the robot. Second, to solve the equations,
they require an accurate pose estimation of the calibration
object from the sensor data.

For those reasons, traditional solutions rely heavily on large
calibration objects like chessboards or similar whose pose
can be easily estimated, here, the accuracy increases with
the size of the object. This yields an inflexible calibration
procedure that has to be run during a separate setup phase
of the robot making it a time-consuming and fiddly task.
In real-world applications, particularly in industrial scenarios,
this calibration process is often not feasible as it interrupts
the actual production workflow. Recalibration of the sensor is
especially necessary on mobile robot platforms that tend to
lose calibration due to vibrations while moving.

Methods to reduce the use of calibration objects and using
smaller markers, planes or even only single points have been
suggested [1], [2], [3], [4], but require new motion constraints
on the robot which makes these methods unfeasible for con-
tinuous calibration. In the recent years, structure-from-motion
approaches [5], [6] have been developed making a calibration
object obsolete, but they rely heavily on 2D image feature
detectors and correspondence matching or tracking to find the
homography between two point sets (basically using the world
as a marker). Even though the results are promising for eye-
in-hand calibration, the opposite case, using a static camera
is more difficult to solve, as multiple points belonging to the
endeffector have to be detected and matched.

This paper presents a novel view on the calibration problem
based on available closed-form solutions to compute the hand-
eye transformation based on the assumption that the calibration
object is solely a means to an end. The paradigm behind our
approach is to not solve the whole equation system and con-
sider the solution of the orientation related to the calibration
object as unnecessary. We first formulate a quaternion-based
approach directly derived from existing closed-form solutions,
but solving for less unknowns and show that the system is still
solvable for the eye-robot transformation resulting in solutions
of higher accuracy and robustness. Afterwards, we derive an
equivalent formulation using the Kronecker product which
allows us to reduce the calibration object to a single point
without constraining the robot movement and therefore making
the pose estimation of the calibration object obsolete. Utilizing
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this formulation enables us to define a new calibration proce-
dure with (1) the high accuracy of the reformulated closed-
form solution, (2) no need for a calibration object except for a
single point, making it a highly versatile method and thereby
(3) allowing a continuous calibration during the robot’s actual
tasks.

In sec. II, the calibration problem is defined followed by the
classical solution process using the quaternion representation
or the Kronecker product. Here, we also define the basic
notation which is used throughout the paper. Section III picks
up on the theory and formulates the problem in a new, more
general way which allows us to structure the possible solution
space for the calibration problem. As a result, we are able to
find "missing", or unknown solutions where especially two of
them lead to our proposed solution in sec. IV. We describe the
derivation of our approach here and finally prove its validity
by conducting comparative experiments in sec. V followed by
a conclusion in sec. VI.

II. BACKGROUND & THEORY

A. Problem statement

The spatial relationship between robot R, endeffector E,
camera sensor C and marker (calibration object) M in a
"eye-on-hand" calibration scenario (static camera with marker
on the endeffector) can be seen in Fig. 1(a). Note that by
exchanging the sensor and the marker, the same formulation
can be used for the "eye-in-hand" calibration (endeffector-
mounted camera and static marker as world frame) as depicted
in Fig. 1(b). The calibration problem can be derived and
written as

AiX = YBi (1)(
A–1

i+1 Ai

)
X = X

(
B –1

i+1 Bi

)
(2)(

Ai A
–1

i+1

)
Y = Y

(
BiB

–1
i+1

)
(3)

where Ai =
RTEi

denotes the transformation matrix between
the robot base and an arbitrary pose Ei of the endeffector
and Bi =

CTMi
the transformation between the camera and the

observed marker for the ith measurement. Obviously, (2) and
(3) are instances of the general problem formulation AX =
XB which in turn is a particular instance of AX = YB for
Y = X . Therefore, a solution to AX = XB is just a simpler
version of the more general problem (1). Since in that case A
and B are similar, it follows that the matrices have the same
eigenvalues and the same angle of rotation with respect to
their rotation axes, which helps to simplify the solutions even
more. In this paper, we focus on the general case AX = YB.

B. General Solution

The general approach to solve the calibration equation is
to reformulate it as a (homogeneous) linear equation system.
Since in most applications (1) is underdetermined and subject
to noise, multiple measurements, at least three (cf. [7], [8]),
of A and B are necessary.

The classical methods split (1) into two parts and solve them
sequentially by first computing the rotation and then using it to

find the according translation. This can be achieved by writing
the transformation matrix T as a composition of its rotational
part RT and translational part ®tT and thus express (1) as[

RA ®tA
®0 T 1

] [
RX ®tX
®0 T 1

]
=

[
RY ®tY
®0 T 1

] [
RB ®tB
®0 T 1

]
with its decomposition into two separate equations

RARX = RY RB (4)

RA®tX + ®tA = RY®tB + ®tY (5)

and where (4) is known as the equation of rotation and (5) as
the equation of translation. Since once the equation of rotation
is solved and inserted into the translational part, it can be easily
reduced to a linear least-square problem:

[ RA –I ]
[ ®tX
®tY

]
= RY®tB − ®tA (6)

However, the rotational part (4) is not directly solvable with
respect to X and/or Y due to the the noncommutativity of the
matrix multiplication.

In the last decades, the solution to this problem has been
extensively researched and several solutions have been pro-
posed to solve the equation of rotation (4). Most approaches
are based on rephrasing the problem using a different repre-
sentation for the rotation matrices including quaternions or the
Kronecker product as the most prominent ones.

However, Chen [9] argues that the sequential solution of
the robot-sensor calibration is not valid, since it implies that
the rotational and translational part are independent from each
other. Therefore, simultaneous solutions have been developed
which combine both parts into one equation system by rear-
ranging the equation of translation (5):

RY®tB + ®tY − RA®tX = ®tA (7)

In the following, we give an overview of sequential and
simultaneous solutions in the notation of quaternions and the
Kronecker product. The notation is then used to generalize the
representation-specific solutions which allows us to define the
solution space more systematically and thereby find unknown
methods.

C. Quaternions

A unit quaternion is denoted as

q̂ =
[
qw
®qv

]
=

[
cos α

2
sin α

2 ®qe

]
= qw

[
1

tan α
2 ®qe

]
where ®qe denotes the normalized Euler vector or rotation axis
and α the rotation angle. The quaternion multiplication is
defined as

p̂q̂ =
[

pwqw− ®p T
v ®qv

®pvqw+(pwI+
+
[ ®p]) ®qv

]
=

[
qwpw−®q T

v ®pv

®qvpw+(qwI+
−
[ ®q]) ®pv

]
with

+

[ ®qv] and
−
[ ®qv] denoting the cross-product matrix

+

[ ®qv] = –
−
[ ®qv] = –

+

[ ®qv]T =
−
[ ®qv]T =

[ 0 –qv3 qv2
qv3 0 –qv1

–qv2 –qv1 0

]
.



Factoring out p̂ or q̂, we get

p̂q̂ =
[
pw – ®p T

v

®pv pwI+
+
[ ®p]

] [ qw

®qv

]
=

[
qw – ®q T

v

®qv qwI+
−
[ ®q]

] [ pw

®pv

]
which shows that the quaternion multiplication is commutative
up to the sign of the cross-product matrix. A quaternion
multiplication and therefore a concatenated rotation can now
be expressed in terms of the matrix multiplication

p̂q̂ =
+

[p̂]q̂ = q̂
+

[p̂]T = p̂
−
[q̂]T =

−
[q̂]p̂ . (8)

Furthermore, Horn [10] showed that (4) can be expressed in
terms of quaternions and is equivalent to solving âx̂ = ŷb̂
which therefore becomes

+

[â]x̂ =
−
[b̂]ŷ . (9)

This formula has been adapted and led to solutions derived
and implemented by [11] for the AX = XB case and [12] for
the AX = Y B.

Since the axis-angle representation is closely related to the
quaternions, as seen in the quaternion definition, classical
approaches for solving the AX = XB equation like [13], [1],
[14] can be easily derived which otherwise have to be proven
in a much more complicated manner, e.g. through geometry,
group or screw theory. Zhuang [7] showed that the axis-angle
approach can be extended for solving also the AX = Y B
equation by inserting the scalar part of a quaternion into the
imaginary part and thereby reducing the dimensionality to 3D.

Furthermore, the quaternion representation can also be ap-
plied to the equation of translation (7) as shown by [15], [16]
using different derivations like 8-space quaternions or dual
quaternions for solving the calibration problem for rotation
and translation simultaneously. The equation can be written
as

[
+
[t̂A]
+
[â]

+
[â] –

−
[b̂]
−
[t̂B] –

−
[b̂]T

] 
x̂
−
[x̂]t̂X
ŷ
−
[ŷ]t̂Y

 = 0 (10)

where t̂Q represents the pure imaginary quaternion of ®tQ. This
equation is sufficient to solve for X and Y, is however usually
combined with the equation of rotation to inject an additional
constraint by simply stacking the equations. The problem
about the solution space of (10) are the pure imaginary
quaternions which scalar part cannot be constrained to be
0, resulting in an underdetemined equation system with a
nullity of two. The authors in [16], [15] showed however that
the equation is still solvable, since the solution is a linear
combination of the two singular vectors (corresponding to
the two vanishing singular values) spanning the null space. t̂X
and t̂Y can then be retrieved by postmultiplying with

−
[x̂] and

−
[ŷ] respectively, since t̂Q =

−
[q̂]t̂Q

−
[q̂] =

−
[q̂]
−
[q̂]T t̂Q = t̂Q.

D. Kronecker product

The Kronecker product ⊗ of two matrices A and B is defined
as

A ⊗ B =

a11B · · · a1nB

...
. . .

...

am1B · · · amnB

 .

An interesting property of the Kronecker product which allows
us to write a matrix equation Z = AXB in a more convenient
form, is given by

vec(Z) = vec(AXB) = (B T ⊗ A) vec(X)

where vec() denotes the vectorization of a matrix into a
single vector. More generally, we can state that a matrix
multiplication AB can be expressed as

vec(AB) = (I ⊗ A) vec(B) = vec(B)(I ⊗ AT )
= vec(A)(B ⊗ I) = (B T ⊗ I) vec(A) .

(11)

This property leads straight forward to the rephrased for-
mulation of (4) as

(I ⊗ A) vec(X) = (B T ⊗ I) vec(Y) (12)

which has been first applied to the calibration problem by [5]
for the AX = XB case. The Kronecker product has been a base
for further implementations, extensions and simplifications in
[17], [18], [8].

The straight-forward application of the Kronecker product
makes it also quite easy to rephrase the equation of transla-
tion (5) making it possible to solve the calibration problem
simultaneously. The equation becomes

[®t T
B ⊗ I]vec(RY) + ®tY − RA®tX = ®tA . (13)

Stacking this formulation with the equation of rotation, we
can solve for the whole system in one step as shown by [5],
[18]. Note that the solution does not obey the orthonormality
constraint of rotation matrices and hence has to be reorthonor-
malized. However, the corrected error is not reflected in the
translational part which has to be recomputed in a second step
by solving the equation of translation with the now known
rotation again.

III. PROPOSED GENERALIZATION OF THE
THEORY

In the following section, we analyze existing approaches for
both representations and find an abstract solution formulation
for the calibration problem. It allows us to give a more
structured definition of the solution space which we utilize
to represent existing and derive new methods.

Looking at the way how the equation of rotation (4) is refor-
mulated in quaternion representation or using the Kronecker
product, we see that the general solution to the problem is
to rephrase a plain matrix multiplication into a commutative
matrix-vector multiplication. The key properties to achieve this
are given in (8) and (11).



We suggest that both properties are represented by a general
linear mapping Ω such that

Ω(AB) =
+

[A]b̌ =
−
[B]ǎ (14)

with
+

[ ] and
−
[ ] denoting a matrix representation for left and

right multiplication and ˇ a vectorized representation of the
respective input.

Therefore, the commutation rules of the different represen-
tation can be summarized as

Ω(AB) =
+

[A]b̌ ⇔
+

[â]b̂ ⇔ (I ⊗ A) vec(B)

=
−
[B]ǎ ⇔

−
[â]b̂ ⇔ (B T ⊗ I) vec(A) .

(15)

which obviously holds for both properties.
Using this mapping, (4) can be rewritten in two different

solvable equations. The first approach is to directly solve[
+

[RA] –
−
[RB]

] [
řX
řY

]
=

[
−
[RB]T

+

[RA] –I
] [

řX
řY

]
= 0 (16)

which can further simplified (cf. [12], [8]) and is equivalent
to decomposing

K =
n∑
i=1

(
−
[RBi
]T
+

[RAi
]
)

(17)

using the SVD with řX and řY being proportional to the right
and left singular vector corresponding to the highest eigenvalue
of K , respectively.

The second approach formulates (4) as a simple orthogonal
Procrustes problem (cf. [14]) given as(

−
[RX]T

+

[RY]
)

řB = řA (18)

and can also be solved by the SVD where the multiplication
of the left and right singular matrix results in the unknown

matrix (
−
[RX]T

+

[RY]).

These general formulations let us describe the solution space
for the calibration problem more systematically by either using
the quaternion representation or the Kronecker product in
(16), (18) or (17). Additionally, (16) can also be combined
with (10) or (13) depending on the representation resulting
in simultaneous solutions. An excerpt of feasible solutions
derived this way leading to well known and new ones is shown
in Tbl. I. We furthermore include solutions based on the axis-
angle representations since they can be easily derived from the
quaternion formulation.

As we can see, solutions solely based on the equation of
translation have, to our best knowledge, not been developed
in the past, they usually are part of the simultaneous solutions
though. On the one hand, this might be due to the fact that
(13) does only allow to estimate one rotation, and on the other
hand, that they tend to be less stable when used stand-alone
as formulated in (10).

As an additional result of the analysis of the so-
lution space, we implemented all solvers mentioned in

TYPE REPR. EQ. AUTHOR NAME

AX=XB AxisAngle R (16) Tsai [13] –
AX=XB AxisAngle R (18) Park [14] XAxisRX
AX=XB Quaternion R (16) Chou [11] –
AX=XB Quaternion R (18) this –
AX=XB Quaternion R (17) cf. Dornaika [12] XQuatR∗
AX=XB Kronecker R (16) Liang [17] –
AX=XB Kronecker R (17) cf. Shah [8] XKronR∗
AX=XB Kronecker R (18) this –
AX=XB Quaternion RT (16,10) Daniilidis [16] –
AX=XB Quaternion RT (16,10)∗ Lu [15] –
AX=XB Kronecker RT (16,13) Andreff [5] XKronRT
AX=XB Quaternion T (10) this –
AX=XB Quaternion T (10)∗ this –
AX=XB Kronecker T (13) this XKronT

AX=YB AxisAngle R (16) Zhuang [7] YAxisR
AX=YB Quaternion R (16) cf. Chou [11] –
AX=YB Quaternion R (17) Dornaika [12] YQuatR∗
AX=YB Kronecker R (16) cf. Liang [17] –
AX=YB Kronecker R (17) Shah [8] –
AX=YB Quaternion RT (16,10) cf. Daniilidis [16] –
AX=YB Kronecker RT (16,13) Li [18] YKronRT
AX=YB Quaternion T (10) this –
AX=YB Quaternion T (19) this - proposed YQuatT’
AX=YB Kronecker T (20) this - proposed YKronT’

TABLE I
IMPLEMENTED ALGORITHMS BASED ON THE GENERAL SOLUTION.

METHODS WITH NAMES ARE USED IN THE EVALUATION.
∗THE FORMULATION OF THE EQUATION IS SLIGHTLY DIFFERENT.

Tbl. I in a easy-to-use python toolbox including a chess-
board and an Aruco [http://sourceforge.net/projects/aruco]
marker detector and an interface to ROS (Robot Operat-
ing System) [http://www.ros.org] which are available online
[http://github.com/Bjarne-AAU/HandEyeCalibration].

IV. PROPOSED SOLUTIONS

The analysis of the general solution in the previous section
showed that the available solutions are grounded on the use
of the equation of rotation alone or in combination with the
equation of translation, however, no solutions based on the
latter only have been investigated. As a result, we use this gap
as a foundation for the development of our proposed solutions
and show in the following that the equation of translation
alone is sufficient to solve the hand-eye calibration and in fact,
results in an approach which is superior in convergence and
accuracy compared to other methods. The key aspect here is to
shift from solving the whole equation system for all unknown
parameters X, Y to a reduced one that only estimates the
necessary hand-eye transformation Y. Finally, we show that
one particular solution enables us to not only accurately solve
the calibration problem, but also does not rely on the estimated
orientation of the calibration object, resulting in a simple, yet
flexible method which can be used for continuous hand-eye
calibration.

Starting from (10), we apply the definition (9) and use the
property (8) such that

−
[b̂]

−
[t̂B]ŷ −

+

[t̂A]
+

[â]x̂ +
−
[b̂]

−
[ŷ]t̂Y −

+

[â]
−
[x̂]t̂X = 0

⇒
−
[b̂]

−
[t̂B]ŷ −

+

[t̂A]
+

[ŷ]b̂ +
−
[b̂]

−
[ŷ]t̂Y −

+

[â]
−
[x̂]t̂X = 0



⇒
−
[b̂]

−
[t̂B]ŷ −

−
[b̂]

+

[t̂A]ŷ +
−
[b̂]

−
[ŷ]t̂Y −

+

[â]
−
[x̂]t̂X = 0

⇒
(
−
[t̂B] −

+

[t̂A]
)
ŷ +

−
[ŷ]t̂Y −

−
[b̂]T

+

[â]
−
[x̂]t̂X = 0

or in matrix form

[ −
[t̂B] −

+

[t̂A] I –
−
[b̂]T

+

[â]
] 

ŷ
−
[ŷ]t̂Y−
[x̂]t̂X

 = 0 (19)

such that we do not explicitly solve for x̂ anymore and its
matrix counterpart [x̂] can be ignored since we do not want to
extract ®tX anyway. Since this reformulation uses the same input
as the original formulation but solves for less parameters, the
least-square solution is therefore more accurate as shown in
sec. V and can be easily solved using the SVD. Note that,
as mentioned in section II-C, the equation is underdetermined
such that ŷ and t̂Y have to be computed as a linear combination
of the two base vectors spanning the null space [16].

Even though we can achieve a more accurate estimation
of the hand-eye transformation, the quaternion formulation is
still dependent on the marker orientation b̂ and the error of its
estimation.

However, taking (7) and representing it with the Kronecker
product as in (13), we are able to tackle this problem which
is given by

[
(®t T

B ⊗ I) I –RA

] 
vec(RY)
®tY
®tX

 = ®tA . (20)

In contrast to the quaternion approach, (20) can not be
transformed into its more efficient normal form and solved
with the SVD, but with standard linear least-square techniques
instead. However, more important is the fact that the equation
is independent of RX and RB. It is therefore sufficient to measure
or estimate the position ®tB, thereby reducing the calibration
object to a single point. As with most Kronecker product
approaches, the retrieved rotation RY needs to be reorthonor-
malized. Therefore, ®tY is recomputed again to compensate for
the error correction.

V. EXPERIMENTS

The evaluation of the new approaches has been done in
comparison to the implementations derived from the general
solution II-B. Preliminary test showed that not all of these
algorithms behave stably, in particular formulas based on
the equation of translation in quaternion representation due
to its double cover of the rotation group SO(3) (cf. [12]).
Additionally, some of the solutions show a similar behavior
such that they can be represented by only one implementation.
Therefore, we restrict the evaluation to a selection as shown
in Tbl. I. The evaluation has been conducted with simulated
data.

A. Simulation
In the simulation, we use the following setup: For each

round, X = ETM, A = RTE and B = CTE are chosen randomly,
but constrained to the distance intervals tX = 0.2m ± 0.1m,
tA = 1.25m ± 0.75m and tB = 0.8m ± 0.3m with Y = AXB−1

to simulate a realistic setup. We keep the ground truth X and
Y and generate random samples for A in the same distance
interval, but now with a restricted orientation within the range
±30◦; B thereby becomes B = Y−1 AX. A and B are then mul-
tiplied by transformations AN and BN, respectively, to simulate
measurement and sensor noise which is chosen according to
the experiment. Each experiment is done in multiple rounds
from which we then compute the mean rotation, translation
and squared reprojection error.

1) Experiment 1 – AX=XB vs AX=YB:
In our first two experiments, we compare accuracy, robustness
and convergence behavior of algorithms based on the used
equations given a static noise |ANα | < 15◦, |ANt | < 0.02m and
|BNα | < 10◦, |BNt | < 0.01m. Here, we compare the algorithms
based on the formula AX = XB and AX = Y B with increasing
sample size up to 70 samples. For each added sample, each
algorithm is run for 30 rounds and its mean error is computed.
We furthermore compute the average standard deviation of
each equation type which directly correlate to the robustness
of the approaches.

Fig. 2 shows the results of the experiments with the AX =
XB methods in the top row and the AX = Y B methods in
the bottom row. The average standard deviation ±1σ from the
average mean for each equation type is marked as a grey area.

The experiment shows that most of the AX = XB algo-
rithms behave very similarly and have a moderate standard
deviation for the rotational and translational error. From the
reprojection error, however, we can conclude that the quality
of the estimation in terms of robustness varies up 50% which
is an undesirable behavior. The AX = Y B algorithms, in
contrast, show a very robust behavior, converging faster with
a more accurate estimation. Only the rotation error varies up
to a couple of degrees depending on the approach which we
analyze in more detail in the next experiment.

2) Experiment 2 – Best of AX=YB:
We are using the same setup as in experiment 1, but this time
only for the 4 best performing algorithms of type AX = Y B
which can be clearly identified from Fig. 2 as YQuatT’,
YKronT’, YQuatR* and finally YKronRT.

Fig. 3 shows a closer view on the different methods, this
time independently with their respective standard deviation of
±0.2σ.

We furthermore run an additional test to evaluate the behav-
ior under increasing noise conditions. Therefore, we increase
the rotation noise linearly in 70 steps from 0◦ to 30◦ and
20◦ respectively for ANα and BNα, while the translation error
increases at the same time from 0m to 0.06m and 0.03m
respectively for ANt and BNt. For each iteration, we compute
the mean and variance error of 40 rounds.

Fig. 4 depicts the behavior of each algorithm with increasing
noise along with their respective standard deviation of ±0.2σ.



(a) Rotation error (b) Translation error (c) Reprojection error

(d) Rotation error (e) Translation error (f) Reprojection error

Fig. 2. Comparison of absolute errors for (top) AX=XB and (bottom) AX=YB with average mean and standard deviation in grey with increasing number of
samples.

(a) Rotation error (b) Translation error (c) Reprojection error

Fig. 3. Comparison of the absolute errors with 20% standard deviation of the 4 best calibration methods with increasing number of samples.

The experiments clearly show the difference in terms of
accuracy, convergence and robustness between the differ-
ent methods. Both our proposed algorithms, YQuatT’ and
YKronT’, converge faster than the state-of-the-art algorithms
YQuatR* and YKronRT and show a slightly better per-
formance in terms of robustness. In terms of accuracy, our
solutions surpass the others as well, especially the rotation
error is magnitudes lower. Interestingly, our quaternion-based
approach YQuatT’ gives the best results whereas in most
other implementations, the Kronecker product outperforms the
quaternion version. Furthermore, we can see that our proposed

algorithm YKronT’ which only uses point measurements from
the calibration object, only performs slightly worse than the
best method YQuatT’ and still better than the best state-of-
the-art algorithm YKronRT.

B. Real world
For the evaluation on a real robotic system, we use a Xtion

RGB-D camera mounted on a rack above a UR10 robotic arm.
Our calibration object is a 5cm × 5cm Aruco marker taped
on the endeffector. The marker pose is used by all algorithms
except for the proposed YKronT’ which solely uses the center
position of the marker. For the experiment, we place the



(a) Rotation error (b) Translation error (c) Reprojection error

Fig. 4. Comparison of the absolute errors with 20% standard deviation of the 4 best calibration methods with increasing noise level.

(a) Rotation error (b) Translation error

Fig. 5. Comparison of the absolute errors with 50% standard deviation of the 4 best calibration methods in a real eye-on-hand calibration setup.

robotic arm about 0.7m away from the camera and then move
the arm continuously in random poses within ±0.15m in each
direction and an angular deviation of ±40◦. The mean and
standard deviation is computed over 5 rounds with each 80
samples. Since we only estimate Y and X remains unknown,
we cannot compute the reprojection error. The angular and
translational error are compared against a manually refined
calibration, therefore we can mainly observe the behavior in
terms of robustness.

Fig. 5 shows the result of the 4 best algorithms for the real
setup. Due to the small marker size used in the experiment, the
orientation estimation of the marker is usually much higher
compared to the position estimation. As expected from the
simulated experiments, we can thus see that the methods
based on the equation of translation perform in general much
better than the sequential and simultaneous methods. Both
proposed methods YQuatT’ and YKronT’ show a much faster
convergence rate and are also more robust in their estimation.
The quaternion approach gives still the best results, closely
followed by the point-based Kronecker approach.

In conclusion, the experiments showed that the proposed
solution works robustly and estimate the transformation with
high accuracy. Especially the YKronT’, which uses less

information compared to the others, shows a very desirable
behavior and can therefore be used for a continuous calibration
process.

VI. CONCLUSION

In this paper, we aimed to tackle two seemingly contradict-
ing developments in the research of solving the calibration
problem: On the one hand, mathematical formulations have
been proposed to increase the accuracy of the calibration
through linear and non-linear methods. However, the accuracy
of the pose estimation of the calibration object has a huge
impact on the quality of the solutions and therefore gives
better results for larger objects. On the other hand, research
towards self-calibration has been conducted which makes the
use of calibration objects obsolete and is replaced by feature
matching or other estimation methods which in turn decrease
the accuracy of the solutions.

To solve this dilemma, we first analyze known closed-form
solutions and rephrase them in an more general way such that
we can derive a structured and systematic view on the possible
solution space. We can thereby show that known methods
are part of this solution space, but it also gives rise to new
possible approaches. In particular, we conclude that the focus



for solving the hand-eye problem mainly lies on the equation
of rotation, sometimes simultaneously used in combination
with the equation of translation.

Therefore, this paper proposes a shift towards the equation
of translation only and shows that the calibration problem
can, in fact, still be solved. We combine this method with the
assumption that the pose of the calibration object is irrelevant
to the calibration problem and hence has not to be solved
for. This leads to a new formulation which surpasses other
closed-form solutions in terms of accuracy, robustness and
convergence as concluded from the conducted experiments.

Finally, we formulate a method based on the equation of
translation with similar performance and quality, but does
not need the estimated orientation of the calibration object
to solve the calibration problem and hence can be reduced
to a single 3D point. This renders our proposed method an
accurate and flexible solution which allows continuous hand-
eye calibration.
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