
ar
X

iv
:2

10
5.

15
00

2v
1

 [
cs

.S
E

]
 3

1
M

ay
 2

02
1

ArChes - Automatic Generation of Component

Fault Trees from Continuous Function Charts

Marc Zeller, Kai Höfig, Jean-Pascal Schwinn

Siemens AG, Corporate Technology

Otto-Hahn-Ring 6, 81379 Munich, Germany

Email: {marc.zeller, kai.hoefig, jean-pascal.schwinn}@siemens.com

Abstract—The growing size and complexity of software in
embedded systems poses new challenges to the safety assessment
of embedded control systems. In industrial practice, the control
software is mostly treated as a black box during the system’s
safety analysis. The appropriate representation of the failure
propagation of the software is a pressing need in order to increase
the accuracy of safety analyses. However, it also increase the
effort for creating and maintaining the safety analysis models
(such as fault trees) significantly. In this work, we present a
method to automatically generate Component Fault Trees from
Continuous Function Charts. This method aims at generating the
failure propagation model of the detailed software specification.
Hence, control software can be included into safety analyses
without additional manual effort required to construct the safety
analysis models of the software. Moreover, safety analyses created
during early system specification phases can be verified by
comparing it with the automatically generated one in the detailed
specification phased.

I. INTRODUCTION

The importance of safety-critical software systems in many

application domains of embedded systems, such as aerospace,

railway, health care, automotive and industrial automation, is

continuously growing. In order to guarantee the high quality

demands in these application domains, also the effort for safety

assessment is increasing. The goal of the safety assessment

process is to identify all failures that cause hazardous situa-

tions and to demonstrate that their probabilities are sufficiently

low. In the application domains of safety-critical systems the

safety assurance process is defined by the means of safety

standards (e.g. the IEC 61508 standard [1]). Traditionally, the

analysis of a system in terms of safety consists of bottom-up

safety analysis approaches, such as Failure Mode and Effect

Analysis (FMEA), and top-down ones, such as Fault Tree

Analysis (FTA), to identify failure modes, their causes, and

effects with impact on the system safety. With Component

Fault Trees (CFTs) [2] there is a model- and component-

based methodology for FTA, which supports a modular and

compositional safety analysis strategy. Fault tree elements are

related to their development artifacts and can be reused along

with the respective development artifact.

In industry, software within safety-critical systems is cur-

rently increasing in size and importance. Hence, also the

influence of software in safety analysis is increasing. However,

in practice software is mostly treated as a black box within the

safety analysis. The representation of the failure propagation

of the software is a pressing need in order to increase the

accuracy of the safety analyses, also the effort for creating

and maintaining the safety analysis models is increasing sig-

nificantly. Moreover, in order to ensure the quality of the safety

assessment manual and time-consuming reviews of the failure

propagation model in terms of completeness and correctness

are required.

In this work, we present a method to fully automatically

generate Component Fault Trees from Continuous Function

Charts (CFCs). This methodology aims at generating the

failure propagation model of the detailed software specifica-

tion automatically. Hence, safety analyses in form of Fault

Tree Analysis (FTA), can be performed without manual ef-

fort required to construct the safety analysis models of the

software. Moreover, the failure propagation model specified

during system design can be verified by comparing it with the

automatically generated one.

There are a number of concepts to automatically generate

failure propagation models from the system design. In [3], [4]

fault tree models are generated from UML models to perform

safety analysis, while [5]–[8] use a system architecture model,

such as AADL, EAST-ADL, etc., as input to generate fault tree

models. Moreover, some approaches deal with the automated

generation of failure propagation models from a data flow

language such as the one used by Matlab/Simulink [9]–[11].

However, all these approaches focus on the system archi-

tecture as input. Often the required manual modeling and

preparation efforts are very high in order to be able to generate

the failure propagation models. In this work, we focus on

the automatic generation of failure propagation models from a

detailed software specification in form of continuous function

charts.

The rest of the paper is organized as follows: In Section

?? we briefly summarize relevant related work. Afterwards,

we outline the concepts of CFCs in Section II and CFTs in

Section III. Section IV presents our approach to automatically

CFTs from CFCs. The paper is concluded in Section V.

II. CONTINUOUS FUNCTION CHARTS

Continuous Function Chart (CFC) is graphical program-

ming language for Programmable Logic Controller (PLC) to

design complex control and regulation tasks as an extension

of the IEC 61131-3 standard [12]. Instead of using a sequence

of commands in textual notation, function blocks are com-

bined and interconnected graphically. The CFC diagrams for

Copyright © 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to

servers or lists, or reuse of any copyrighted component of this work in other works.
DOI: 10.1109/INDIN.2017.8104836

URL: https://ieeexplore.ieee.org/document/8104836

http://arxiv.org/abs/2105.15002v1

programmable controller resemble electronic circuit diagrams.

The function to be performed by the control system is rep-

resented in the form of the interconnected graphic elements.

Since pre-defined function blocks only need to be connected

to one another, complex functions can be programmed easily

by developers coming from various engineering disciplines.

A CFC diagram consists of function blocks and linkages

between these blocks. Each function block has different types

of input and output parameters. It processes the input parame-

ters according to a specific automation function and produces

output parameters for other function blocks. The automation

function of each function block is defined manually by a

developer. The function blocks’ outputs may be linked to the

inputs of other function blocks in CFC diagrams. Thereby,

each linkage indicates that an input parameter of a function

block obtains its value from the specific output parameters

of another function block. Therefore, CFC diagrams have a

precise syntax and each function block has a well defined se-

mantics. CFC diagrams can be created graphically using tools

such as SIBAS.G or SIMATIC S7 among others. SIBAS.G

is an engineering tool for the development of software for

the vehicle control of trains. SIMATIC S7 is used to design

complex control-engineering tasks in the industrial automation

domain.

III. COMPONENT FAULT TREES

A Component Fault Tree (CFT) is a Boolean model asso-

ciated to system development elements such as components

[2]. It has the same expressive power as classic fault trees

[13]. CFTs (as well as classic fault trees) are used to model

the failure behavior of safety-critical systems. This failure

behavior is used to document that a system is safe and can

also be used to identify drawbacks of the design of a system.

In CFTs, a separate CFT element is related to a component.

Failures that are visible at the outport of a component are

models using Output Failure Modes which are related to a

specific outport. To model how specific failures propagate from

an inport of a component to the outport, Input Failure Modes

are used. The internal failure behavior that also influences the

output failure modes is modeled using the Boolean gates such

as OR and AND as well as Basic Events.

Every CFT can be transformed to a classic fault tree by

removing the input and output failure modes elements. The

CFT model allows, additionally to the Boolean formula that

are also modeled within the classic fault tree, to associate

the specific failure modes to the corresponding ports where

these failures can appear. By using CFT methodology, benefits

during the development, such as an increased maintainability

of the safety analysis model, can be observed [14].

IV. GENERATION OF CFTS FROM CFCS

In this section, we present our approach to automatically

generate CFTs from continuous function charts (CFCs). In the

following, this method is described formally and illustrated

using an example as depicted in Fig. 1.

con1

c1 c2

FloatValue

BoolValue4con2 BoolValue1

con3 BoolValue2

FloatValue

BoolValue1

BoolValue2

c3

con5 BoolValue4

Fig. 1. Exemplary system

Let the System S consist of a set of components C =
{c1, ..., cn}. Each component c ∈ C includes a set of inports

IN(c) = {in1, ..., inp} and a set of outports OUT (c) =
{out1, ..., outq}. The information flow between the outport of

a component ci ∈ C and the inport of another component

cj ∈ C (with ci 6= cj) of the system is represented as a set of

connections

∀ci, cj ∈ C : CON ⊆ OUT (ci)× IN(cj) (1)

The example system as depicted in Fig. 1 is defined by:

C = {c1, c2, c3}

IN(c1) = ∅

IN(c2) = {FloatV alue,BoolV alue1,

BoolV alue2}

IN(c3) = {BoolV alue4}

OUT (c1) = {FloatV alue,BoolV alue1,

BoolV alue2}

OUT (c2) = {BoolV alue4}

OUT (c3) = ∅

CON = {(FloatV alue, F loatV alue),

(BoolV alue1, BoolV alue1),

(BoolV alue2, BoolV alue2),

(BoolV alue4, BoolV alue4)}

The behavior of each component ci ∈ C is defined by a CFC

diagram cfci ∈ CFC with ˜CFC(ci) = cfci and cfc 6= ∅.

Each CFC is defined by a tuple

cfci = (FB(cfci), LINK(cfci), IN(cfci), OUT (cfci))
(2)

where FB(cfci) = {fb1, ..., fbm} is a set of function blocks,

LINK(cfci) is a set of linkages, IN(cfci) = IN(ci) is a set

of input parameters of the CFC and equals the set of inports of

the corresponding component ci, and OUT (cfci) = OUT (ci)
is a set of output parameters of the CFC and equals the set of

outports of the corresponding component ci.

A function block fbi ∈ FB(cfci) of a CFC cfci ∈ CFC

is defined as a tuple

fbi = (t(fbi), f(fbi), IN(fbi), OUT (fbi)) (3)

where t(fbi) is the unique type of a function block, f(fbi) is

the automation function, IN(fbi) = {ini,1, ..., ini,u} is a set

of input parameters of the function block, and OUT (fbi) =
{outi,1, ..., outi,v} is a set of output parameters of the function

block.

FloatValue BoolValue4

BoolValue1

BoolValue2

1.0

CMPLE_GN

IN

SV

OUTGN

GN

B1

OR2_B1

IN1

IN2

OUTB1

B1

B1

fb1

fb2

fb3
AND3_B1

IN1

IN2

OUTB1

B1

B1

Fig. 2. CFC diagram of component c2 (in SIBAS.G)

A linkage linkj,i ∈ LINK(cfci) of a CFC cfci ∈ CFC

is a relation

linkj,i = ((xk, yl) | xk ∈ OUT (fbj) ∪ IN(cfci),

yl ∈ IN(fbi) ∪OUT (cfci))
(4)

where outj,k is either the kth output parameter of function

block fbj or the kth input parameter of the CFC and ini,l is

either the lth input parameter of function block fbi or the lth

output parameter of the CFC.

An automation function f(fbi) of a function block fbi ∈
FB(cfci) is a relation between its input and output param-

eters (e.g. logical relations, such as or, and, not, etc.). It

is defined as f(fbi) ⊆ (IN(fbi)×OUT (fbi)), where for

all ini,x ∈ IN(fbi) and outi,y1
, outi,y2

∈ OUT (fbi), if

(ini,x, outi,y1
) ∈ f(fbi) and (ini,x, outi,y2

) ∈ f(fbi) then

outi,y1
= outi,y2

.

Each input parameter ini,k ∈ IN(fbi) and output parameter

outi,l ∈ OUT (fbi) of a function block fbi ∈ FB(cfci) has a

specific connector type CTY (xi) = cty with xi ∈ IN(fbi)∪
OUT (fbi) (e.g. Boolean, integer, etc.). If linkj,i = (xa, yb) =
(outfbj ,a, infbi,b) then CTY (outfbj ,a) = CTY (infbi,b).

In our example, the CFC diagram cfc2 of component c2
presented in Fig. 2 is defined by:

FB(cfc2) = {fb1, fb2, fb3}

IN(cfc2) = {FloatV alue,BoolV alue1,

BoolV alue2}

OUT (cfc2) = {BoolV alue4}

LINK(cfc2) = {(FloatV alue, IN1,1) ,

(BoolV alue1, IN12,1) ,

(BoolV alue2, IN22,2) ,

(OUT 1, 1, IN13,1) ,

(OUT2,1, IN23,1) ,

(OUT3,1, BoolV alue4)}

t(fb1) = CMPLE GN

IN(fb1) = {IN1,1, SV1,2}

OUT (fb1) = {OUT1,1}

t(fb3) = AND3 Bl

IN(fb3) = {IN13,1, IN23,2}

OUT (fb3) = {OUT3,1}

CTY (IN1,1) = CTY (SV1,2) = GN

CTY (IN12,1) = CTY (IN22,2) = Bl

CTY (IN13,1) = CTY (IN23,2) = Bl

CTY (OUT1,1) = CTY (OUT2,1)

= CTY (OUT3,1) = Bl

If ci ∈ C has a CFT element cfti ∈ CFT , then it is
˜CFT (ci) = cfti with cfti 6= ∅.

Each CFT element cfti ∈ CFT (ci) of a component ci ∈ C

may have input failure modes IFM(ink) = {ifm1, ..., ifms}
which are related each to an inport ink ∈ IN(ci) as well as

output failure modes OFM(outl) = {ofm1, ..., ofmt} which

are related each to an outport outl ∈ OUT (ci).
In order to specify the semantics of the failure modes

within component fault tree an unambiguous failure type fty

is assigned to each input and output failure mode. The different

failure types as well as the relation between them are specified

in a so-called failure type system T [15]:

FTY (fm) = fty

with fm ∈

p
⋃

i=1

IFM(ini) ∪

q
⋃

j=1

OFM(outj)

and fty ∈ T

(5)

Moreover, each CFT element CFT (ci) 6= ∅ of a component

ci ∈ C may have a set of gates G = {g1, ..., gr}. Each

gate gi ∈ G has exactly one output gi.out, one or more

inputs gi.IN = {gi.in1, ..., gi.ins}, and a Boolean formula

b (e.g. g.out = g.in1 ∨ g.in2).

Input and output failure modes as well as gates are con-

nected by a set of directed edges

E ⊆ {(outx, iny) | outx ∈
⋃

i=1...p

IFM(inp)
⋃

j=1...r

gj .out

iny ∈
⋃

k=1...r

gk.IN
⋃

l=1...q

OFM(outl)}

(6)

The generation of a CFT from a CFC diagram is performed

in three steps, which are defined as follows:

A. Generation of CFT elements

At first, a CFT element is created for each CFC diagram

within a specific project:

∀ cfci ∈ CFC with cfci = ˜CFC(ci) : ˜CFT (ci) = cfti
(7)

Thus, ∀ci ∈ C : ∃ cfti ∈ CFT .

Moreover, based on the inputs and outputs defined in

each CFC diagram, inports and outports are generated and

interconnected based on the unique names of the inputs and

outputs of the CFC diagrams:

∀ cfci ∈ CFC : IN(ci) → IN(cfci) (8)

∀ cfci ∈ CFC : OUT (ci) → OUT (cfci) (9)

and

∀ cfci, cfcj ∈ CFC with cfci 6= cfcj :

∀ outi,k ∈ OUT (cfci), inj,l ∈ IN(cfcj) :

→ {(outi,k, inj,l) | name(outi,k) = name(inj,l)}

(10)

For the exemplary system as depicted in Fig. 1 & 2, the

following CFT elements are generated (see Fig. 3:

˜CFT (c1) = cft1
˜CFT (c2) = cft2
˜CFT (c3) = cft3

IN(cfc2) = {FloatV alue,BoolV alue1,

BoolV alue2}

OUT (cfc2) = {BoolV alue4}

CON = {(FloatV alue, F loatV alue),

(BoolV alue1, BoolV alue1),

(BoolV alue2, BoolV alue2),

(BoolV alue4, BoolV alue4)}

B. Generation of Input & Output Failure Modes

In the next step, the input and output failure modes are

generated for each of the previously created CFT elements.

The generation of the failure modes is based on a generic

mapping between the connector types in the CFC diagram

and the failure types of the failure modes in the CFT element.

Whereas, each connector type corresponds to a set of failure

types from the generic failure type system T [15]:

MAP : CTY (xi) 7→ {fty1, ..., f tyn} ∈ T (11)

with xi ∈ IN(cfti) ∪ OUT (cfti) and cfti ∈ CFT and

ftyj ∈ T .

The generic mapping from connector types in CFCs to

failure types in CFTs is presented in Table I. For each

Connector Type Failure Type

Boolean

false positive,
false negative,
omission,
commission,
too early,
too late

Integer,
Float,
Time

too high,
too low,
omission,
commission,
too early,
too late

TABLE I
MAPPING OF CONNECTOR TYPES IN CFCS TO FAILURE MODES IN CFT

CFT element cfti ∈ CFT , a set of input failure modes

as well as a set of output failure modes is generated based

on the connector types of the inputs IN(cfci) and outputs

OUT (cfci) of the corresponding CFC diagram cfci ∈ CFc,

where cfci = ˜CFC(ci) and cfti = ˜CFT (ci) with ci ∈ C:

∀ cfci ∈ CFC : ∀ inj ∈ IN(cfci) :

→ {ifmk | MAP (CTY (inj)) = FTY (ifmk)}
(12)

and

∀ cfci ∈ CFC : ∀ outj ∈ OUT (cfci) :

→ {ofmk | MAP (CTY (outj)) = FTY (outk)}
(13)

con1

cft1 cft2

FloatValue

BoolValue4

con2

BoolValue1

con3

BoolValue2

FloatValue

BoolValue1

BoolValue2

cft3

con5

BoolValue4

c1 c2 c3

BoolValue4_false-positive

[false positive]

BoolValue4_false-negative

[false negative]

BoolValue1_false-positive

[false positive]

BoolValue1_false-negative

[false negative]

BoolValue2_false-positive

[false positive]

BoolValue2_false-negative

[false negative]

FloatValue_too-low

[too low]

FloatValue_too-high

[too high]

FloatValue_omission

[omission]

FloatValue_commission

[commission]

FloatValue_too-early

[too early]

FloatValue_too-late

[too late]

BoolValue1_omission

[omission]

BoolValue1_commission

[commission]

BoolValue1_too-early

[too early]

BoolValue1_too-late

[too late]

BoolValue1_omission

[omission]

BoolValue2_commission

[commission]

BoolValue2_too-early

[too early]

BoolValue2_too-late

[too late]

BoolValue4_false-positive

[false positive]

BoolValue4_false-negative

[false negative]

BoolValue4_false-positive

[false positive]

BoolValue4_false-negative

[false negative]

Fig. 3. Exemplary system: Generated input and output failure modes

For the component c2 of the exemplary system presented

in Fig. 1 and Fig. 2, a set of input and output failure modes

are generated as depicted in Fig. 3 where each input or output

failure mode has a specific failure type FTY (displayed in

square brackets).

C. Generation of the failure propagation

In a last step, the failure propagation from the input failure

modes of each CFT element cfti ∈ CFT to its output

failure modes is generated based on the definition of the

corresponding CFC diagram cfci = ˜CFC(ci) ∈ CFC.

Therefore, input and output failure modes of the CFT element

cfti are connected using Boolean gates [2].

At first, a set of Boolean gates G is generated based on spe-

cific predefined rules for each function block fbj ∈ FB(cfci).
Therefore, a set of rules R(t(fbi)) = {r1, ..., rs} must be

defined for each type of function block t(fbj) ∈ FB(cfci)
of the CFC. It describes for all possible failure types how

the output parameter of a function block are related to the

possible failure types its input parameters (see Eq. 14). The

possible failure types of the input and output parameters of a

function block in the CFC are defined by their connector type

according to the mapping MAP (see Table I). For instance, if

the connector type of the output parameter is a Boolean, two

∀ cfci ∈ CFC : ∀ fbj ∈ FB(cfci) : ∀ outk,l ∈ OUT (fbj) :

R(t(fbj)) = {ri | ri : MAP (CTY (outk,l)) 7→ MAP (CTY (ink,1)) ◦ . . . ◦MAP (CTX(nk,u)}

with ◦ = {¬,∧,∨,⊕}

and i = 1, ..., |MAP (CTY (outk,l))|

(14)

rules must be defined: one for the failure type false negative

and one rule for the failure type false positive.

In case that no rule is predefined for a type of function block

fbj ∈ FB(cfci) used in the CFC diagram cfci ∈ CFC,

only the worst case scenario for the failure propagation can

be assumed. This worst case scenario is defined in Eq. 15.

For the function blocks of component c2 in our example as

depicted in Fig. 2 the following rules are defined:

R(CMPLE GN) =

{OUT.false-positive = IN.too-low,

OUT.false-negative = IN.too-high,

OUT.omission = IN.omission,

OUT.commission = IN.commission,

OUT.too-early = IN.too-early,

OUT.too-late = IN.too-late}

R(OR2 Bl) =

{OUT.false-positive = IN1.false-positive ∨
IN2.false-positive,

OUT.false-negative = IN1.false-negative ∧
IN2.false-negative,

OUT.omission = IN1.omission ∧
IN2.omission,

OUT.commission = IN1.commission ∨
IN2.commission,

OUT.too-early = IN1.too-early ∨
IN2.too-early,

OUT.too-late = IN1.too-late ∧
IN2.false-late}

R(AND3 Bl) =

{OUT.false-positive = IN1.false-positive ∧
IN2.false-positive,

OUT.false-negative = IN1.false-positive ∨
IN2.false-positive,

OUT.omission = IN1.omission∧
IN2.omission,

OUT.commission = IN1.commission ∨
IN2.commission,

OUT.too-early = IN1.too-early ∨
IN2.too-early,

OUT.too-late = IN1.too-late ∧
IN2.false-late}

Based on these rules, the following Boolean gates are gener-

ated for the CFT element cft2 of component c2:

AND1-1 = AND1-2 = AND1-3

= AND2-1 = AND2-2 = AND2-3

= (AND.out, {AND.in1, AND.in2} ,

AND.out = AND.in1 ∧ AND.in2)

OR1-1 = OR1-2 = OR1-3

= OR2-1 = OR2-2 = OR2-3

= (OR.out, {OR.in1, OR.in2} ,

OR.out = OR.in1 ∨OR.in2)

Afterwards, the input and output failure modes as well as

the Boolean gates of each CFT element cfti ∈ CFT are

interconnected according to the corresponding CFC’s linkage

LINK(cfci). For creating the interconnections, we start from

the output failure modes and connect them with the available

input failure modes through the Boolean gates. Therefore, a

set of direct edges is created as follows:

∀ outj ∈ OUT (cfci) : ∀ ∀ofmk ∈ OFM(outj) :

→ {(x, ofmk) | x ∈ IFM(inl) ∨ x = gr.out,

∃ linkz ∈ LINK(cfci) = (y,OUT (cfci)) ,

y = inl ∨ y ∪OUT (fbd), fbs ⇒ gr}

(16)

and

∀ gj.IN ∈ G : ∀ gj .ink ∈ gj.IN :

→ {(x, gj .ink) | x ∈ IFM(inl) ∨ x = gr.out, gr 6= gj

∃ linkz ∈ LINK(cfci) = (y,OUT (cfci)) ,

y = inl ∨ y ∪OUT (fbs), fbs ⇒ gr}
(17)

The result of the generation process for the exemplary

system is presented in Fig. 4.

V. CONCLUSIONS

Our approach to generate Component Fault Trees (CFTs)

from Continuous Function Charts (CFCs) automatically cre-

ates a failure propagation model based on thte detailed soft-

ware specification of the system. No additional manual effort

is needed to perform a safety analysis. The resulting CFT can

be used for Fault Tree Analyses (FTA) of the overall system

including the software as a white box. Thus, the accuracy of

the safety analysis is increased without additional effort needed

for the construction and maintenance of the safety analysis

model for the controller software of the system. Compared to

traditionally used methods for the analysis of software such

as root cause analysis or fault injection tests, in which the

quality of the results is depending on the accuracy of the

∀ outk,l ∈ OUT (fbj) :

R(worst case) =

{

ri | ri : MAP (CTY (outk,l))

u
∨

s=1

∨

MAP (CTY (ink,t))

}

with i = 1, ..., |MAP (CTY (outk,l))|

(15)

con1

cft1 cft2

FloatValue

BoolValue4

con2

BoolValue1

con3

BoolValue2

FloatValue

BoolValue1

BoolValue2

cft3

con5

BoolValue4

c1 c2 c3

false-negative

false-positive

false-negative

false-positive

false-negative

too-low

too-high

A
N

D

1
-1

O
R

1
-1

O
R

2
-1

A
N

D

2
-1

too earlyA
N

D

1
-3

A
N

D

1
-2

false-positive

commission

omission

too late

O
R

1
-2

O
R

1
-3

commission

omission

too-early

too-late

commission

too-early

omission

too-late

O
R

2
-2

O
R

2
-3

A
N

D

2
-2

A
N

D

2
-3

commission

too-early

omission

too-late

Fig. 4. Exemplary system: Generated CFT element for component c2

input data which are generated manually by a team of experts

(e.g. by brainstorming), our approach provides a complete set

of input data while no manual effort is required. Moreover, the

automatically generated CFT may be compared to a CFT (or

Fault Tree) created manually by a safety engineering during

the system specification (e.g. as described by [16]). Hence, it

is possible to verify if the failure propagation model specified

during system design is build correctly in terms of consistency

and completeness.

REFERENCES

[1] International Electrotechnical Commission (IEC), “IEC 61508: Func-
tional safety of electrical/electronic/programmable electronic safety re-
lated systems,” 1998.

[2] B. Kaiser, P. Liggesmeyer, and O. Mäckel, “A new component concept
for fault trees,” in Proceedings of the 8th Australian Workshop on Safety

Critical Systems and Software, 2003, pp. 37–46.
[3] A. Bondavalli, I. Majzik, and I. Mura, “Automated Dependability

Analysis of UML Designs,” IEEE International Symposium on Object-

oriented Real-time distributed Computing, vol. 2, 1999.
[4] M. A. de Miguel, J. F. Briones, J. P. Silva, and A. Alonso, “Integration of

safety analysis in model-driven software development,” Software, IET,
vol. 2, no. 3, pp. 260–280, 2008.

[5] M. Bretschneider, H. J. Holberg, E. Bode, and I. Bruckner, “Model-based
safety analysis of a flap control system,” Proc. 14th Annual INCOSE

Symposium, 2004.
[6] Y. Papadopoulos, J. A. McDermid, R. Sasse, and G. Heiner, “Analysis

and synthesis of the behaviour of complex programmable electronic
systems in conditions of failure,” Int. Journal of Reliability Engineering

and System Safety, vol. 71, no. 3, pp. 229–247, 2001.

[7] A. Rae and P. Lindsay, “A behaviour-based method for fault tree
generation,” Proc. of the 22nd Int. System Safety Conference, pp. 289 –
298, 2004.

[8] G. Szabo and G. Ternai, “Automatic Fault Tree Generation as a Support
for Safety Studies of Railway Interlocking Systems,” IFAC Symposium

on Control in Transportation Systems, 2009.
[9] Y. Papadopoulos and M. Maruhn, “Model-Based Synthesis of Fault

Trees from Matlab-Simulink Models,” International Conference on

Dependable Systems and Networks, 2001.
[10] F. Tajarrod and G. Latif-Shabgahi, “A Novel Methodology for Synthesis

of Fault Trees from MATLAB-Simulink Model,” World Academy of

Science, Engineering & Technology, vol. 2, no. 5, pp. 1181–1187, 2008.
[11] S. Buono, V. Ramich, B. Kaiser, and J. Zander, “An industry case study

on semi-automated generation of component fault trees from simulink-
models,” in Gemeinsamer Tagungsband der Workshops der Tagung

Software Engineering 2015, 2015, pp. 41–50.
[12] International Electrotechnical Commission (IEC), “IEC 61131-3: Pro-

grammable controllers - Part 3: Programming languages,” 2013.
[13] W. E. Vesely, F. F. Goldberg, N. H. Roberts, and D. F. Haasl, Fault Tree

Handbook. US Nuclear Regulatory Commission, 1981.
[14] J. Jung, A. Jedlitschka, K. Höfig, D. Domis, and M. Hiller, “A controlled

experiment on component fault trees,” in Computer Safety, Reliability,

and Security, 2013, pp. 285–292.
[15] J. McDermid and D. Pumfrey, “A development of hazard analysis to

aid software design,” in Proceedings of the COMPASS ’94, 1994, pp.
17–25.

[16] D. Domis, K. Höfig, and M. Trapp, “A consistency check algorithm
for component-based refinements of fault trees,” in 2010 IEEE 21st

International Symposium on Software Reliability Engineering (ISSRE),
2010, pp. 171–180.

	I Introduction
	II Continuous Function Charts
	III Component Fault Trees
	IV Generation of CFTs from CFCs
	IV-A Generation of CFT elements
	IV-B Generation of Input & Output Failure Modes
	IV-C Generation of the failure propagation

	V Conclusions
	References

